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Abstract

Abstracting features of parallel systemsis atechniquethat has been traditionally used in theoretical
and analytical models for program devel opment and performance evaluation. In this paper, we explore
the use of abstractions in execution-driven simulators in order to speed up simulation. In particular,
we evaluate abstractions for the interconnection network and locality properties of parale systemsin
the context of simulating cache-coherent shared memory (CC-NUMA) multiprocessors. We use the
recently proposed LogP mode to abstract the network. We abstract locality by modeling a cache at each
processing nodein the system which is maintained coherent, without modeling the overheads associated
with coherence maintenance. Such an abstraction triesto capture the true communication characteristics
of the application without modeling any hardware induced artifacts. Using a suite of applications and
three network topol ogies simulated on a novel simulation platform, we show that the latency overhead
modeled by LogP isfairly accurate. On the other hand, the contention overhead can become pessimistic
when the applicationsdisplay sufficient communication locality. Our abstraction for datalocality closely
models the behavior of the actual system over the chosen range of applications. The simulation model
which incorporated these abstractions was around 250-300% faster than the simulation of the actua
machine.
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1 Motivation

Performance analysis of parallel systems! is complex due to the several degrees of freedom that exist in
them. Developing algorithms for paralel architectures is also hard if one has to grapple with al paralle
system artifacts. Abstracting features of parallel systemsis a technique often employed to address both
of these issues. For instance, abstracting parallel machines by theoretical models like the PRAM [14]
has facilitated algorithm development and analysis. Such models try to hide hardware details from the
programmer, providing a simplified view of the machine. Similarly, analytica modelsused in performance
evaluation abstract complex system interactions with simple mathematical formulae, parameterized by a
limited number of degrees of freedom that are tractable.

There is a growing awareness for evaluating paralle systems using applications due to the dynamic
nature of the interaction between applications and architectures. Execution-driven simulation is becoming
an increasingly popular vehicle for performance prediction because of its ability to accurately capture such
complex interactions in parallel systems[25, 23]. However, simulating every artifact of a parale system
places tremendous requirements on resource usage, both in terms of space and time. A sufficiently abstract
simulation model which does not compromise on accuracy can help in easing this problem. Hence, it is
interesting to investigate the use of abstractions for speeding up execution-driven simulations which is the
focus of this study. In particular, we address the issues of abstracting the interconnection network and
locality properties of parallel systems.

Interprocess communication (both explicit via messages or implicit via shared memory), and locality
are two main characteristics of aparalle application. The interconnection network is the hardware artifact
that facilitates communication and an interesting question to be addressed isif it can be abstracted without
sacrificing the accuracy of the performance analysis. Sincelatency and contention are thetwo key attributes
of an interconnection network that impacts the application performance, any model for the network should
capture these two attributes. There are two aspects to locality as seen from an application: communication
locality and data locality. The properties of the interconnection network determine the extent to which
communicationlocality isexploited. Inthissense, the abstraction for theinterconnection network subsumes
the effect of communication locality. Exploiting data locality is facilitated either by private caches in
shared memory multiprocessors, or local memories in distributed memory machines. Focussing only on

shared memory multiprocessors, an important question that arisesisto what extent caches can be abstracted

The term, parallel system, is used to denote an algorithm-architecture combination.



and still be useful in program design and performance prediction. It is common for most shared memory
multiprocessors to have coherent caches, and the cache plays an important role in reducing network traffic.
Hence, it is clear that any abstraction of such a machine has to model a cache at each node. On the other
hand, it is not apparent if a simple abstraction can accurately capture the important behavior of cachesin
reducing network traffic.

We explore these two issuesin the context of simulating Cache Coherent Non-Uniform Memory Access
(CC-NUMA) shared memory machines. For abstracting the interconnection network, we use the recently
proposed LogP [11] modéd that incorporates the two defining characteristics of a network, namely, latency
and contention. For abstracting the locality properties of a parallel system, we model a private cache at
each processing node in the system to capture datalocality?. Shared memory machines with private caches
usualy employ a protocol to maintain coherence. With a diverse range of cache coherence protocols, it
would become very specific if our abstraction were to model any particular protocol. Further, memory
references (locality) are largely dictated by application characteristics and are relatively independent of
cache coherence protocols. Hence, instead of modeling any particular protocol, we choose to maintain
the caches coherent in our abstraction but do not model the overheads associated with maintaining the
coherence. Such an abstraction would represent an ideal coherent cache that captures the true inherent
locality in an application.

The study uses an execution-driven simulation framework which identifies, isolates, and quantifies the
different overheads that arisein aparalel system. Using thisframework, we simulate the execution of five
parallel applications on three different machine characterizations: an actual machine, a LogP machine and
acLogP machine. The actua machine simulates the pertinent details of the hardware. The LogP machine
does not model private caches at processing nodes, and abstracts the interconnection network using the
LogP model. The cLogP machine abstracts the locality properties using the above mentioned scheme, and
abstracts the interconnection network using the LogP model. To answer thefirst question, we compare the
simulation of the actual machine to the simulation of the cLogP machine. If the network overheads of the
two simulations agree then we have shown that LogP is a good abstraction for the network. To answer the
second question, we compare the network traffic generated by the actual and cLogP machines. If they agree,
then it shows that our abstraction of the cache is sufficient to model locality. Incidentaly, the differencein
results between the actual and LogP simulationswould quantify the impact of locality on performance. If

the difference is substantial (as we would expect it to be), then it shows that locality cannot be abstracted

2Note that the communication locality is subsumed in the abstraction for the interconnection network. Thusin the rest of the
paper (unless explicitly stated otherwise) we usethe term ‘locality’ to simply mean datalocality.
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out entirely.

Our results show that the latency overhead modeled by LogP isfairly accurate. On the other hand, the
contention overhead modeled by LogP can become pessimistic for some applications due to failure of the
model to capture communication locality. The pessimism gets amplified as we move to networkswith lower
connectivity. With regard to the data locality question, results show that our ideal cache, which does not
model any coherence protocol overheads, is a good abstraction for capturing locality over the chosen range
of applications. Abstracting the network and cache behavior also helped lower the cost of simulation by
afactor of 250-300%. Given that execution-driven simulations of real applications can take an inordinate
amount of time (some of the simulationsin this study take between 8-10 hours), this factor can represent a
substantial saving in simulation time.

Section 2 addresses related work and section 3 gives details on the framework that has been used to
conduct this study. We use a set of applications (Section 4) and a set of architectures (Section 5) as the
basis to address these questions. Performance results are presented in Section 6 and a discussion of the

implication of the resultsis givenin Section 7. Section 8 presents concluding remarks.

2 Reated Work

Abstracting machine characteristics via a few ssimple parameters have been traditionally addressed by
theoretical models of computation. The PRAM model assumes conflict-free accesses to shared memory
(assigning unit cost for memory accesses) and zero cost for synchronization. The PRAM model has been
augmented with additional parameters to account for memory access latency [4], memory access conflicts
[5], and cost of synchronization [15, 9]. The Bulk Synchronous Parallel (BSP) model [28] and the LogP
model [11] are departuresfrom the PRAM models, and attempt to realistically bridge the gap between theory
and practice. Similarly, considerable effort has been expended in the area of performance evaluation in
developing simple analytical abstractionsto model the complex behavior of parallel systems. For instance,
Agarwal [2] and Dally [12] develop mathematical modelsfor abstracting the network and studying network
properties. Patel [19] analyzes the impact of caches on multiprocessor performance. But many of these
models make simplifying assumptions about the hardware and/or the applications, restricting their ability
to model the behavior of real parallel systems.

Execution-driven simulation is becoming increasingly popular for capturing the dynamic behavior of
paralle systems[25, 8, 10, 13, 21]. Some of these simulators have abstracted out the instruction-set of the

processors, since a detailed simulation of the instruction-set is not likely to contribute significantly to the



performance analysis of paralel systems. Researchers have tried to use other abstractions for the workload
as well asthe ssmulated hardware in order to speed up the simulation. In [29] a Petri net mode is used for
the application and the hardware. Mehraet a. [17] use application knowledge in abstracting out phases of
the execution.

The issue of locality has been well investigated in the architecture community. Severa studies|[3, 16]
have explored hardware facilitiesthat would help exploit locality in applications, and have clearly illustrated
the use of caches in reducing network traffic. There have also been application-driven studies which try to
synthesize cache requirements from the application viewpoint. For instance, Gupta et al. [22] show that
a small-sized cache of around 64KB can accommaodate the important working set of many applications.
Similarly, Wood et a. [30] show that the performance of a suite of applicationsis not very sensitive to
different cache coherence protocols. But from the performance evaluation viewpoint, there has been little
work donein devel oping suitabl e abstractionsfor modelingthelocality properties of aparalel systemwhich

can be used in an execution-driven simulator.

3 TheFramework

In this section, we present the framework that is used to answer the questionsraised earlier. We give details
of the three simulated machine characterizations and the simulator that has been used in this study.

The “actua” machineis a CC-NUMA shared memory multiprocessor. Each node in the system has a
piece of the globally shared memory and a private cache that is maintained sequentially consistent using
an invalidation-based (Berkeley protocol) fully-mapped directory-based cache coherence scheme. All the

details of the interconnection network and coherence maintenance are exactly modeled.

3.1 ThelLogP Machine

The LogP model proposed by Culler et al. [11] assumes a collection of processing nodes executing
asynchronously, communicating with each other by small fixed-size messages incurring constant latencies
on anetwork withafinite bandwidth. The model definesthefollowing set of parametersthat are independent
of network topology:

e L:thelatency, isthe maximumtimespent inthe network by amessagefrom asourceto any destination.

e 0: the overhead, is the time spent by a processor in the transmission/reception of a message.



e 0. the communication gap, is the minimum time interval between consecutive message transmis-

siong/receptions from/to a given processor.
e P: isthe number of processorsin the system.

The L-parameter captures the actual network transmission time for a message in the absence of any
contention, while the g-parameter corresponds to the avail able per-processor bandwidth. By ensuring that
aprocessor does not exceed the per-processor bandwidth of the network (by maintaining a gap of at least g
between consecutive transmissions/receptions), amessage is not likely to encounter contention.

We use the L and ¢ parameters of the model to abstract the network in the simulator. Since we are
considering a shared memory platform (where the ‘message overhead’ is incurred in the hardware) the
contribution of the o-parameter is insignificant compared to . and ¢, and we do not discussit in the rest of
this paper. Our LogP machine is thus a collection of processors, each with a piece of the globally shared
memory, connected by a network which is abstracted by the I, and ¢ parameters. Due to the absence of
caches, any non-local memory reference would need to traverse the network asin a NUMA machine like
the Butterfly GP-1000. In our simulation of this machine, each message in the network incurs alatency
that accounts for the actual transmission time of the message. In addition, a message may incur a waiting
timeat the sending/receiving node as dictated by the ¢ parameter. For instance, when anodetriesto send a
message, it isensured that at least g time units have elapsed sincethe last network access at that node. 1f not
the message is delayed appropriately. A similar delay may be experienced by the message at the receiving
node. These delays are expected to model the contention that such a message would encounter on an actual

network.

3.2 ThecLogP Machine

The LogP machine augmented with an abstraction for a cache at each processing node is referred to as a
cLogP machine. A network access is thus incurred only when the memory request cannot be satisfied by
the cache or local memory. The caches are maintained coherent conforming to a sequentially consistent
memory model. With a diverse number of cache coherence protocols that exist, it would become very
specific if cLogP were to model any particular protocol. Further, the purpose of the cLogP model is to
verify if a simple minded abstraction for the cache can closely mode the behavior of the corresponding
“actua” machine without having to model the details of any specific cache coherence protocol, since it
is not the intent of this study to compare different cache coherence protocols. In the cLogP model the

caches are maintained consistent using an invalidation based protocol (Berkeley protocol), but the overhead
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for maintaining the coherence is not modeled. For instance, consider the case where a block is present
in avalid state in the caches of two processors. When a processor writes into the block, an invalidation
message would be generated on the “actual” machine, but there would not be any network access for this
operation on the cLogP machine. The block would still change to ‘invalid’ state on both machines after
this operation. A read by the other processor after this operation, would incur a network access on both
machines. cLogP thus tries to capture the true communication characteristics of the application, ignoring
overheads that may have been induced by hardware artifacts, representing the minimum number of network
messages that any coherence protocol may hope to achieve. If the network accesses incurred in the cLogP
model are significantly lower than the accesses on the “actua” machine, then we would need to make our
cLogP abstraction morerealistic. But our results (to be presented in section 6) show that the two agree very
closely over the chosen range of applications, confirming our choice for the cLogP abstraction in this study.
Furthermore, if the actual machine implementsafancier cache coherence protocol (which would reduce the
network accesses even further), that would only enhance the agreement between the results for the cLogP

and actua machines.

3.3 SPASM

In this study, we use an execution-driven simulator called SPASM (Simulator for Parallel Architectura

Scal ability Measurements) that enables us to accurately model the behavior of applications on a number of
simulated hardware platforms. SPASM has been written using CSIM [18], a process oriented sequential

simul ation package, and currently runson SPARCstations. Theinput tothesimulator areparallel applications
written in C. These programs are pre-processed (to label shared memory accesses), the compiled assembly
code is augmented with cycle counting instructions, and the assembled binary is linked with the simulator
code. Aswith other recent simulators[8, 13, 10, 21], bulk of the instructionsis executed at the speed of the
native processor (the SPARC in this case) and only instructions (such as LOADs and STORES on a shared
memory platform or SENDs and RECEIV Es on amessage-passing platform) that may potentialy involve a
network access are simulated. The reader isreferred to [26, 25] for a detailed description of SPASM where
we illustrated its use in studying the scalability of a number of parallel applications on different shared
memory [25] and message-passing [26] platforms. The input parameters that may be specified to SPASM

are the number of processors, the CPU clock speed, the network topol ogy, the link bandwidth and switching
delays.

SPASM provides a wide range of statistical information about the execution of the program. It gives



the total time (simulated time) which is the maximum of the running times of the individua parallée
processors. This is the time that would be taken by an execution of the parallel program on the target
parallel machine. The profiling capabilities of SPASM (outlined in [25]) provide a novel isolation and
guantification of different overheads in a parallel system that contribute to the performance of the parale
system. These overheads may be broadly separated into a purely agorithmic component, and an interaction
component arising from the interaction of the agorithm with the architecture. The algorithmic overhead
arises from factors such as the seria part and work-imbal ance in the agorithm, and is captured by the ideal
time metric provided by SPASM. Ided timeisthetimetaken by the parallel program to execute on an ided
machine such as the PRAM [31]. This metric includes the algorithmic overheads but does not include any
overheads arising from architectural limitations. Of the interaction component, the latency and contention
introduced by network limitations are the important overheads that are of relevance to this study. Thetime
that a message would have taken for transmissionin a contention free environment is charged to the latency
overhead, while the rest of the time spent by a message in the network waiting for links to become free is
charged to the contention overhead.

The separation of overheads provided by SPASM plays a crucial role in this study. For instance,
even in cases where the overall execution times may agree, the latency and contention overheads provided
by SPASM may be used to validate the corresponding estimates provided by the I and g parameters in
LogP. Similarly, the latency overhead (which is an indication of the number of network messages) in the
actual and cLogP machine may be used to validate our locality abstraction in the cLogP model. In related
studies, we have illustrated the importance of separating parallel system overheads in scalability studies of
paralle systems[25], identifying parallel system (both algorithmic and architectural) bottlenecks[25], and
synthesizing architectural requirements from an application viewpoint [27].

4 Application Characteristics

Three of the applications (EP, IS and CG) used in this study are from the NAS parallel benchmark suite[7];
CHOLESKY isfrom the SPLASH benchmark suite[24]; and FFT isthewell-known Fast Fourier Transform
algorithm. EP and FFT are well-structured applications with regular communication patterns determinable
at compile-time, with the difference that EP has a higher computation to communicationratio. 1S aso has
a regular communication pattern, but in addition it uses locks for mutual exclusion during the execution.
CG and CHOLESKY are different from the other applicationsin that their communication patterns are not

regular (both use sparse matrices) and cannot be determined at compile time. While a certain number of



rows of thematrix in CG is assigned to a processor at compiletime (static scheduling), CHOLESKY uses a

dynamically maintained queue of runnable tasks. The appendix gives further details of the applications.

5 Architectural Characteristics

Since uniprocessor architecture is getting standardized with the advent of RISC technology, we fix most of
the processor characteristics by using a33 MHz SPARC chip as the baseline for each processor inaparallée
system. Such an assumption enables us to make a fair comparison of the relative merits of the interesting
paralld architectural characteristics across different platforms.

The study is conducted for the following interconnection topologies: the fully connected network, the
binary hypercube and the 2-D mesh. All three networks use seria (1-bit wide) unidirectiona links with a
link bandwidth of 20 MBytes/sec. The fully connected network models two links (one in each direction)
between every pair of processors in the system. The cube platform connects the processors in a binary
hypercube topology. Each edge of the cube hasalink in each direction. The 2-D mesh resembles the Intel
Touchstone Delta system. Linksin the North, South, East and West directions, enable a processor in the
middle of the mesh to communicate with its four immediate neighbors. Processors at corners and along an
edge have only two and three neighbors respectively. Equal number of rows and columnsis assumed when
the number of processorsis an even power of 2. Otherwise, the number of columnsis twice the number of
rows (we restrict the number of processorsto a power of 2 in thisstudy). Messages are circuit-switched and
use awormhole routing strategy. Message-sizes can vary upto 32 bytes. The switching delay isassumed to
be negligible compared to the transmission time and we ignore it in this study.

Each node in the smulated CC-NUMA hierarchy is assumed to have a sufficiently large piece of the
globally shared memory such that for the applications considered, the data-set assigned to each processor
fits entirely in its portion of shared memory. The private cache modeled in the “actua” and the “cLogP”
machines is a 2-way set-associative cache (64K Bytes with 32 byte blocks) that is maintained sequentially
consistent using an invalidation-based (Berkeley protocol) fully-mapped directory-based cache coherence
scheme. The L parameter for a message on the LogP and cLogP models is chosen to be 1.6 microseconds
assuming 32-byte messages and alink bandwidth of 20 MBytes/sec. Similar to the method used in[11], the
g parameter is calculated using the cross-section bandwidth available per processor for each of the above
network configurations. The resulting g parameters for the full, cube and mesh networks are respectively,
3.2/p, 1.6 and 0.8 x p,, microseconds (where p isthe number of processors and p,. isthe number of columns

in the mesh).



6 Performance Results

The ssimulation results for the five paralldl applications on the actual machine, and the LogP and cLogP
models of the actual machine are discussed in this section. The results presented include the execution
times, latency overheads, and contention overheads for the execution of the applications on the three
network topologies. We confine our discussion to the specific results that are relevant to the questions
raised earlier. EP, FFT, and IS are applicationswith statically determinable memory reference patterns (see
the appendix). Thus, in implementing these applications we ensured that the amount of communication
(due to non-local references) is minimized. On the other hand, CG and CHOLESKY preclude any such

optimization owing to their dynamic memory reference patterns.

6.1 Abstracting the Network

For answering the question rel ated to network abstractions, we compare the resul ts obtained using the cL ogP
and the actual machines. From Figures 1, 2, 3, 4, and 5, we observe that the latency overhead curves for
the cLogP machine display atrend (shape of the curve) very similar to the actual machine thus validating
the use of the I -parameter of the LogP model for abstracting the network latency. For the chosen parallée
systems, there is negligible difference in latency overhead across network platforms since the size of the
messages and transmission time dominate over the number of hops traversed. Since LogP model abstracts
the network latency independent of the topology the other two network platforms (cube and mesh) also
display asimilar agreement between the resultsfor the cLogP and actual machines. Therefore, we show the
resultsfor only the fully connected network. Despite this similar trend, there is a difference in the absolute
values for the latency overheads. cLogP models L. as the time taken for a cache-block (32 bytes) transfer.
But some messages may actually be shorter making I pessimistic with respect to the actua machine. On
the other hand, cL ogP does not model coherence traffic thereby incurring fewer network messages than the
actual machine, which can have the effect of making . more optimistic than the actual. The impact of
these two counter-acting effects on the overall performance depends on the application characteristics. The
pessimism is responsible for cLogP displaying a higher latency overhead than the actual for FFT (Figure
1) and CG (Figure 2) since there is very little coherence related activity in these two applications; while
the optimism favors cLogP in IS (Figure 4) and CHOLESKY (Figure 5) where coherence related activity
is more prevalent. However, it should be noted that these differences in absolute values are quite small
implying that the I, parameter pretty closely modelsthe latency attribute.

Figures 6, 7, 8, 9, and 10, show that the contention overhead curves for the cLogP machine display a



trend (shape of the curves) similar to the actual machine. But there is a difference in the absolute values.
The g-parameter in cLogP is estimated using the bisection bandwidth of the network as suggested in [11].
Such an estimate assumes that every message in the system traverses the bisection and can become very
pessimistic when the appli cati on displays sufficient communication locality [1, 2]. Thispessimismincreases
as the connectivity of the network decreases (as can be seen in Figures 6, 7, and 8) since the impact of
communication locality increases. This pessimism is amplified further for applications such as EP that
display a significant amount of communication locality. This effect can be seen in Figures 11, 12, and 13
which show a significant disparity between the contention on the cLogP and actual machines. In fact, this
amplified effect changes the very trend of the cLogP contention curves compared to the actua. It isworth
mentioning that for a non-square mesh estimating the g-parameter using the bisection bandwidth makes it
more pessimistic. Thisisillustrated by the jagged contention curve for FFT on the cLogP machine (Figure
14). These results indicate that the contention estimated by the g parameter can turn out to be pessimistic,
especialy when the application displays sufficient communication locality. Hence, we need to find a better
parameter for estimating the contention overhead, or wewould at | east need to find a better way of estimating
g that incorporates application characteristics.

6.2 Abstracting Locality

Recall that our abstraction for locality attemptsto capture the inherent data locality in an application. The
number of messages generated on the network due to non-local references in an application is the same
regardless of the network topology. Even though the number of messages stays the same, the contention is
expected to increase when the connectivity in the network decreases. Therefore, the impact of locality is
expected to be more for a cube network compared to afull; and for a mesh compared to a cube.

The impact of ignoring locality in a performance model isillustrated by comparing the execution time
curves for the LogP and cLogP machines. Of the three static applications (EP, FFT, 1S), EP has the highest
computation to communication ratio, followed by FFT, and IS. Since the amount of communication in
EP is minimal, there is agreement in the results for the LogP, the cLogP, and the actual machines (Figure
20), regardless of network topology. On the fully connected and cube networks there is little difference
in the results for FFT as well, whereas for the mesh interconnect the results are different between LogP
and cLogP (Figure 21). The difference is due to the fact that FFT has more communication compared to
EP, and the effect of non-local references is amplified for networks with lower connectivity. For IS (see

Figure 22), which has even more communication than FFT, there is amore pronounced difference between
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LogP and cLogP on all three networks. For applicationslike CG and CHOLESKY which exhibit dynamic
communication behavior, the difference between LogP and cLogP curves is more significant (see Figures
23 and 24) since the LogP implementation cannot be optimized statically to exploit locality. Further, aswe
move to networkswith lower connectivity, the L ogP execution curvesfor CG and CHOLESKY (see Figures
25, 26, 27, and 28) do not even foll ow the shape of the cL ogP execution curves. Thissignificant deviation of
LogP from cLogP execution is due to the amplified effect of the large amount of communi cation stemming
from theincreased contention in lower connectivity networks (see Figures 15, 16, 17, and 18).

Isolating the latency and contention overheads from the total execution time (see section 3) helps us
identify and quantify locality effects. Figures 1, 2, and 3, illustrate some of these effects for FFT, CG, and
EP respectively. During the communication phase in FFT, a processor reads consecutive data items from
an array displaying spatial locality. In either the cLogP or the actua machine, a cache-miss on the first
data item bringsin the whole cache block (which is 4 dataitems). On the other hand, in the LogP machine
all four data itemsresult in network accesses. Thus FFT on the LogP machine incurs a latency (Figure 1)
which is approximately four times that of the other two. Similarly, ignoring spatial and temporal locality in
CG (Figure 2) resultsin a significant disparity for the latency overhead in the LogP machine compared to
the other two. In EP, a processor waits on a condition variable to be signalled by another (see the appendix).
For EP on acLogP machine, only thefirst and | ast accesses to the condition variable use the network, while
on the LogP machine a network access would be incurred for each reference to the condition variable as
is reflected in Figure 3. Similarly, a test-test& set primitive [6], would behave like an ordinary test& set
operation in the LogP machine thus resulting in an increase of network accesses. As can be seen in Figure
20, these effects do not impact the total execution time of EP since computation dominatesfor this particular
application.

Theabove resultsconfirm thewell knownfact that locality cannot beignoredin aperformance prediction
model or in program development. On the other hand, the results answer the more interesting question of
whether the simple abstraction we have chosen for modeling locality in cLogP is adequate, or if we haveto
look for a more accurate model. cLogP doesafairly good job of modeling the cache behavior of the actual
machine. The above results clearly show that the execution curves of cLogP and the actual machine are
in close agreement across all application-architecture combinations. Further, the latency overhead curves
(which are indicative of the number of messages exchanged between processors) of cLogP and the actual
machine are also in close agreement. This suggests that our simple abstraction for locality in cLogP, an

ideal coherent cache with no overhead associated with coherence maintenance, is sufficient to modd the
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locality properties over the chosen range of applications.

7 Discussion

We considered the issues pertaining to abstracting network characteristics and locality in this study in the
context of five parallel scientific applicationswith different characteristics. Theinterprocesscommunication
and locality behavior of three of these applications can be determined statically, but they have different
computation to communication ratios. For the other two applications, the locality and the interprocess
communication are dependent on the input data and are not determinable statically. The applications
thus span a diverse range of characteristics. The network topologies (full, cube, mesh) also have diverse

connectivities. The observations from our study are summarized below:

On Network Abstractions

The separation of overheads provided by SPASM has helped us evaluate the use of L and g parameters
of the LogP model for abstracting the network. In al the considered cases the latency overhead from the
model and the actual network closely agree. The pessimism in the model of assuming L to be the latency
for the maximum size message on the network does not seem to have a significant impact on the accuracy
of the latency overhead. Incidentally, we made a conscious decision in the cLogP simulation to abstract the
specifics of the coherence protocol by ignoring the overheads associated with the coherence actions. The
results show that the ensuing optimism does not impact the accuracy of the latency overhead either.

On the other hand, there is a disparity between the model and the actual network for the contention
overhead in many cases. Thetwo sources of disparity are (a) theway ¢ iscomputed, and (b) theway g isto be
used as defined by the model. Since ¢ is computed using only the bisection bandwidth of the network (asis
suggested in [11]), it failsto capture any communication locality resulting from mapping the application on
to a specific network topology. The ensuing pessimismin the observed contention overhead would increase
with decreasi ng connectivity inthe network aswe have seen in the previous section. Thereisalso apotential
for the model to be optimistic with respect to the contention overhead when two distinct source-destination
pairs share a common link. The second source of disparity leads purely to a pessimistic estimate of the
contention overhead. The node architecture may have several portsthat givesthe potentia for simultaneous
network activity from a given node. However, the modd definition precludes even simultaneous “sends"
and “receives’ from agiven node.

Ascan be seen from our results, the pessimistic effects in computing and using ¢ dominatesthe observed
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contention overheads. While it may be difficult to change the way ¢ is computed within the confines of
the LogP model, at least the way it is used should be modified to lessen the pessimism. For example,
we conducted a simple experiment for FFT on the cube alowing for the g gap only between identical
communication events (such as sends for instance). As can be seen in Figure 19, the resulting contention
overhead (the curve for cLogP send/receive) is much closer to the real network.

Thedisparity in the contention prediction suggeststhat we need to incorporate application characteristics
in computing g. For static applications like EP, IS and FFT, we may be able to use the computation
and communication pattern in determining ¢g. But for applications like CG and CHOLESKY, dynamism
precludes such an analysis. On the other hand, since we are using these models in an execution driven
simulation, we may be able get abetter handle on calculating ¢. For instance, we may be able to maintain a
history of the execution and useit to calculate g. It would beinteresting to investigate such issuesin arriving

at abetter estimate.

On Locality Abstraction

As we expected, locality is an important factor in determining the performance of paralel programs and
cannot be totally abstracted away for performance prediction or performance-conscious program devel op-
ment. But locality in parallel computation is much more difficult to model due to the additional degrees of
freedom compared to sequential computation. Even for static applications, data alignment (several variables
faling in the same cache block as observed in FFT) and temporal interleaving of memory accesses across
processors, are two factors that make abstracting locality complex. In dynamic applications, this problem
is exacerbated owing to factors such as dynamic scheduling and synchronization (implicit synchronization
using condition variables and explicit synchronizers such aslocksand barriers). It isthusdifficult to abstract
locality properties of parallel systems by a static theoretical or analytical model. Hence, in this study we
explored theissue of using an abstraction for locality in adynamic execution-driven simulation environment.
In particular, we wanted to verify if asimpleabstraction of acache at each processing nodethat ismaintained
coherent without modeling the overheads for coherence maintenance would suffice to capture the locality
properties of the system. Such an abstraction would try to capture the true communication characteristics of
the application without modeling any hardware induced artifacts. Our results show that such an abstraction
does indeed capture the locality of the system, closely modeling the communication in the actual machine.

The network messagesincurred in our abstraction for locality isrepresentative of the minimum overhead

that any cache coherence protocol may hopeto achieve. We compared the performance of such an abstraction
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with amachinethat incorporates an invalidation based protocol. Even for thissimple protocol, the results of
the two agree closely over the chosen range of applications. The performance of afancier cache coherence
protocol that reduces network traffic on the actual machine is expected to agree even closer with the chosen
abstraction. This result suggests that cache coherence overhead is insignificant at least for the set of
applications considered, and hence the associated coherence-related network activity can be abstracted out
of thesimulation. Theapplicationsthat have been considered in thisstudy employ thedataparallel paradigm
which is representative of alarge class of scientific applications. In this paradigm, each processor works
with adifferent portion of the dataspace, leading to lower coherence related traffic compared to applications
where there is a more active sharing of the data space. It may be noted that Wood et al. [30] also present
simulation results showing that the performance of a suite of applicationsis not very sensitive to different
cache coherence protocols. However, further study with awider suite of applicationsis required to validate

thisclaim.

Importance of Separating Parallel System Overheads

Theisolation and quantification of parallel system overheads provided by SPASM helped us address both of
theaboveissues. For instance, even when total execution timecurveswere similar thelatency and contention
overhead curves helped us determine whether the model parameters were accurate in capturing the intended
machine abstractions. One can experimentally determine the accuracy of the performance predicted by the
LogP model as is donein [11] using the CM-5. However, this approach does not validate the individual
parameters abstracted using the model. On the other hand, we were able to show that the g-parameter is
pessimisticfor calculating the contention overhead for several applications, and that the L-parameter can be

optimistic or pessimistic depending on the application characteristics.
Speed of Simulation

Our main reason in studying the accuracy of abstractionsis so that they may be used to speed up execution-
driven simulations. Intuitively, onewould think that the L ogP machine described in this paper would execute
the fastest sinceit is the most abstract of the three. But, our simulations of the LogP machine took alonger
time to compl ete than those of the actual machine. Thisis because such amodel isvery pessimistic dueto
ignoring data locality and the way it accounts for network contention. Hence, the simulation encountered
considerably more events (non-local accesses which are cache ‘ hits' in the actual and cLogP machinesresult

in network accesses in the LogP maching) making it execute slower. On the other hand, the simulation of
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cLogP, whichislesspessimistic, isindeed around 250-300% faster than the simulation of the actual machine.
Thisfactor can represent asubstantial saving given that execution-driven simulation of real applications can
take an inordinate amount of time. For instance, the simulation of some of the data pointsfor CHOLESKY
take between 8-10 hours for the actual machine. If we can reduce the pessimism in cLogP in modeling

contention, we may be able to reduce the timefor simulation even further.

8 Concluding Remarks

Abstractions of machine artifacts are useful in a number of settings. Execution-driven simulation is one
such setting. Thissimulation techniqueisa popular vehiclefor performance prediction because of itsability
to capture the dynamic behavior of parallel systems. However, simulating every aspect of aparalel system
in the context of real applications places a tremendous requirement on resource usage, both in terms of
space and time. In this paper, we explored the use of abstractionsin alleviating this problem. In particular,
we explored the use of abstractions in modeling the interconnection network and locality properties of
parallel systemsin an execution-driven simulator. We used the recently proposed LogP model to abstract
the interconnection network. We abstracted the locality in the system by modeling a coherent private
cache without accounting for the overheads associated with coherence maintenance. We used five parale
scientific applicationsand hardware platformswith three different network topol ogiesto eval uate the chosen
abstractions. The results of our study show that the network latency overhead modeled by LogP is fairly
accurate. On the other hand, the network contention estimate can become very pessimistic, especialy in
applicationswhich exhibit communication locality. With regard to the datalocality issue, the chosen simple
abstraction for the cache does a good job in closely modeling the locality of the actual machine over the
chosen range of applications. The simulation speed of the model which incorporated these two abstractions
was around 250-300% faster than the simulation of the actual hardware, which can represent a substantial

saving given that simulation of real paralel systems can take an inordinate amount of time.
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Appendix

EP
Phase | Description Comp. Gran. | DataGran. | Synchronization
1 Local Float. Pt. Opns. Large N/A N/A
2 Globa Sum Integer Add Integer Wait-Signal

Table 1; Characteristics of EP

EPis an “Embarrassingly Paralel” application that generates pairs of Gaussian random deviates and
tabulates the number of pairs in successive square annuli. This problem is typical of many Monte-Carlo
simulation applications. It is computation bound and has little communi cation between processors. A large
number of floating point random numbers » (64K in this study) is generated which are then subject to
a series of operations. The computation granularity of this section of the code is considerably large and
is linear in the number of random numbers (the problem size) calculated. The operation performed on a
computed random number is compl etely independent of the other random numbers. The processor assigned
to arandom number can thus execute all the operations for that number without any external data. Hence
the data granularity is meaningless for this phase of the program. Towards the end of this phase, a few
global sums are calculated by using alogarithmic reduce operation. In step « of the reduction, a processor
receives an integer from another which is adistance 2* away and performs an addition of the received value
with alocal value. Thedatathat it receives (datagranularity) residesin a cache block in the other processor,
along with the synchronization variable which indicates that the dataiis ready (synchronization is combined
with data transfer to exploit spatial locality). Since only 1 processor writes into this variable, and the
other spins on the value of the synchronization variable (Wait-Signal semantics), no locks are used. Every
processor reads the global sum from the cache block of processor O when the last addition iscomplete. The
computation granul arity between these communi cation steps can | ead to work imbal ance since the number of
participating processors halves after each step of the logarithmic reduction. However since the computation
isa simple addition it does not cause any significant imbalance for this application. The amount of local
computation in the initial computation phase overshadows the communication performed by a processor.

Table 1 summarizes the characteristics of EP.

)

ISisan “Integer Sort” application that uses bucket sort to rank alist of integers which is an important



Phase | Description Comp. Gran. Data Gran. Synchronization
1 Local bucket updates Small N/A N/A
2 Barrier Sync. N/A N/A Barrier
3 Global bucket merge Small chunk * (p — 1) integers N/A
4 Globa Sum Integer Add Integer Wait-Signal
5 Global bucket updates Small N/A N/A
6 Barrier Sync. N/A N/A Barrier
7 Global bucket updates Small 2K integers Lock each bucket
8 Local List Ranking Small N/A N/A

Table 2: Characteristics of 1S

operation in “particle method” codes. An implementation of the algorithm is described in [20] and Table 2
summarizesits characteristics. Theinput list of size n (64K in this study) is equally partitioned among the
processors. Each processor maintains two sets of buckets. One set of buckets (of size nbuckets) isused to
maintain the information for the portion of the list local to it. The other set (of size chunk = nbuckets/p
where p isthe number of processors) maintainsthe information for the entirelist. A processor first updates
the local bucketsfor the portion of thelist allotted to it, which isan entirely loca operation (phase 1). Each
list element would require an update (integer addition) of its corresponding bucket. A barrier is used to
ensure the completion of this phase. The implementation of the barrier is similar to the implementation of
the logarithmic global sum operation discussed in EP, except that no computation need be performed. A
processor then uses the local buckets of every other processor to calculate the bucket valuesfor the chunk
of the global buckets allotted to it (phase 3). The phase would thusrequire chunk * (p — 1) remote bucket
values per processor. During this calculation, the processor also maintains the sum of all the global bucket
valuesinitschunk. These sumsare then involved in alogarithmic reduce operation (phase 4) to obtain the
partial sum for each processor. Each processor uses this partial sum in calculating the partial sumsfor the
chunk of global buckets allotted to it (phase 5) which is again alocal operation. At the completion of this
phase, aprocessor setsalock (test-test& set lock [6]) for each global bucket, subtracts the value found in the
corresponding local bucket, updates the local bucket with this new value in the global bucket, and unlocks
the bucket (phase 7). The memory allocation for the global buckets and itslocksis donein such away that
a bucket and its corresponding lock fall in the same cache block and the rest of the cache block is unused.
Synchronization is thus combined with data transfer and false sharing is avoided. The final list ranking
phase (phase 8) is a completely local operation using the local buckets in each processor and is similar to

phase 1 in its characteristics.



FFT

Phase | Description Comp. Gran. Data Gran. Synchronization
1 | Locd radix-2 butterfly | O(% log &) N/A N/A
2 Barrier Sync. N/A N/A Barrier
3 Data redistribution N/A (P-1)* %compl@( numbers N/A
4 Barrier Sync. N/A N/A Barrier
5 | Loca radix-2 butterfly | O(% log P) N/A N/A

Table 3: Characteristics of FFT

FFT isaone dimensional complex Fast Fourier Transform of » (64K in this study) points that plays an

important role in Image and Signal processing. n is a power of 2 and greater than or equal to the square
of the number of processors p. There are three important phases in the application. In the first and last

phases, processors perform the radix-2 butterfly computationon » /p local points. The only communication

isincurred in the middle phasein which the cyclic layout of datais changed to ablocked layout as described

in [11]. It involves an al-to-all communication step where each processor distributesits local data equally

among the p processors. The communication in thisstep is staggered with processor : starting with data ( ]%

points) read from processor ¢ + 1 and ending with data read from processor + — 1 inp — 1 substeps. This

communi cation schedul e minimizes contention both in the network and at the processor ends. These three

phases are separated by barriers.
CG
Phase | Description Comp. Gran. Data Gran. Synchronization
1 Matrix-Vector Prod. Medium Random Float. Pt. Accesses N/A
2 Vector-vector Prod.
a) Local dot product Small N/A N/A
b) Globa Sum Float. Pt. Add Float. Pt. WaitSignal
3 Locda Float. Pt. Opns Medium N/A N/A
4 <same as phase 2>
5 Locda Float. Pt. Opns Medium N/A N/A
6 Barrier Sync. N/A N/A Barrier

CG is a“Conjugate Gradient” application which uses the Conjugate Gradient method to estimate the

Table 4: Characteristics of CG

smallest eigenval ue of a symmetric positive-definite sparse matrix with a random pattern of non-zeroes that

istypical of unstructured grid computations. The sparse matrix of sizen * n and the vectors are partitioned




by rows assigning an equal number of contiguousrowsto each processor (static scheduling). We present the
resultsfor five iterations of the Conjugate Gradient Method in trying to approximatethe solution of a system
of linear equations. Thereisabarrier at the end of each iteration. Each iteration involvesthe calculation of a
sparse matrix-vector product and two vector-vector dot products. These are the only operationsthat involve
communication. The computation granularity between these operationsis linear in the number of rows (the
problem size) and involves a floating point addition and multiplication for each row. The vector-vector dot
product is calculated by first obtaining the intermediate dot products for the e ements in the vectors local
to aprocessor. Thisisagain aloca operation with a computation granularity linear in the number of rows
assigned to a processor with a floating point multiplication and addition performed for each row. A global
sum of the intermediate dot productsis calculated by a logarithmic reduce operation (asin EP) yielding the
final dot product. For the computation of the matrix-vector product, each processor performs the necessary
calculations for the rows assigned to it in the resulting matrix (which are also the same rows in the sparse
matrix that are local to the processor). But the calculation may need elements of the vector that are not
local to a processor. Since the elements of the vector that are needed for the computation are dependent
on the randomly generated sparse matrix, the communication pattern for this phase is random. Table 4
summarizes the characteristics for each iteration of CG. A sparse matrix of size 1400X1400 containing

100,300 non-zeroes has been used in the study.

CHOLESKY
Phase | Description Comp. Gran. Data Gran. Synchronization
1 Get task integer addition few integers mutex lock
2 Modify supernode supernode size float. pt. ops. supernode N/A

3 Modify s supernodes | sx supernode size float. pt. ops | s supernodes | locksfor each column
(s is data dependent)
4 Add task (if needed) integer addition few integers lock

Table 5: Characteristics of CHOLESKY

Thisapplication performs a Chol esky factorization of a sparse positive definite matrix of sizen x n. The
sparse nature of the input matrix resultsin an agorithm with a data dependent dynamic access pattern. The
algorithm requires an initial symbolic factorization of the input matrix which is done sequentially because
it requires only asmall fraction of the total computetime. Only numerical factorization [24] is paralelized
and analyzed. Sets of columns having similar non-zero structure are combined into supernodes at the end

of symbolic factorization. Processors get tasks from a central task queue. Each supernode is a potentia

iv



task which is used to modify subsequent supernodes. A modifications due counter is maintained with each
supernode. Thus each task involves fetching the associated supernode, modifying it and using it to modify
other supernodes, thereby decreasing the modifications due counters of supernodes. Communication is
involved in fetching all the required columns to the processor working on a given task. When the counter
for a supernode reaches 0, it is added to the task queue. Synchronization occurs in locking the task queue
when fetching or adding tasks, and locking columnswhen they are being modified. A 1806-by-1806 matrix

with 30,824 floating point non-zeros in the matrix and 110,461 in the factor with 503 distinct supernodesis
used for the study.



