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Abstract

Heterogeneous computing is a technique of achieving high performance by providing a variety of different
architectures to meet the needs of systems that are composed of tasks with widely different characteristics.
Essential to the construction of heterogeneous systems is an understanding of the match between architecture
and software and how that match can be used in deciding how to utilize the available computing resources.
We present a theoretical framework, the PCI Model, which defines corresponding characteristics of parallel
programs and parallel architectures and defines the performance relationship between them in terms of these
characteristics. We have encapsulated the concepts of the PCI model into RAW, a simulation environment that
facilitates experimentation with the program/architecture relationship in terms of the PCI model. Using RAW,
we have applied the PCI model to study the use of processor econfigurable architectures (a type of heterogeneous
system) in the context of computer vision applications. We present experimental results that demonstrate that
these architectures perform better than static homogeneous architectures for such applications.
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1 Introduction

The computing community is increasingly turning to parallel processing as a means of improving the performance
of compute intensive applications. Over time, research has yielded a number of very different parallel processing
architectures designed to provide this high performance. At the same time, the complexity of the applications
has increased, and it has become clear that many compute intensive problems are composed of many phases or
tasks each of which may perform very differently on the various architecture available. Thus, today we are faced
with a multiplicity of architectures, each of which performs very well for some tasks, and not as good for others.
In order to address this situation, research is being conducted on the use of heterogeneous parallel computing
systems. A heterogeneous computing system provides multiple architectures so that the needs of each task of
a program can be met to the fullest extent possible. This requires decomposing the target program into its
component tasks, assigning each task to an architecture, parallelizing the task to run on that architecture, and
providing the necessary coordination to deal with the partitioned program.

There are many approaches to constructing heterogeneous systems. One approach is to provide several
different kinds of architectures connected via a network, thus allowing different tasks to be run in parallel on
the various architectures provided. This approach is appealing because it is relatively simple to gather together
the various types of hardware using currently available commercial computers. Another approach is to develop
new parallel architectures that provide multiple processor architectures and/or multiple models of computation.
The appeal to this approach is that there is greater flexibility in providing a mix of resources that best suit the
target application. Finally, a third approach to the development of heterogeneous computing systems is the use
of reconfigurable architectures. These architectures can dynamically alter their logical structure to provide the
desired mix of computational resources and computing modes. This approach provides the greatest flexibility in
resource allocation because the allocation is made at run time to best suit the current state of the application.
This flexibility is at a cost, because custom hardware is required to achieve reconfiguration.

Regardless of the approach used to develop heterogeneous systems, there are a number of issues one must
address in their design. Ideally, for each task in the target application, one would like to know the best ar-
chitecture possible for that task. Next, one needs to decide how to interconnect the architectures in order to
minimize the costs of coordinating the system such as communication and synchronization delays. In the real
world there are many problems with these issues. First, our ability to determine the best architecture for a task
is ad hoc at best. Second, it is often not cost effective to construct a brand new architecture that is an exact

match for each task. In fact, one may be faced with fitting a task to the best candidate among several existing



architectures. Thus, it is not enough to know the best architecture for a task; rather, one needs a quantitative
measure of each task’s expected performance for any given architecture as compared to another. Next, on the
issue of coordination costs, again one rarely has the liberty of constructing the interconnect to exactly match the
needs of the application. Rather, one usually has to contend with existing facilities, so again there is a need for
a quantitative understanding of the cost of communication and synchronization between the components of the
system so one can determine if those costs are outweighed by the benefit provided in partitioning the tasks to
different architectures. Reconfigurable architectures appear to avoid these issues by providing enough flexibility
to adapt to each task’s requirements. Again, in the real world this turns out to be only a matter of degree.
Reconfigurable architectures are not infinitely flexible, so the cost/benefit tradeoff continues to exist. In fact,
there is the added problem that since the same resources are configured to achieve the various architectures, one
must consider which task benefits the most from the resources available.

In summary, the successful development of heterogeneous parallel computing systems depends on our ability
to quantify the fit of a program task to a given architecture and to quantify the costs involved in the interaction
between the architectures. Unfortunately, we do not currently possess a rigorous means of addressing these
issues. Rather, the prevailing approach is based on ad hoc techniques, trial and error, and intuition. The goal of
our research is to begin to address this problem by establishing a model for reasoning about the performance of
parallel programs relative to a specific parallel architecture. Our initial effort has been to develop a simulation
testbed based on this model with which we can empirically explore the program/architecture relationship. Ul-
timately, we hope that through these explorations we will extract characteristics of programs and architectures
that will enable us to develop analytical techniques for predicting program performance.

In this paper we present the Processor, Control, Interconnection (PCI) model for programs and architectures.
The PCI model separates processor design, control structure, and interconnection issues and also includes a means
for dealing with architectural reconfigurability. We further discuss the performance relationship of programs and
architectures within the context of this framework. These concepts have been embodied in a set of tools, the
Reconfigurable Architecture Workbench (RAW), which allow us to simulate the execution of parallel programs
on models of various parallel architectures. In [7] we discuss the design details of RAW and provide an example
experiment using it. In this paper we focus on the PCI model and present the results of experiments utilizing
a coordinated set of tasks from computer vision applications. In [8] and [5] we demonstrate the PCI model’s
ability to handle control and interconnection aspects of the architecture. The experiments in this paper focus
on processor granularity as the experimental variable, thus this paper emphasizes a breadth of application tasks

rather than a breadth of architectural issues. Our purpose is to demonstrate the PCI model’s utility in exploring



the performance characteristics of complex programs in a heterogeneous environment through the specific results
we present. Section 2 presents the details of the PCI model; section 3 is brief introduction to the RAW toolset;

and section 4 presents the programs and architectures used in the experiments and discusses the results obtained.

2 The PCI Model

The purpose of the PCI model is to provide a framework for reasoning about the performance relationship of
programs and architectures. To do this, the model must include a means for describing the structure of parallel
programs and the structure of parallel architectures and a means for determining the performance implications
of the relationship between these structures. This information can then be used to guide the development of
analysis tools and techniques. An important feature of the PCI model is that each aspect of the model is based on
a common set of three dimensions. This organization allows us to separate out issues related to each dimension
so that we can study the implications of those issues in isolation.

The PCI model defines parallel programs as being composed of three components: 1) independent instruction
streams each of which execute in a sequential manner, 2) independent data streams, each of which execute
instructions provided by an instruction stream on different data elements, and 3) communication between the data
streams and synchronization between the instruction streams which may take place either by message passing or
via shared memory. PCI defines parallel architectures as being composed of three similar components: 1) control
units (CUs) that process instruction streams, 2) processing elements (PEs) that execute the instructions issued by
a given control unit, and 3) interconnection networks (ICNs) that allow synchronization among CUs and exchange
of data among PEs (and their memories). We call these components the control configuration, the processor
configuration, and the interconnection configuration. Finally, PCI defines three classes of reconfigurability: 1)
processor reconfiguration allows the architecture to trade off the number of PEs for the precision and speed
of the PEs, 2) control reconfiguration allows the assignment of PEs to control units to be changed, and 3)

interconnection reconfiguration allows the communication capabilities of the parallel architecture to be modified.

2.1 The PCI Model for Parallel Programs

The class of parallel programs we are studying includes those that consist of a set of data objects and a set
of instructions for manipulating those objects. The instructions for the program may include communication
instructions which serve to transfer information from one context to another. In addition, most programs
include input/output, which can be considered as a special case of communication. When a program is executed,

it produces one or more instruction streams which are loosely defined as sequences of instructions issued when



the program is executed. If a program’s execution yields more than one instruction stream, the instructions of
the various instruction streams may be issued simultaneously (parallel execution), or they may be interleaved in
time (concurrent execution). An instruction stream I is defined as a sequence of instructions {ig, 1, %2, ..., %}
such that the issue of instruction 7; implies the issue of i;,; as the next instruction in the instruction stream in
all correct interleavings of the program’s instruction streams, including parallel execution. Programs that define
multiple instruction streams are termed function parallel or control parallel programs.

Each instruction of an instruction stream carries out a specific manipulation on one or more data objects
defined by the parallel program. Data parallel programs are those that define multiple data objects that may
be manipulated simultaneously by the instructions of a single instruction stream. In order to perform this task,
the program must define a parallel data space P D, composed of n constituent spaces pd;. Parallel data objects
PO consists of n constituent objects po; each of which exists in the corresponding data space pd; (see Figure 1).

Similarly, there is a single data space SD where singular data objects are defined. This data space is further

Si 1 FD Global PD
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Figure 1: PCI Program Model.

partitioned into a local data space, private to a given instruction stream, and a global data space GD, shared by
all instruction streams. A data stream is defined as a sequence of parallel objects {PO0, PO1, PO2,..., POn}
from a single constituent of the parallel data space pd; which are manipulated by an instruction stream. Thus,
programs that define parallel data objects and manipulate them define multiple data streams.

Communication is the process of transferring information from one data space to another. Communication
within an instruction stream is essentially data transfer between parallel data spaces. Communication between

different instruction streams may be data transfers or transfers of control information as in synchronization.



Communication generally takes one of two forms: sending and receiving messages, and access to data objects in
a shared data space.

There exists a special class of instructions known as WAIT instructions. A WAIT instruction is an instruction
that does not complete until some specified event has occurred. These events are usually the result of some type
of communication. For example, an instruction stream may issue a blocking receive instruction (one type of WAIT)
which does not complete until a message is received from some other instruction stream. Another important
example is a memory load instruction which does not complete until the memory value is returned. Different
systems may implement a variety of WAIT instructions, but in the final analysis, the effect of these instructions is
that a delay is introduced into the instruction stream’s execution time which may be dependent on events that

occur in other instruction streams.

2.2 The PCI Model for Parallel Architectures

In the PCI model for parallel architectures (see Figure 2), we take the classical notion of a processor and divide
it into a control unit and a processing element. These are combined with various memories and interconnection

channels to form the class of architectures we study. Control units (CUs) are devices that process instruction
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Figure 2: PCI Architecture Model.

streams. A CU consists of a program counter, instruction memory, and whatever logic is needed to generate the
signals needed by the processing elements to carry out the instructions of the program. Branching instructions
are carried out directly by the CUs, while all other instructions are handled by PEs. Each CU in a system

is capable of generating a single instruction address during each machine cycle. Each instruction address may



cause one or more instructions to be fetched from the instruction memory. A single instruction man be issued in
parallel to all PEs controlled by the CU (SIMD processing), or the CU may issue different instructions to each
PE (VLIW processing). CUs may contain additional features that support the processing of multiple concurrent
instruction streams, but only one instruction stream can be active during any one CU machine cycle.

Processing elements are devices that execute instructions by manipulating data objects. PEs consist of
execution logic, operand address generation logic, and memories that define the various data spaces. In this way,
the PEs support the processing of data streams. There always exists at least one PE for each control unit called
the singular PE (labeled “PES” in the figure). This PE’s memory defines the local data space and its execution
logic carries out the instructions directed at the objects in that data space and the objects in the global data
space. In addition to the singular PE, each control unit may have 0...n parallel PEs (labeled “PE0” to “PE7”
in the figure) which define and operate on the objects in the parallel data spaces.

A PE is characterized by its word width and instruction timings, which are the number of machine cycles
required to execute each of the instructions that might be issued to it by the control unit. The word width
defines the largest data object that can be processed in a single machine cycle by the PE, and the instruction

timings depend on the complexity of the computational hardware provided.

2.2.1 Interconnection Networks

Interconnection Networks consist of two basic elements: links and switches. A link is a medium that is used
to pass information from one node to another node or group of nodes. A node can either be a terminal, or a
switch: A terminal is any active architectural element such as a processor, a memory module, an I/O device, or
a controller. A switch is an active device in a network that serves to pass information from the end of one link
to the beginning of another. Various switches may have differing amounts of local intelligence. A switch may
make routing decisions, it may store messages for later transmission, and it may choose to allocate or deallocate

network resources. The links and switches of an ICN are characterized by a set of parameters:
e Topology describes the collection of links and switches in the ICN and their interconnection.
e Bandwidth describes the throughput of the links and switches in bits per unit time.
o Latency describes the delay incurred through a link or a switch by a flit .

o Switch capabilities describe the level of intelligence incorporated into a switch, such as routing logic, queue-

ing, and policies.

! A flitis the number of bits that can be transmitted in a single network clock cycle



2.2.2 Architectural Reconfigurability

In order to understand architectural reconfigurability, one must first distinguish between the physical and logical
view of a given architectural element. Architectural reconfiguration is the process of altering the logical view
of the machine in order to give the appearance of a different architecture. This process is typically performed
in the physical view by establishing communication between physical components of the machine and utilizing
those components as if they were a single architectural entity. The cost of this added flexibility is a possible
reduction in efficiency due to the inability to optimize for a single logical organization. There are three types of
reconfigurability:

Interconnection reconfigurability describes the flexibility of an ICN in allocating its resources to provide
service between two terminals. Non-reconfigurable ICNs have only a fixed set of resources for building a path
between terminals. A reconfigurable network allocates switches and links from a pool to build a path between
terminals. Essentially, reconfigurability is a means of providing a high degree of service for short periods of
time over a subset of the system with fewer total resources. An example of an interconnection reconfigurable
architecture is the CHiP architecture [12].

Control reconfigurability (also known as multi-mode capability) describes the ability of an architecture
to partition the PEs in the system among the CUs in various ways. Control reconfigurable machines can
be configured as MIMD, SIMD, and Multiple-SIMD systems. Examples of systems which perform control
reconfiguration are the Connection Machine 2 [3] which provides 64K PEs and 4 CUs, TRAC [10],and PASM
[11], each of which provide N PEs and CUs.

Processor reconfigurability (also known as multi-gauge capability) is the ability of the architecture to
trade off faster and/or higher precision PEs for more numerous PEs. This capability can take two forms. First,
low-precision PEs can be logically joined to form higher-precision PEs. This type of processor reconfiguration
is called precision reconfiguration and has been provided in TRAC and DCG [4]. Second, simple boolean logic
units can be combined to form more complex arithmetic units such as fast multipliers and floating point units.
This feature is called capability reconfiguration and is introduced in [6]. Capability reconfiguration is radically
different from precision reconfiguration in terms of its implementation requirements. Capability reconfigurable
PEs begin with a very simple computation circuit such as that described in [3], but with a full word of precision.
In such systems the CU utilizes a microsequencer to decode complex arithmetic operations such as multiplication
and floating point arithmetic into a sequence of microinstructions. In order to perform capability reconfiguration

on the PEs, one needs to execute a control-parallel microprogram on interleaved sets of the simple PEs. For



example, a multiplier can be constructed by using one simple PE as a shifter, and an adjacent simple PE as
an adder to perform shift-add multiplication considerably faster than using one simple PE. To implement this
capability, the CU must provide multiple microinstruction busses to the PEs, and multiple microinstruction

stores, one for each bus (see Figure 3). Routines for simple PEs have the same code loaded at corresponding

Sequencer PEO | PE1 | PE2 | PE3 | PE4 | PE5 | PE6 | PET

uM

A: Simple PEs

Sequencer PEO PE1 PE2 PE3

uM

B: Complex PEs

Figure 3: Capability Reconfiguration.

addresses in the various microstores. Routines for the complex PEs have different code loaded at the same
address. In addition, there must exist some means for passing data between the simple PEs and performing

basic coordination tasks.

2.3 Understanding the Performance of Programs Relative to Architectures

We now consider how the relationship between these models results in a given level of machine performance.
Our measure of performance is the execution time of the program on a given architecture. The execution time
of a program on a particular architecture can be found by considering the instructions issued by each CU. The
execution time of m instruction streams running concurrently on a single CU is:

m n(k)

Tezecution(P) = Z Z tinstruction(ij(k))

k=0 j=0



where n(k) is the number of instructions in instruction stream Ir. The function tinstruction((%(x)) is the instruc-

tion time which is defined as
tinstruction(ij(k)) = tissue (inezt) — tissue (Z](k))

where (k) is instruction 4; of instruction stream I and ip.s is the next instruction issued by the CU that
instruction stream I is executing on. In the case where I is the only instruction stream executing on the CU,
inest 18 guaranteed to be (k) +1s but this may or may not be the case otherwise.

In the case where a program’s m instruction streams are executing in parallel on the target architecture, each

on a different CU the execution time of the program is the same as that of the longest instruction stream:
Tezecution(P) - maX(Tezecution(Ik))k =0...m.

Instruction streams that do not start at time ¢¢ are modeled as an instruction stream that does begin at time ¢,

and executes a WAIT instruction, which causes the instruction stream to wait until its actual execution time.

2.3.1 The Effect of Control Units

The effect of control units on program performance depends first on the number of instruction streams in
the program. Control units in excess of the number of instruction streams have no effect on the program’s
performance whatsoever. If a program has multiple instruction streams and they all execute concurrently on a
single CU, the CU can process instructions from other instruction streams during the time one instruction stream
is waiting, thus WAIT instructions have relatively little effect on overall execution time of the program. As more
and more CUs are made available to process instruction streams in parallel, the execution time of the program
is generally reduced because each CU has fewer instructions to process. However, as more parallel execution is
employed, the instruction time of the WAIT instructions may increase. If this occurs, then the benefits of parallel
execution are diminished. Considering the effect of taking a program P with two instruction streams Iy and I;.
Assume the execution time of P using one CU is T,equentiat( P) and the contribution to the execution time of P

by Io is Tyequentiat(lo) and similarly Tyequentiat(I1) for I;. Now, the execution time of Iy and I; using two CUs is
Tpara.llel(IO) = Tsequentia.l(IO) + AT'WA:[T(-Z'O)

Tpara.llel(Il) = Tsequentia.l(Il) + AT",J_A]:T(-Z'l)

and the execution time of P is

Tpara.llel(P) — max (Tparallel(IO): Tparallel(Il)) .



Tya1T(Ix) is the sum of the execution time of all WAIT instructions ¢(4w ) each of which can be decomposed into
the sum of two values: t,ync(iw) and tcomm(iw). The synchronization time of a WAIT instruction (¢sync(iw))
is the difference between the time of the actual occurrence of the event the instruction is waiting for and the
issue time of the WAIT instruction, which is due primarily to the program’s implementation and the speed of the
PEs. tsyn. is an abstract value that may be positive or negative, depending on whether an event occurs before or
after the issue of the WAIT instruction. The communication time of a WAIT instruction (¢comm (iw)) is the delay
between the actual occurrence of an event and the time the CU receives notice of the event, which is primarily
due to the message latency of the intervening ICN and system overheads. t.omm is a physical value and thus is

strictly non-negative. With these definitions we can find the delay introduced by a WAIT instruction as:
t('LW) — max (tsync(iW) + tcomm(iW): 0)

which is also strictly non-negative.

When there are many instructions streams executing together on a single CU, the effect of WAIT instructions is
minimized by delaying their issue and processing other instruction streams instead. Ideally, this creates negative
synchronization time and thus the WAIT instructions have little effect. During parallel execution, Tyja17(I) may
increase relative to the interleaved execution for two reasons. First, even though there may still be multiple
instruction streams on a CU, there may be times when all of them need to issue a WAIT and thus there are no
other instructions to issue. Second, by definition the fact that the event of interest may be occurring on a remote
CU, an increase in t.omm may be experienced. Thus, the effect of CUs on program performance is paramount

and can only be determined by considering the particulars of the target program.

2.3.2 The Effect of Processing Elements

Processing elements are central to the understanding of a program’s execution time for it is the time required
by the processing elements to perform the manipulations specified by the instructions that usually accounts for
the bulk of the execution time. Two issues are at work. The first is simply the time it takes to execute each
instruction. The second is the number of PEs available to process parallel data streams that exist in the program.

Basically, if there are d data streams and p PEs, then the execution time for a given instruction is

Tezecution = [d/p‘| .

Given this relationship, one naturally concludes that faster PEs produce a faster machine, and more PEs
produce a faster machine until there are more PEs than data streams. The problem is, in designing an architec-

ture, one has to contend with several real-life limits such as the amount of hardware than can be made available

10



as PEs based on an acceptable cost for the machine; physical constraints such power, cooling, size, and signal
propagation delays. Given these limits, one must choose the best trade-off between the number of PEs and the

speed of the PEs.

2.3.3 The Effect of Interconnection Networks

As discussed in section 2.1, communication in a parallel program can be between instruction streams, or between
data streams in a single instruction stream. The effect of ICNs on program performance can be seen in the
communication component of the WAIT instruction. When communication occurs between data streams in a
single instruction stream, the delay of the associated WAIT instruction is due entirely to communication time. In
this situation, the event the program waits on is the sending of data, which occurs no later than the issue of the
WAIT instruction. When communication occurs between instruction streams, the WAIT instruction delay is due
to both the communication time and the synchronization time if the data is sent after the WAIT instruction is
issued.

The quantity of interest in measuring communication time is message latency which is the difference in time
between the sending of the first quantum of data in the message and the receiving of the last quantum of data in
the message. This quantity depends on the parameters of the ICN. The relationship between these parameters
is beyond the scope of this paper, and the reader is referred to texts such as [2, 1, 9]. One should note that one
potentially large component of this equation is that of resource contention which can be highly dependent on

the behavior of the parallel program.

2.3.4 The Effect of Architectural Reconfiguration

Architectural reconfiguration differs from all other architectural features in the way it affects program perfor-
mance in that reconfiguration draws its benefits in exploiting the dynamic changes in parallel program character-
istics. The basic premise is this: if one part of a program performs better on architecture X than architecture Y,
and a different part of the same program performs better on architecture ¥ than architecture X, then the pro-
gram should perform better on an architecture that is capable of reconfiguring both as X and Y than on either X
or Y alone. To understand the potential for architectural reconfiguration, then, one must ask this question: Why
would one program perform better on one architecture than another? The reasons why a program would perform
on one architecture than another are 1) The program cannot utilize the resources provided by the architecture
as they are logically configured; 2) a different logical configuration of the architecture’s resources would provide

improved economies of scale; and 3) utilization of the architecture’s resources as logically configured results in a
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greater increase in WAIT time than decrease in instruction execution time.

The first problem is easy to understand. If the architecture provides more PEs than the program has data
streams or more CUs than the program has instruction streams, then clearly resources remain idle. By a similar
argument, if the architecture defines special purpose hardware such as a floating point unit, and the computation
is primarily integer, then again, those resources cannot be utilized. The second problem is more subtle. More
complex computational units are, at least in theory, less efficient than simple computational units because there
is overhead involved in coordinating the added complexity. For example, an n-bit PE is not necessarily n times
faster than a 1-bit PE, in part because the carry computation increases the critical path of the adder circuits.
In practice, the exact performance relationship between various designs is a complex issue that is beyond the
scope of this paper. Furthermore, it is not a goal of this research to outline and classify these issues. Rather, we
note that each specific hardware configuration has its own performance characteristics, and that a comparison
between then usually involves an empirical analysis of the cost/benefit function. It is this analysis that concerns
us. We further note that the goal of a reconfigurable architecture is to provide a means for managing these
overheads to yield the most efficient computational engine over a range of possible situations. Finally, the third
problem relates program behavior to synchronization cost in the system. As we have seen in section 2.3.1, certain
programs can incur a significant increase in the synchronization component of the WAIT instructions if there is
not a good match between the control configuration of the architecture and control parallelism in the program.

In summary, the PCI Model defines three dimensions of parallel programs and parallel architectures. These
dimensions are useful in that they define the classes of programs and the classes of architectures we are studying
and give us a set of concepts and terminology with which to reason about the nature of these two entities and
their relationship with respect to performance. This framework gives us a means of evaluating the performance
trade-offs available in designing systems for a specific application. In particular, this framework gives a tool
for evaluating heterogeneous processing techniques by helping us to understand what parts of the program are
best suited to which type of architecture and quantifying the benefits to be had in improving the fit. In order
to facilitate the exploration of the program/architecture relationship using the PCI model, we have embedded
its concepts into RAW, a set of tools that allows us to analyze a given program/architecture pair. In the next

section we briefly describe the RAW tools, then in section 4 we present results obtained in applying them.
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3 The Reconfigurable Architecture Workbench

In section 2 we present the PCI model for parallel programs and parallel architectures and we develop a technique
for determining the performance of a program on an architecture that utilizes such models. We have designed
and implemented an execution-driven simulation environment that embodies these techniques to facilitate ex-
perimentation with programs and architectures. Figure 4 depicts the major components of RAW. Programs are

translated into Architecture Independent Code (AIC) which is based on the PCI model for programs. Architecture

Program Architecture
Model
Parallelizer G enoerzea,t or
Parser
AIC Interpreter
Events Timing
Trace
Analyzer ADC
Performance
Data

Figure 4: The Reconfigurable Architecture Workbench.

models are encoded into Architecture Description Code (ADC) which is based on the PCI model for architectures.
The Interpreter combines the AIC and ADC to produce an architecture dependent execution of the program,
and the Trace Analyzer utilizes the analysis in section 2.3 to simulate the program’s performance and gather
performance statistics. Each of these components can be further divided into three components which represent
the processor, control, and interconnection dimensions. Details of RAW’s design and construction are presented

in [7] with additional details given in [5].
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4 A Study of Multigauge Architectures

In this section we utilize the PCI model to study the potential for performance gains to be found in using
multigauge heterogeneous architectures for computer vision systems by experimenting with the RAW simulation
environment. We have selected computer vision as our target application area because there is a significant
amount of parallelism and intuitively, the applications lend themselves to the use of heterogeneous architectures.
This intuition is gleaned from the observation that vision systems span several levels of abstraction, each of which
typically requires different data representations and algorithms for manipulating the objects at that level. Table
1 summarizes the architecture of computer vision systems with respect to the complexity of the computations

and quantity of data. The lowest level of abstraction operates on raw image data that might be generated by

Data Granularity

Level Complexity | Quantity
Low simple ~1M
Middle | moderate ~ 10K
High complex ~ 100

Table 1: Levels of abstraction in computer vision systems versus data granularity.

a number of different sensor types (visual spectrum camera, infrared spectrum camera, sonic depth finder, laser
depth finder, etc.) and typically includes traditional digital image and signal processing algorithms intended to
reduce noise, enhance detail, perform segmentation, etc. Data representations at this level are generally quite
simple, on the order of 1-5 values per object, and the quantity of data is quite large, on the order of 1 million
objects per image. The middle level of abstraction attempts to single out pixels in the raw image data by
identifying primitive image features such as edges, textures, regions, corners, etc. Next, an attempt is made to
group these primitive features in order to identify more complex features such as lines, arcs, polygons, etc. The
data representation at this level is somewhat more complex, as it may involve arbitrary lists and hierarchies of
primitive features. An interesting aspect of this level of abstraction is that it naturally reduces the number of data
objects by combining many primitive features into fewer complex features. At the highest level of abstraction,
computer vision systems must manage a database of objects found and a complex set of a prior: information
that is used in identifying the objects seen in the images, and directing further processing of the images. Typical
data might include current environmental conditions and models of expected objects. These objects involve not
only arbitrary data structures, but also multiple sets of these data structures. The number of data objects at

this level is relatively small.
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In order to capture the multi-level aspects of computer vision systems, we have utilized the 2nd DARPA
image understanding benchmark in this study [13]. The benchmark uses two input images: an intensity image
and a depth image, and is designed to require the use of both bottom-up and top-down strategies to resolve
ambiguities in these images. The overall task of the benchmark programs is to recognize objects in a simplified
blocks world. In other words all objects to be recognized are composed of a collection of rectangles of various
sizes, shapes, orientations, and colors defined in 2 1/2 dimensions. The input images include noise and “false”
rectangles that cause ambiguities in the images that can only be resolved by utilizing all of the techniques present
in the benchmark. The rectangles found in the images are compared against a database of object models and
the best match is identified as the viewed object. The benchmark programs presented in this study are shown
in Table 2.1. Implementation details of these programs is beyond the scope of this paper. See Weems [13] for a
functional description of the benchmark and [5] for a detailed description of the parallel implementation used in

this study.

4.1 Architectures Studied

The models and techniques presented in section 2 can be used to study heterogeneous systems regardless of
the approach used to realize these systems. In the study presented here, we restrict ourselves to the use of
reconfigurable architectures, and in particular, to the use of multigauge architectures. We have done this for
two reasons. The primary reason is to restrict the domain of our analysis so that we may be able to present
more detailed results for that domain. Second, reconfigurable architectures provide the most flexible form of
heterogeneity (though at a considerable expense), thus they should be able to take the best advantage of any
available performance advantage. Once this baseline is understood, we can consider what degradation (if any)
less flexible though less costly systems, such as a set of networked multi-granular parallel machines, may afford
us.

There are five different PE models used in the course of our experiments. Two of these, the unit and warp PE
models are default models and are intended to serve special purposes. The unit PE model defines all instructions
in the AIC instruction set as requiring 1 cycle to complete. This model has a very low simulation overhead and
is intended for use when the processor configuration is not an issue. The warp PE model defines all instructions
in the AIC instruction set as requiring 0 cycles to complete. Warp mode processing is a technique for simulating
the presense of special-purpose hardware (such as support for trigonometric functions). The simulator separately
accounts for the time to execute such functions.

The three remaining PE models are based on the processor reconfigurable architecture described in [6].
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Program / Phase

| Description

Filter

Communicate 1
Median

Fix Corners
Communicate 2

Sobel

trade border values with neighbors
median filter on image partition
handle image borders

trade border values with neighbors
Sobel transform on image partition

Label

Initialize

Build Borders determine pixels on region borders
Redistribute load balance border pixels

Number Regions 1
Merge Borders
Number Regions 2
Fill Regions

distance doubling to find unique ID
handle nested regions

distance doubling to find unique ID
propagate region ID throughout region

Corners

Unpack data decoding

K-Curvature check region border curvature at distance K
Smoothing smooth curvatures with gaussian

Zero Crossings
Mark Corners

find zero crossings in curvature
corners have high curvature and zero crossing

Rectangles

Initialize

Eliminate Nodes
Scan For Corners 1
Convex Hull

Scan For Corners 2
Find Right Angles
Find Rectangles
Build Rectangle DB

eliminate non-corner border pixels
eliminate regions with | 3 corners
eliminate corners not on the hull
eliminate regions with | 3 corners
measure corner angles

rectangles have 3 consecutive right angles
extract rectangle parameters

Table 2: Programs and phases used in the experiments.
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These models are identified simply as PE models 1, 2, and 3. PE model 1 is a bit-serial processing element whose
design is taken from the Connection Machine 1 [3], and is also used in the Connection Machine 2 and Connection

Machine 200 (see Figure 5). This PE uses 1-bit data paths, has a small collection of 1-bit registers and a pair

CU

Data Control

Figure 5: Architecture for PE model 1.

of identical functional units each capable of computing an arbitrary boolean function on three variables. The
registers in the PE are partitioned into 3 I/O registers (A, B, and C) and 16 general-purpose registers. Two I/O
registers A and B and one general purpose register provide the inputs to both the functional units. One output
is stored in I/O register C, and the other in one of the general purpose registers. All transfers from memory are
stored in register A or B, and all transfers to memory are from register C. The PE can perform both a memory
transfer and a computation in a single cycle.

In Hillis [3], a prototype chip in 2 micron CMOS packaged 16 PEs of very similar design onto a single die with
a network router. We have performed a logic-level design of the PE model 1 architecture and have found that
32 PEs and some reconfiguration hardware (described later) can easily be placed on a single 2 micron CMOS
die 1.5 centimeters square. Simulation studies have shown that our design is capable of operating with a 20
nanosecond clock period. Given this level of performance, it is assumed that other system components such as

memory and control signals present the limiting factor.
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Computations using PE model 1 are performed bit-serially. Binary operations fetch one bit of each operand,
compute one bit of result, and store that bit, saving one bit of internal state (such as carries) into a general
purpose register. These operations can be performed in 14 3b cycles where b is the number of bits in the operands.
More complex operations such as multiplication and floating point arithmetic are built up from integer and logical
operations. For example, one floating point addition operation requires = 4900 cycles.

PE model 2 is a simple bit-parallel architecture that can be constructed by using thirty-two model 1 PEs as
a single unit. Thus a model 2 PE has 32-bit registers, and a pair of 32-bit boolean functional units. In addition,
carry lookahead and barrel shifting logic is provided to perform these “global” functions. In comparison with the
model 1 PE, a model 2 PE can perform 32-bit integer addition or subtraction using 5 cycles: two operand loads,
compute carries, compute sums, store result. Complex instructions still require a number of simple instructions
to be computed, but now all of these instructions can operate bit-parallel.

PE model 3 uses two model 2 PEs to allow multiple operations to be performed simultaneously in the course
of a more complex instruction. This capability, together with the additional registers available, reduces the
number of simple instructions that must be executed not only by performing parallel computations, but by
allowing operands to remain in local registers, rather than requiring them to be stored to memory while a
different part of the computation is performed. To perform this type of computation, the control system must
be able to provide different control signals to cooperating components of the PE, and there must be high-speed
data transfer capability between these components. Integer addition and logical operations perform no faster
on model 3 PEs than model 2 PEs, but multiplication and floating point arithmetic do. As an example, model
3 PEs require &~ 280 cycles to perform floating point addition, model 2 PEs require ~ 370 cycles (see [6] for
details).

PE models 1, 2, and 3 are specifically designed to be reconfigured from one into another. The reconfigurable
systems we simulate utilize a constant amount of hardware, and simply reconfigure the logical view of the PEs.

For the experiments presented in this section, all of the architectures studied are SIMD machines. In all cases,
it is assumed that exactly one instruction stream executes on a given CU, so context switching, scheduling, etc.
are not an issue. The experiments described in this paper utilize an ICN model for a “k-ary n-cube” class of
networks configured as a binary hypercube with serial links. The model is presented in [8] and is based on those

used in Scott [9], Agarwal [1] and Dally [2]. The specifics of this model are beyond the scope of this paper.
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4.2 Experimental Method

In [7] we outline an experimental methodology for utilizing RAW in the design of parallel architectures. In
these experiments we utilize the same methodology. Briefly, we first study the performance of each of the four
programs on an increasing number of unit model PEs, noting any change in the performance characteristic.
Based on the results of this initial experiment, we select three distinct configurations of the processing elements
(the details of which are given above in 4.1) and simulate the program in each configuration. Next we study
the effects of processor reconfiguration by running each program using the configuration that provides the best
performance. Finally, we repeat the last experiment, this time considering the various phases of each program
and running each phase in the configuration that provides the best performance. In each case we include the
costs of coordinating the various configurations. In these experiments, the costs are entirely due to architectural

reconfiguration.

4.3 Experimental Results

Figures 6 A and B show the total execution time and execution profile of the filter program when executed on
1 to 16K unit model PEs. The first graph indicates clearly that the program is characterized by a large amount
of usable parallelism. The profile shows the parallelism to be primarily due to the median and Sobel routines;
the communication routines exhibit a lesser amount of parallelism. Figures 6 C and D indicate that PE model
1 performs the best for the median and Sobel routines by a factor of nearly 3, and all configurations are roughly
equal for the communication routines. These results are to be expected. As stated previously, this is a fine
example of a low-level vision routine and is exemplary of the fine-grain nature of that level of abstraction. One
might expect the communication routines to be more significant for configuration 1 because as the number of
pixels per PE is reduced, the ratio of communication to computation increases.

Figures 7 A and B show the total execution time and profile for the label program for 1 to 16K unit model
PEs. These graphs indicate that the label program does not behave as well as the filter program. Note that
while the filter program achieved a speedup of nearly four orders of magnitude for 16K PEs, the label program
achieves less than 3 orders of magnitude speedup. Note also, that the graph for the label program curves up
sharply between 4K and 16K PEs. An examination of the profile shows that this is primarily due to the number
region step (which happens to be executed twice). The rest of the routines are fairly well-behaved, showing
a speedup similar to that of the overall curve, except the initialization step, which shows over four orders of
magnitude speedup as one might expect. Also note that a few phases (most obviously the merge phase) show

a step-like behavior. This effect is due to the use of an algorithm that scans the image horizontally. As the
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Figure 6: Execution time and profile for the filter program.
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21



number of PEs is increased, the number of pixels in the image partition for each PE is reduced first in the X
dimension, then in the Y dimension. The horizontal scans work in the X dimension, so these transitions provide
significantly more speedup. Also note that communication patterns in this routine are mostly random, therefore
one cannot expect curves as smooth as that for the filter program.

Figures 7 C and D show the execution time and profile for the label program on the three static configurations.
Here we see that configuration 2 performs the best for this program. This result occurs because the redistribute
phase dominates the execution of this program. This phase is potentially erratic because its behavior depends
on the distribution of border pixels among the PEs and it is communication bound. For a large number of PEs,
the potential for a large deviation in the number of border pixels per PE can cause an increase in the amount
of communication necessary. The other phases are split between those that perform best in configuration 2 and
those that perform best in configuration 1. The build phase is similar to the filter program in its structure,
and thus exhibits a similar characteristic. Oddly enough, the number regions phase also favors configuration 1.
This program could benefit from processor reconfiguration, but as seen in the graphs, the benefits would not be
dramatic, if noticeable at all.

Figures 8 A and B show the execution time and profile for the corners program for 1 to 16K unit model PEs.
These results are a little surprising because the corners program has an order of magnitude less data than the
filter program, and potentially erratic communication patterns. These results do make sense, though, when one
considers that this program still maintains at least 2 data points per PE in the 16K PE case, and these data
points have been conveniently distributed by the label program. As for the communication, this program requires
much less than the label program because each point on a region border need only communicate with those pixels
a small distance along the border, and in many cases these pixels are on the same PE, or a nearby one. Figures 8
C and D show the execution time and profile for the corners program on the three static configurations. Again,
much like the filter program, this program favors configuration 1.

Finally, Figures 9 A and B show the execution time and profile for the rectangles program for 1 to 16K unit
model PEs. Again, these results are rather surprising, as this program uses only about 350 data points! Like
the label program, this program achieves much less speedup than the fine grain filter or corners programs: only
about two orders of magnitude for 16K PEs. We also note that the curves are a little erratic, and there is a
definite reduction in slope after about 128 PEs — probably due to the small number of data points. Oddly enough,
though, this program does continue to improve its performance all the way up to 16K PEs. The explanation
is that the data for this program is extremely unbalanced. It turns out the corners found in an image are

necessarily very close in the image, thus the probability is high that many corners fall on a single PE, while
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other PEs have no corner points at all. Thus, long before the number of PEs exceeds the number data points,
many PEs are idle during most of the computation. As the number of PEs increases, the number of data points
per PE decreases, but at a considerably slower than the number of PEs in increasing. Each time more PEs are
added, most of the new PEs are idle. This explains the extremely shallow slope of the graph. We note that a
redistribution algorithm would likely alter these curves dramatically, but we add that the dominant phase of the
program, the eliminate phase, is the one charged with eliminating the non-corner nodes from the boundary lists
at the beginning of the program and thus uses as many data points as the corners program.

Figures 9 C and D show the execution time and profile for the rectangles program on the three static
configurations. Here we see an expected result, that the rectangles program indeed favors configuration 3 by a
wide margin over configuration 1. An examination of the profile shows this to be true for all phases save the
initialization phase, though some of the other phases perform as well or even slightly better using configuration 2.
This result is reasonable because clearly the program makes only modest use of additional processing elements,
but the complexity of its computations can easily make effective use of more powerful processing elements. As
previously stated, this is a classic example of middle level vision.

Now we consider the execution of these four programs together as a system for identifying rectangles in an
input image. First we show the execution time of the system for each of our three configurations in Figure 10.
This figure shows that the effect of the filter and label program completely overshadow that of the rectangles
program, and further that the label program’s characteristic dominates that of the filter and corners program, to
indicate that configuration 2 is the fastest of the configurations. Clearly, there is enough variation in the system
that processor reconfiguration is worthy of consideration. Figure 10 also shows the performance of a processor
reconfigurable architecture on the rectangle extraction system. There are two points plotted. The first shows the
execution time for the rectangle extraction system allowing reconfiguration between the four different programs

as shown in Table 3. This results in about a 20% improvement in performance. The second point shows the

Program Configuration
Filter 1
Label 2
Corners 1
Rectangles 3

Table 3: Configuration used by each program in IU benchmark.

execution time of the rectangle extraction system allowing reconfiguration between the phases of the programs

as shown in Table 4. Here, a nearly 30% improvement is achieved.

25



Program / Phase | Configuration |

Filter
Communicate 1
Median

Fix Corners
Communicate 2

Sobel
Label

Initialize

Build Borders
Redistribute
Number Regions 1
Merge Borders
Number Regions 2
Fill Regions

T S S Y

= RN RN e

Corners
Unpack
K-Curvature
Smoothing
Zero Crossings
Mark Corners

T S ST

Rectangles
Initialize

Eliminate Nodes
Scan For Corners 1
Convex Hull

Scan For Corners 2
Find Right Angles
Find Rectangles
Build Rectangle DB

DN DN QO W W —

Table 4: Configuration used by each phase of IU benchmark programs.
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4.4 Discussion

The important aspect of this experimentation is to reveal interesting phases that any given applications (computer
vision in this instance) may exhibit which may have direct implications on the choice of architecture for that
phase. The results we present here demonstrate that multigauge heterogeneous parallel architectures can achieve
performance gains over static parallel systems in low and middle level vision applications. There are several
points the reader should note. First, these performance gains were achieved by exploiting differences in a
basic characteristic of the programs studied, as is discussed at the beginning of this section. High level vision
routines exhibit an even greater disparity in this same characteristic, and would thus seem to be reasonable
candidates for future experimentation. Next, the architectures studied in these experiments are reconfigurable
architectures, which implies that they benefit from a maximum degree of flexibility, but suffer in that they
require expensive custom hardware to implement. In particular, the fact that the same computational resources
are used in each architectural configuration means that interconnection issues are less significant in contributing
to the cost of coordinating the various phases than would be the case if a non-reconfigurable heterogeneous
system were employed. Thus, a second avenue of future research would be to explore the tradeoffs present
between these different approaches. As was previously discussed, the PCI model is equipped to study such

types of systems as well. Finally, ultimate goal of our research it to attain a higher level of understanding of
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the program/architecture relationship through experience gained through such experimentation. These results
provide one set of data points, we need many more covering a wide range of application domains and architectural

features in order to build a clearer picture of this relationship that would lead to our desired understanding.

5 Conclusion

A clear understanding of the performance relationship of parallel programs and parallel architectures is essential
to the successful implementation of heterogeneous parallel systems. We have taken one step in the development
of this understanding by proposing the PCI model of parallel programs and parallel architectures which provides
a basic means for reasoning about this relationship. Our initial work with this model has been to utilize it in
experimenting with the performance implications of multigauge heterogeneous systems in the form of processor
reconfigurable architectures. To do this, we have implemented RAW, a simulation environment based on the
PCI model, which facilitates experimentation. Our experiments examine the use of processor reconfigurable
architectures in low and mid-level vision applications and show that such multigauge architectures provide better
performance than any one homogeneous static architecture. Our ongoing research addresses other aspects of
heterogeneous system design in thge context of computer vision such as interconnections (both multiprocessor and
networked multicomputers), different control regimes (such as SIMD, MIMD, and MSIMD), and multigranular

systems composed of networked parallel systems of different granularities.
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