Throughout the exam, the symbol \(\mathbb{N} \) denotes the natural numbers, and the symbol \(\mathbb{R} \) denotes the real numbers.

1. **Types.** Let \(B = \{-2, -1, 1, 2\} \), \(g : B \to B \) where \(f(x) = -x \). For each of the following expressions, indicate whether the type of the expression is set, proposition, function, or ill-formed:

 (a) \(B \subseteq \emptyset \)
 (b) \(B \times B \)
 (c) \(g \circ g \)
 (d) \(g \) is invertible
 (e) \(g = O(1) \)

2. **Big-Oh.** Let \(f \) and \(g \) be functions from \(\mathbb{N} \) to \(\mathbb{N} \) where \(f(n) = 2n^3 \) and \(g(n) = 1000n^2 \). Is \(f(n) = O(g(n)) \)? Prove that your answer is correct, using the logic-based definition of big-Oh.

3. **Big-Oh.** Let \(f_1, f_2 \) and \(g \) be functions from \(\mathbb{N} \) to \(\mathbb{N} \). Show that if \(f_1 \) is \(O(g) \) and \(f_2 \) is \(O(g) \) then \(f_1 + f_2 \) is \(O(g) \). (Note that \((f_1 + f_2)(x) = f_1(x) + f_2(x) \)).

4. **Functions.** Consider the following informal description of a new function property:

 A function is a “foo function” if and only if every element in the codomain is mapped to by at least two elements in the domain.

 (a) Give a formal logic expression that is true exactly when the function \(f : S \to T \) is a foo function.
 (b) Give an example of a foo function, and prove that your function has the foo property.

5. **Functions.** Consider \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} \times \mathbb{R} \) given by \(f(a,b,c) = (c,a+b) \).

 (a) Is \(f \) one-to-one? If yes, give a proof; if no, give a counterexample.
 (b) Is \(f \) onto? If yes, give a proof; if no, give a counterexample.

6. **Sets.** Consider the proposition on sets \(A, B \) and \(C \).

 \[(A \cap B) \cup C = A \cap (B \cup C)\]

 (a) Give an example of sets \(A, B \) and \(C \) such that the proposition is false.
 (b) Give an example of sets \(A, B \) and \(C \) such that the proposition is true.
 (c) Give a condition that is necessary and sufficient for the proposition to be true. In other words, whenever the condition is true, the proposition is true; whenever the condition is false, the proposition is false.