Towards Exploiting the
Architectural Features of

Beehive *

Gautam Shah Umakishore Ramachandran

GIT-CC-91/51

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332 USA
Ph: (404) 894-5136

e-mail: rama@cc.gatech.edu

Abstract

“Beehive” is a project that investigates the software and hardware issues in the design of
scalable shared memory multiprocessors. The architecture is designed to support a form of
weakly consistent memory model in a cache-based multiprocessor environment. The novel fea-
tures of the architecture are decoupling the notion of the type of data (private or shared) from
the domain (local or global) over which the access should be performed; eliminating false shar-
ing; providing for software assisted consistency maintenance using reader-initiated coherence;
and supporting queue-based shared and exclusive locks in hardware. We identify how the archi-
tectural features supporting a weak memory model can be exploited by the system software such
as the compiler and the runtime. In particular, marking algorithms are developed for specifying
the domain of loads and stores that occur between synchronization points in a parallel program.

Key Words:
Multiprocessor caches, shared memory consistency models, reader-initiated coherence, false shar-

ing, compiler issues.

*This work is supported in part by the NSF PYI Award MIP-9058430.

1 Introduction

There are two main problems to be solved in realizing scalable shared memory multiprocessors:
latency for memory accesses, and network contention generated by these memory accesses. Latency
for memory accesses arises in two contexts: first due to accesses to normal read/write data; and
second due to accesses to synchronization variables. It turns out that the latter has more potential
for causing network contention than the former due to the possibility for simultaneous access to
the same synchronization variable from several processors [PN85]. Network contention may be
considered a second order effect induced by the shared memory accesses, and an efficient solution
to combat the latency problem can go a long way in reducing the network contention.

The reality is that latency cannot be eliminated and the best that can be done is to reduce or hide
it by architectural innovations. Techniques for latency hiding include paying attention to the model
of memory presented to the programmer. Traditionally, the model assumed by the programmer is
that the contents of the shared memory is identical at all times from all the processors. Further,
the model assumes that the completion order of the memory references from a single processor
is strictly in program order. Both these assumptions restrict the scalability of shared memory
multiprocessors. For example, the second assumption prohibits out-of-order completion of memory
accesses which may be important to enhance performance, especially when the memory latency
is high. In parallel applications, it is not unusual to use synchronization operations to ensure the
consistency of shared data. In such cases, a temporary inconsistency in the views of the shared
data as seen from different processors may be tolerable in certain ranges of the program, e.g., inside
a critical section and between barrier synchronization points.

A second approach to hiding latency is the time-tested technique of associating private caches
with each processor and devising an efficient protocol (either in software or hardware) for maintain-
ing coherence of the (potentially) multiple copies of data in the caches. An associated consideration
in this approach is to increase the cache line size (i.e. the unit of transfer between the cache and
main memory) with a view to exploiting spatial locality. While increasing the line size usually
tends to be advantageous in uniprocessors, it may not be the case in multiprocessors unless care
is taken either in hardware or software to eliminate false sharing across processors (cache lines
appearing shared from coherence standpoint even though they are not from program standpoint).
Efficient prefetching techniques can complement and/or supplement increased line size and thus
may be used as another technique for latency hiding. Multithreading the processor and providing

rapid context switching between the multiple contexts is yet another technique for latency hiding.

Synchronization latency and the associated network contention that could ensue are best toler-
ated via explicit hardware support for synchronization. Further, distinguishing between normal
read/write accesses and synchronization accesses in hardware enables efficient implementation of
weaker notions of memory consistency [LR91b].

“Beehive” is a project that addresses some of the hardware and software issues in the design
of scalable shared memory multiprocessors. The rest of the paper is organized as follows: We
trace the evolution of memory consistency models and their chronology in Section 2. With respect
to a specific memory consistency model we outline the implementation issues in Section 3. The
architectural features of Beehive are presented in Section 4, and the inter-relationship between
the features and memory consistency models are discussed. Section 5 discusses the implications
of these features from the point of view of the system software. In particular, with respect to a
specific programming language developed for parallel computing, we present techniques for using
the language constructs for exploiting the architectural features. Such techniques can then be
incorporated into the compiler backend for Beehive. Concluding remarks and directions for future

research are presented in Section 6.

2 Consistency Models

To allow reasoning about programs written for shared memory multiprocessors, it is important to
clearly specify the programming model for such machines. The programming model is defined by
the memory consistency model, which specifies the order of execution of the memory accesses from

independent processors.

2.1 A Chronology

Sequential Consistency (SC) has been proposed by Lamport [Lam79] as the ordering constraint
for the correct execution of multiprocess computations. This memory model requires the order
of execution of the independent access streams to be any arbitrary interleaving of the streams
which preserves the relative order in each access stream. All accesses are treated equally by SC
regardless of the type of data being accessed (private or shared) and the nature of the access
being performed (read/write or synchronization). SC makes it easy to reason about programs
since the ordering of the multiprocess computation is expressed in terms of a sequential execution

of the multiple streams. However, it is not uncommon to use explicit synchronization primitives

in parallel program design to ensure a specific ordering among the independent streams. In such
a case, there need not be a single global order that has to be observed by all the streams since
the relative order is constrained by the explicit synchronization. Therefore, SC over-specifies the
ordering when explicit synchronization is used.

Recognizing this fact, Dubois et al. [DSB86] have proposed the Weak Consistency (WC') model
that relaxes the ordering constraint of SC by distinguishing between accesses to synchronization
variables and ordinary data. WC requires (a) that synchronization accesses be sequentially con-
sistent, (b) that all global data accesses preceding a synchronization access in a given stream be
globally performed before issuing that synchronization access, and (c) that all global data accesses
subsequent to a synchronization access in a given stream be delayed until the synchronization
access is globally performed. In the rest of this paper we use the terms performed and globally
performed in the same sense as defined by Dubois et al. [DSB86, SD87]. The Release Consistency
(RC) model [GLLT90] goes one step further to distinguish between two kinds of synchronization
accesses, namely, acquire and release. The main difference in the ordering constraint of RC with
respect to WC, is that RC requires that constraint b above apply only for a release access, and
constraint ¢ apply only for an acquire access.

At about the same time that RC was developed, we proposed weak coherence [LR90a] and
Adve and Hill proposed DRF0 [AH90] both of which have very similar ordering constraint as RC.
One significant difference between our model and RC is that the constraint b of WC above is
further weakened in that we require only the global write accesses (as opposed to all global data
accesses) before the release access to be globally performed. The name weak coherence has since
been changed to Buffered Consistency (BC) [LR91b] to reflect the architectural features that we

propose to support this model (see Section 4).

2.2 Buffered Consistency

The BC memory model recognizes two types of accesses: dala, and synchronization. Data accesses
(reads and writes) may be to private or to shared data. The synchronization accesses themselves
are further subdivided into non-consistency preserving (NP-Synch) and consistency preserving (CP-
Synch) accesses. NP-Synch and CP-Synch are always global accesses. BC requires synchronization
accesses from a given stream to be globally performed in the order of issue. However the interleaving
of synchronization accesses from arbitrary streams may be observed differently from other streams,

i.e., the synchronization accesses need not be SC. The issue of an NP-Synch access does not require

the preceding data accesses from the same stream to be globally performed. Shared data accesses
following an NP-Synch access from a given stream cannot be issued until the NP-Synch access is
performed. A CP-Synch access is not issued until all preceding writes to shared data from the same
stream are globally performed. But data accesses subsequent to a CP-Synch access in the same
stream may be issued before the CP-Synch access is performed. Figure 1 shows these constraints
and compares them to those of WC and RC.

The programming model assumed by WC, RC, and BC are the same. The weakening in the
memory model of BC with respect to RC is exploited at the level of the system software (such as
the compiler). The programming model and the compiler issues are further elaborated in Section

5.

3 Implementation Issues

The main purpose of weakening the memory model is with an expectation that such weakening
would also have a correspondingly lesser constraint on the implementation thus resulting in en-
hanced performance. This section presents the separation of functions in hardware and software
for the implementation of BC in the context of a cache-based system. Minimally, the processor-
cache interface should provide for global accesses, and a fence that would ensure that the processor
is blocked until all pending global writes are globally performed. Given this interface, the software
can enforce the BC model by distinguishing between private and shared accesses, by identifying
the nature of these accesses (read/write or synchronization), and by determining when to perform
fence operations. In Beehive, in addition to the minimal interface the hardware is responsible for

the following functions:

e distinguishing between local (to the cache) and global (eventually performed throughout the

system) accesses,

e providing buffering for global writes thus smoothing the traffic on the interconnection network,

and shielding the processor from the latency for global writes,
e maintaining coherence of the caches during global accesses under software control,
e providing synchronization operations in hardware, and

¢ eliminating false sharing.

RC BC

(5 s
©

NP- h
Sync Aquire sync
Sync Rel ease CP- Synch

G}

Legend: X
L: Loads in a given access stream
Y S: Stores in a given access stream

Y

Y cannot performuntil
X has been perforned

Figure 1: Model Constraints

(@

3.1 Rationale

Since we expect most programs to be written in high-level language it is justifiable to make the
software responsible for distinguishing between shared and private variables. In most cache-based
shared memory architectures this distinction is made by the hardware dynamically based on the
series of accesses from different processors to a given memory location. Similarly, differentiating
between data accesses and synchronization accesses is achievable in software. Since the software can
make these distinctions it is the best entity for deciding if and when to execute hardware fence opera-
tions, commensurate with program semantics and the memory consistency model. Beehive provides
synchronization support mainly to hide the latency for synchronization operations. The memory
consistency models define the ordering of accesses on shared variables (data and synchronization).
However, cache-based shared memory architectures seldom provide features for decoupling the type
of data from whether the access should be performed locally or globally. By providing local and
global accesses in hardware, and recognizing shared and private data in software, we achieve this
decoupling. For example, all operations on shared data need not be global. The software is the
best judge of deciding when operations on shared data have to be global depending on the program
semantics (see Section 5).

We are not aware of any cache-based architecture that solves the false sharing problem in
hardware. It is upto the software to minimize the performance penalty that may result due to false
sharing in such architectures. However, it has been recognized that false sharing is quite a difficult
problem to solve in software in the general case [EJ91]. It turns out that with the consistency
preserving mechanisms of Beehive it is not just a performance penalty but a correctness issue if
false sharing is not eliminated. We show in the next section that with minimal overhead we can

solve this problem in hardware.

4 Architecture of Beehive

A summary of the architectural features of Beehive were presented in an earlier paper [LR91b],
which focussed on the performance implications of these features. We re-visit these features in this
section to give the rationale behind them, present an exposition of the interaction between these
architectural features, and set the stage for how they may be used to advantage by the system
software.

Figure 2 shows the block diagram of a node in Beehive. Beehive is a distributed shared memory

D NETWORK
MEMORY I
R
NETWORK
CONTROLLER

Té CACHE
\,,— CONTROLLER T° =

WRITE
BUFFER

CACHE

TH O

Figure 2: Node Architecture of Beehive

machine. Each node has a private cache and an associated directory. A piece of the global shared
memory resides on each node with its associated directory. Beehive uses a directory-based proto-
col [CFKA90] for maintaining cache coherence. The write-buffer is provided for buffering global
writes. Each node communicates with the rest of the system through the network controller. The
interconnection network is intentionally left unspecified since the architectural features of Beehive

do not rely on any specific characteristic of the network.

4.1 Read/Write Primitives

In multiprocessor caches, coherence actions are usually enforced blindly on writes, either via in-
validation or update. Both approaches may incur unnecessary overhead since a location referred
to in the past may not be referred to again in the future. This overhead surfaces in the form in-
creased latency for global writes and increased network traffic. In large-scale multiprocessors with
long latency for inter-node communication, and large cache sizes it is expected that this overhead
would be more acutely felt. Ideally it is exactly those processors using a particular location in
the future who should get the updates when the writes for that location are performed globally.

We attempt to get toward this ideal by providing the notion of global and local writes, and by

Instruction Operations

READ retrieve data without coherence maintenance

WRITE write data without coherence maintenance

READ-GLOBAL read data from the shared memory, bypassing local cache

WRITE-GLOBAL | globally perform the write

READ-UPDATE | retrieve data from shared memory and request future updates

RESET-UPDATE | cancel the request for updates from shared memory

FLUSH-BUFFER | stall the processor until all the requests in the write-buffer are globally performed

READ-LOCK request a shared lock for a memory block
WRITE-LOCK request an exclusive lock for a memory block
UNLOCK release the lock

Table 1: Hardware primitives

requiring the readers to explicitly request updates to cached locations. Note that these updates
will be propagated only on global writes. We refer to this strategy as reader initiated coherence.

The primitives provided by the cache are summarized in Table 1. Read and write are treated
as local operations if the data is in the cache, i.e., the semantics of these operations are exactly the
same as in a uniprocessor write-back cache. Read global bypasses the cache and retrieves the data
from the shared memory. Wrile global specifies that this operation has to be performed globally.
The primitive that allows readers to hear updates to shared locations is read update. This primitive
specifies that the data is retrieved from shared memory the ‘first’ time this operation is executed,
and instructs the shared memory to propagate future updates to this location. Resetl update informs
the shared memory that updates to the specified location need not be propagated in the future to
this processor.

Figure 3 shows a cache directory entry (CE) and a shared memory directory entry (DE). The
update bit in CE is set (if it is not already set) when a read-update for a word in that cache line is
issued. Note that the update bit is for the entire cache line, and there may be multiple words per
cache line depending on the line size. Read-update is a local operation if the bit is already turned
on; otherwise, the data is fetched from the shared memory and the queue pointer in DE is set to
point to the requesting processor. The set of read-update requestors for the same memory block

are linked together in a doubly-linked list structure through the prev, and the nexzt pointers of the

update |dy...d;| lock prev next

a. An entry in the cache directory (CE)

usage-bit |queue-pointer

b. An entry in the Memory directory (DE)

Figure 3: Structure of directory entries

participating CEs and the queue-pointer of the DE. Note that there is a distinct list associated
with each memory block and its corresponding cache lines. When a write-global updates the shared
memory this linked list is used by the associated DE to propagate updates to the participating cache
lines. A reset-update to a specific location, or a cache line replacement deletes that processor from
the appropriate list.

If each cache line has k words then dj...d; are the dirty bits associated with a corresponding
word in the line. Both write and write-global operations set the corresponding dirty bit in the cache
line. The dirty bit is cleared when an acknowledgement for the corresponding memory write (either
because of write-global or cache line replacement) is received. When a cache line is replaced only
the dirty words are written back to the memory. Similarly, when a block is fetched from memory
(due to a read-update request for a line that is already present in the cache) only the words that are
not dirty in the line are filled. It can be easily illustrated that with our reader-initiated coherence,
which has no concept of ownership of a cache line, there is a correctness problem without having
multiple dirty bits, one for each word of the cache line. Consider two private variables v; and v,
belonging to processors P1 and P2 respectively, colocated in the same cache line. If both »; and v,
are updated and eventually this line is replaced by P1 and P2, only one of the two private variables
will have the correct value if there is a single dirty bit per cache line. As a nice side benefit of solving
this potential correctness problem in hardware, we also eliminate the ill-effects of false sharing.

We have chosen a pointer-based directory structure since it is more scalable than either a full-
map or a limited map directory structure from the point of memory requirement [Ste90]. A criticism
against such a structure is the latency for serial propagation of invalidations or updates, and the
inability to use multicast. However, since the update propagation happens in the background

without stalling the processor that issued a write-global, we do not expect this to be a severe

10

performance penalty. Further, it is not clear whether the dynamic level of sharing is high enough
to lead to long serial latency. Many of these issues need further investigation through simulation

studies and are currently underway.

4.2 Buffer Primitives

To hide the latency for write-global from the issuing processor we provide the write buffer. The
write-global operation simply puts the request in this buffer and completes immediately allowing
the processor to continue without having to wait for this write to be globally performed. However,
before a CP-Synch access is issued there may be a need to know that all the preceding write-
global operations have been globally performed. Flush bufferis a primitive that is provided for this
purpose. This primitive stalls the issuing processor until the writes pending in the write buffer are

globally performed.

4.3 Synchronization Primitives

Synchronization latency has two components: The first is the potential wait times at synchroniza-
tion point due to simultaneous access from parallel processors. The second is the intrinsic overhead
for implementing the synchronization. An atomic read-modify-write type of operation is sufficient
to implement higher level synchronization primitives but this could lead to bursty traffic on the
release of a mutual exclusion lock. Recent work [MCS91] has shown that it is possible to implement
locks and barriers with minimal network traffic. In spite of reducing the network traffic, these soft-
ware algorithms still have to pay the latency penalty for synchronization operations. Therefore, we
have provided synchronization support in hardware. Further, providing synchronization operations
in hardware aids an eflicient implementation of the BC memory model.

We provide read lock (a shared lock), and write lock (an exclusive lock) both of which are NP-
Synch type of operations. Unlock relinquishes the lock and is a CP-Synch type of operation. Locks
are implicitly associated with a cache line, and granting of a lock request is combined with the
transfer of the data to the requestor. This combination of data transfer with locking is another
attractive reason for implementing these locks in hardware. The same hardware queue structure
used for propagating updates for read-update requests is used for maintaining a FIFO queue of
lock requestors for the same cache line. The wusage bit in DE denotes whether the associated list
structure is for lock requests or read-update requests. The lock field in CE denotes the state of the

associated lock request. Since the same queue structure is used for both, care has to be taken in

11

data allocation (see Section 5). To overcome the problems associated with replacement of cache
lines participating in a lock operation, we implement a small separate fully-associative lock cache.
Thus even though an implicit lock is associated with every memory block, the size of this cache
places limitations on the number of hardware locks that can be active in a processor at a given
time, and needs careful resource management by the software (see Section 5).

Performance implications (through analytical and simulation studies) of reader-initiated coher-
ence, the BC memory model, and queue-based locks may be found in [LR91b]. The protocols and
performance implications of incorporating synchronization in multiprocessor caches is discussed in

[LRIOD).

5 Exploiting the Features of Beehive

The programming model that corresponds to the BC memory model assumes that the data is
divided into three classes: private variables, shared variables, and synchronization variables. In
the programming model, there are two types of accesses to synchronization variables corresponding
to the NP-Synch and the CP-Synch accesses of BC. Correspondingly, the programming model
guarantees that coherent values of shared data become visible to concurrent threads that comprise
a parallel program only after the completion of synchronization operations that fall into the CP-
Synch category. Programs that fall into this class have been referred to as properly labeled (PL)
programs [GLLT90].

The language used for writing programs for Beehive should support the above programming
model. Further, to exploit the multiple processors in the architecture the language should have
constructs to explicitly specify concurrency. Using such constructs it is possible to construct a
task graph that represents the program. Given the programming model, the tasks themselves
are comprised of synchronization epochs (SE). An SE is a region of code that is terminated by a
CP-Synch operation. The task graph generated from the explicit concurrency constructs in the
language may restrict the true concurrency that may exist in the program. The true concurrency
is really dictated by the inter-relationship between the SEs that comprise the tasks.

The language Jade [LR91a] has constructs that match well with our intuition of synchronization
epochs. Jade separates the notions of synchronization and concurrency thus allowing the exploita-
tion of SE-level concurrency. The language requires that the programmer specify side effects (which
could be arbitrary code) on the shared data it accesses, while using synchronization and concur-

rency constructs. The three Jade constructs that are relevant to the discussion in this section are

12

with, withonly, and withth. The “with” construct is used to signify execution of the associated
scope under the protection of the synchronization governing this scope specified in the side-effect;
the “withonly” construct is used to signify concurrency in addition to specifying the set of inten-
tion locks on shared objects over which the associated scope applies; and the “withth” construct is
similar to “with” but allows concurrent execution of the associated scope. The construct “without”
allows explicit release of intention locks acquired by an enclosing “withonly” construct. The usage
of “withth” primitive is illustrated in Figure 4. The other constructs have similar syntax.

The fact that BC model allows loads inside an SE to complete after the corresponding CP-Synch
point, does not affect the programming model as defined above. This property is really something
the compiler can exploit to reorder loads that occur after a CP-Synch operation in the program to
further help in latency hiding. This situation is similar to the one in pipelined uniprocessors such
as MIPS [GHPRSS], wherein there are no hardware interlocks, and the compiler is entrusted with
the responsibility of ensuring that the dependencies in the sequential program are respected. In
a similar vein, we expect the compiler for Beehive to ensure that loads to shared data occurring
in the original program before a CP-Synch are completed before issuing the CP-Synch operation.
However, the loads that have been hoisted above the CP-Synch point during the optimization phase
of the compilation do not have to be completed before issuing the CP-Synch operation.

The rest of the section deals with using the language features of a ‘Jade-like’ language to exploit

the architectural primitives of Beehive. The issues that need to be resolved in this context are:

1. mapping the loads and stores in the program to the read/write primitives of Beehive com-

mensurate with the program semantics while enhancing performance,
2. exploiting hardware locks of Beehive to implement the user level synchronization,

3. identifying limitations of Beehive with respect to thread migration and processor reassign-

ment.

5.1 Marking Algorithms

While the algorithms presented are in the context of Jade, the discussions are general and are
applicable to any language that allows the explicit specification of synchronization and concurrency.
All of the discussion is predicated on the fact that the language (and hence the compiler) explicitly
recognizes the synchronization points in the program from the source code. The start of the scope

of “with” and “withth” constructs signify the opening of an SE, and therefore correspond to the

13

withth {x.wr(); /* side-effect specificationx/}
(/* parameters for task */) {
x=£1(0);

Figure 4: Use of withth in Jade

NP-Synch point with respect to the BC model. Similarly, the end of the scope of “with” and
“withth” corresponds to CP-Synch points.

In order to map the loads and stores to the read/write primitives of Beehive, we need to
construct a program dependence graph (PDG). The only information that we need to glean from
the side-effect specification is a list of locks on shared data (if any) and their types (exclusive,
shared, intention) that are needed in the scope of the associated construct. This specification list
is needed by the marking algorithm to be described shortly. Every shared data that is accessed
within an SE needs to be explicitly specified in this list for the marking phase to work correctly.
For example, if the program uses a mutex variable to govern access to a set of shared data, then
that set needs to be enumerated in the specification list. On encountering either a with or a withth
special nodes S Estart and S Eend are created in the PDG to mark the beginning and end of a new
SE, respectively. The list of locks on shared data mentioned in the side-effect specification of the
construct is maintained with these nodes. The rest of the dependence graph is constructed in the
normal way [FOWS87]. The main difference between the PDG constructed in [FOWS87] and the one
we construct is that in our graph there are additional nodes that explicitly signify all the loads and
stores in the program.

Once the PDG has been constructed the mapping of loads and stores in the PDG to the
read/write primitives of Beehive proceeds as follows. In Beehive the type of operation (local
or global) is decoupled from the type of data (private or shared). Thus it is possible for the
compiler to exploit this architectural feature to track the BC memory model more closely than
other architectures [LLG190]. For example, loads and stores outside of the SEs are marked as
reads and writes, respectively, which are local operations if the data is already in the cache (see
Section 4). Note that this rule applies regardless of whether the data being accessed is shared or
private, since in the BC memory model coherence of shared data is enforced only at the termination

of an SE; and the program should not make any assumptions regarding the coherence of shared

14

data outside of the SEs. In other words, we do not provide “true shared semantics” for loads or
stores to shared data not enclosed by SEs.

Inside an SE accesses to private data are marked as either reads or writes. In the BC memory
model, only the last storein a particular SE to a given shared data need be globally performed; all
the preceding writes to the same data within this SE need not be global. The marking algorithm,
write-global-mark (see Figure 5), identifies the stores that need to be write-global. The algorithm
does a reverse traversal of the PDG every time an S Fend node is encountered in the graph. Starting
from this node, we recursively follow every parental link one at a time until a store of a given shared
data is reached in that ancestral subgraph, or the corresponding S Estart is reached. The stores
thus encountered are marked as write-globals. The other stores for the same shared data in this
SE are marked as writes (local operations). The marking algorithm is performed for every item in
the specification list of the SE.

Since we conservatively estimate that the programmer expects loads on shared data within SEs
to follow true shared semantics, we mark these loads as read-updates (see Section 4). However,
upon exiting an SE the task (and therefore the processor it is executing on) may not need to get
updates to these shared data. The reset-update primitive is used for this purpose. A marking
algorithm very similar to the one described above is used for determining the last load of a given
shared variable and performing a reset-update immediately following that load. Upon reaching an
S Fend, the compiler needs to generate a flush-buffer since an S Fend signifies a CP-Synch point of
the BC model. This flush-buffer should be executed before any locks associated with this SE are

released.

5.2 Storage Allocation

In Beehive the domain of an access is decoupled from the type of data. This decoupling may
be exploited by the compiler (as detailed above) to reduce the number of global accesses. Note
that consistency is maintained only when accesses are performed globally (i.e. write-global, read-
update). This is in contrast to other shared memory architectures such as [LLG"90] where there is
a concept of ownership of a cache line at all times regardless of whether the line contains shared or
private data. The absence of ownership in Beehive is the key aspect that eliminates false sharing.
Since in Beehive there is no false sharing, private variables of distinct tasks and shared variables
can co-exist in the same cache line. If this colocation were not possible, the compiler would have

to perform extensive analysis and possibly use heuristics to minimize the ill-effects of false sharing

15

write-global-mark() {
for all identifiers x with writes in the specification list of corresponding SEstart d
mark(SEend, x);
}
mark(node y, identifier x) {
for all nodes i in the dependence graph do {
check[i] = false;
}
for each node i which is a parent of y do {
if i is the matching SEstart then {
check[i] = true;
}
if i has a store of x {
mark the store as write-global;
check[i] = true;
} else {
mark(i, x);

check[i] = true;

Figure 5: Write-global marking

16

by careful data placement [EJ91].

Beehive provides implicit queue-based locking primitives that are associated with each cache
line. To implement the language recognized synchronization constructs, the compiler or runtime
may choose to use these primitives. However, care has to be taken in allocating shared variables
when these implicit locks are in use. First there is only one implicit lock per cache line; second the
same hardware queue structure is used for both update propagation as well as lock maintenance.
Therefore, only one shared data object can be allocated per cache line when used in conjunction
with an implicit lock. Note that any number of private variables may be colocated in the same cache
line. However, if the synchronization constructs are implemented using software mutual exclusion
algorithms [MCS91, PS85], then colocation of shared data objects in the same cache line is not a
problem.

As we mentioned in the earlier section, (implicit) hardware locks that can be active in a processor
at a given time are limited by the size of the fully-associative lock cache. The system (i.e. compiler
and/or runtime) has to ensure that there will never be a need to break a hardware queue that
is currently being used for maintaining a set of lock requestors due to cache line replacement.
This requirement means that the system has to know at all times that the set of active locks will
never exceed the size of the lock cache. This requirement can be fulfilled in one of two ways: by
conservatively allocating at compile time a fixed number of hardware locks and simulating the rest
in software; or by the runtime keeping a count of the dynamic usage of locks and blocking a lock

requestor when the count exceeds some threshold.

5.3 Concurrency Management

We noted earlier that there is no concept of ownership of a cache line in Beehive. The absence of
ownership has implications on task migration in Beehive. Consider the following scenario: A task
that has executed for a while on a processor P1 is migrated to another processor P2. The private
variables of this task may be in a dirty state in the cache on P1. Due to the lack of ownership,
when the task starts executing on P2 accesses to these variables will not result in fetching the dirty
values that are currently cached in P1. This scenario illustrates correctness problems that could
ensue if task migration is allowed in Beehive. This problem could be handled if the architecture
provides mechanisms for selective “purging” of dirty cache lines. However, Beehive does not provide
such a feature currently since it is not clear if such task migration is necessary or even justified in

large-scale multiprocessors. Therefore, we currently disallow task migration.

17

A similar problem occurs with respect to shared variables when a task T1 spawns another task
T2, and the system decides to execute T2 on a different processor. This situation can be handled
as illustrated in Figure 6 where we use fork to signify any general concurrency construct. In T1’s
PDG the fork results in the creation of an S Fend followed by an SFEstart. In T2’s PDG the
concurrency construct that created 12 itself results in an SE. The marking algorithm described
above would then ensure that the writes to shared data are globally performed before T2 starts
executing on a different processor. However, note that executing multiple tasks that share data
on the same processor does not cause any correctness problem. In all of the discussion above
relating to concurrency we assume that the language runtime is responsible for maintaining the
task dependence relationship that is inherent in the parallel program.

The work presented in this section is inspired by the kind of work done by Cytron et al.
[CMMB88]. While their work deals with analyzing and exploiting loop-level parallelism for programs
using the SC memory model, our work is applicable to arbitrary synchronization and concurrency
scenarios in the context of Beehive for the BC memory model. It is interesting note that while
Beehive is primarily intended to support the BC memory model, SC memory model may also be
simulated quite easily. This simulation is achieved by restricting the program to use only read-
global for all program loads, and write-global immediately followed by a flush-buffer for all program

stores.

6 Concluding Remarks

Programming using the shared memory paradigm is well understood. Conceptually, a global shared
memory appears as a central resource and hence a point of potential bottleneck for the scalability
of this machine model compared to the message-passing style of architecture. However, recent
architectural trends such as weaker memory models, physical distribution of the shared memory,
efficient prefetching techniques, and the aggressive use of caches make the underlying architecture
look more like message-passing style while preserving the semantics of shared memory programming
paradigm. Beehive provides architectural primitives for supporting a weak memory model called
Buffered Consistency. The novel features of the architecture are decoupling the notion of the type
of data (private or shared) from the domain (local or global) over which the access should be
performed; eliminating false sharing; providing for software assisted consistency maintenance using
reader-initiated coherence; and supporting shared and exclusive queue-based locks in hardware.

Techniques for exploiting some of these feature from the point of view of both latency hiding and

18

L1: Task T1 {
L2: fork(T2);
L3: }

L4: Task T2 {

L5: }

/* Note that the sane labels Li are used to correlate the program
fragment with the corresponding nodes in the PDG */

a Program Fragment showing a Fork

PDG of Task T1 PDG of Task T2

L1
! A L4
A\

) @ | |
~—)
\ A L5
./

L3

I ndi cates ot her nodes correspondi ng
to code between Labels Li and Lj

b: PDG for tasks T1 and T2

Figure 6: Handling Concurrency through SE’s

19

reducing the network traflic were presented. These techniques are amenable for use by a compiler
and runtime designed for a parallel programming language.

There are numerous issues that need careful investigation: automatic management of hardware
locks, reordering of loads and stores to further help in latency hiding, evaluation of the need for
and the design of mechanisms to handle task migration, evaluation of prefetching techniques and
their incorporation in Beehive, and detailed performance evaluation of the mechanisms provided
in Beehive. In general, evaluation of architectural features is an arduous task. Especially, in our
architecture we have identified a division of responsibility between the hardware and the software.
This division coupled with the choice of primitives leads to a complex interplay making performance

evaluation a challenging task.

References

[AH90] S. Adve and M. Hill. Weak Ordering - A New Definition. In 17th Annual International
Symposium on Computer Archilecture, pages 2—14, May 1990.

[CFKA90] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-based
cache coherence in large-scale multiprocessors. IEEE Computer, 23(6):49-58, June 1990.

[CMMB88] R. Cytron, S. Marlovsky, and K. P. McAuliffe. Automatic management of programmable
caches. In 17th International Conference on Parallel Processing, pages 11-229-238,
August 1988.

[DSB86] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiprocessors. In
13th Annual International Symposium on Compuler Archiltecture, pages 434-442, June
1986.

[EJ91] Susan J. Eggers and Tor E. Jeremiassen. Eliminating false sharing. In 20th International
Conference on Parallel Processing, pages 1-377-381, August 1991.

[FOWS87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages and
Systems, 9(3):319-349, July 1987.

[GHPR88] Thomas R. Gross, John L. Hennessy, Steven A. Przybylski, and Christopher Rowen.
Measurement and evaluation of the MIPS architecture and processor. ACM Transac-
tions on Computer Systems, 6(3):229-257, August 1988.

[GLLT90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. L. Hennessy.
Memory consistency and event ordering in scalable shared-memory multiprocessors. In
17th Annual International Symposium on Compuler Architecture, pages 15-26, May
1990.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. [EEE Transactions on Computers, C-28(9):690-691, September 1979.

20

[LLGT90] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-

[LR90a]

[LR9Ob]

[LR91a]

[LR91D]

[MCS91]

[PN85]

[PS85]

[SD87]

[Ste90]

based cache coherence protocol for the DASH multiprocessor. In 17th Annual Interna-
tional Symposium on Computer Architecture, pages 148-159, May 1990.

Joonwon Lee and Umakishore Ramachandran. Locks, directories, and weak coherence -
A recipe for scalable shared memory multiprocessors. In 1990 ISCA Workshop on Scal-
able Shared-Memory Mulliprocessors, May 1990. To appear in Scalable Shared Memory
Multiprocessors, Kluwer Academic Publishers, 1991.

Joonwon Lee and Umakishore Ramachandran. Synchronization with multiprocessor
caches. In 17th Annual International Symposium on Computer Architecture, pages 27—
37, May 1990.

Monica S. Lam and Martin C. Rinard. Coarse-grain parallel programming in Jade. In
Third ACM SIGPLAN Symposium on the Principles and Practices of Parallel Program-
ming, pages 94-105, April 1991.

Joonwon Lee and Umakishore Ramachandran. Architectural primitives for a scalable
shared memory multiprocessor. In ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 103—-114, July 1991.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21-
65, February 1991.

G. F. Pfister and V. A. Norton. Hotspot contention and combining in multistage in-
terconnection network. IEFE Transactions on Computers, C-34(10):943-8, October
1985.

James L. Peterson and Abraham Silberschatz. Operating System Concepts. Addison-
Wesley Publishing Coompany, 1985.

C. Scheurich and M. Dubois. Correct memory operations of cache-based multipro-
cessors. In 14th Annual International Symposium on Compuler Archileclure, pages
234-243, June 1987.

Per Stenstrom. A survey of cache coherence schemes for multiprocessors. IEFEE Com-
puter, 23(6):12-24, June 1990.

21

