
Issues in Understanding the Scalability of Parallel Systems �

Umakishore Ramachandran H. Venkateswaran Anand Sivasubramaniam Aman Singla

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280.�
rama, venkat, anand, aman � @cc.gatech.edu

(Extended Abstract)

In Proceedings of the First International Workshop on Parallel Processing, pages 399-404, Bangalore, India, December 1994.

1 Introduction

Scalability is a term frequently used to qualify the match between
an algorithm and architecture in a parallel system (an algorithm-
architecture combination). Evaluating the scalability of a parallel
system has widespread applicability. The results from such an
evaluation may be used to: select the best architecture platform
for an application domain, predict the performance of an applica-
tion on a larger configuration of an existing architecture, identify
application and architectural bottlenecks in a parallel system to
suggest application restructuring and architectural enhancements,
and glean insight on the interaction between an application and
an architecture to understand the scalability of other application-
architecture pairs. But evaluating and predicting the scalability
of parallel systems poses several problems due to the complex
interaction between application characteristics and architectural
features. In this paper, we propose an approach for evaluating
the scalability of parallel systems and develop a framework for
studying the inter-play between applications and architectures.
Using this framework, we study the scalability of five parallel
scientific applications on shared memory platforms with three
different network topologies. We illustrate the power of this
framework in addressing two related issues. First, we use it to
evaluate abstractions of parallel systems that have been proposed
for modeling parallel system behavior. Second, we show its im-
portant use in synthesizing architectural requirements from an
application perspective.

Since real-life applications set the standards for computing,
our approach uses such applications for studying the scalability
of parallel systems. We call such an application-driven approach
a top-down approach to scalability study. The main thrust of
this approach is to identify important algorithmic and architec-
tural artifacts that impact the performance of a parallel system,
understand the interaction between them, quantify the impact of
these artifacts on the execution time of an application, and use
these quantifications in studying the scalability of the system.
We associate an overhead function with each algorithmic and
architectural artifact that impedes the performance of a parallel
system. We isolate and quantify the algorithmic overheads such
as serial fraction and work-imbalance from the overall execution
time of an application. We also isolate other overheads such as
network latency (the actual hardware transmission time in the
network) and network contention (the amount of time spent wait-
ing for a resource to become free in the network) arising from the
interaction of the algorithm with the underlying hardware. Our
approach uses a combination of experimentation, simulation and
analytical techniques in quantifying these overheads.

�
This work has been funded in part by NSF grants MIPS-9058430 and MIPS-

9200005, and an equipment grant from DEC.

Traditional performance metrics such as speedup [1], scaled
speedup [8], sizeup [23], experimentally determined serial frac-
tion [9], and isoefficiency function [10], are useful for tracking
performance trends, but they do not provide adequate information
neededto understandthe reason why an application does not scale
well on an architecture. The overhead functions that we identify,
separate, and quantify, help us overcome this inadequacy. The
growth of overhead functions as a function of system parameters
can provide key insights on the scalability of a parallel system
by suggesting application restructuring, as well as architectural
enhancements. Crovella and LeBlanc [6] follow a similar ap-
proach towards quantifying cycles that are lost due to different
overheads in a parallel system using experimentation. Our ap-
proach uses simulation to isolate parallel system overheads. The
importance of simulation in capturing the dynamics of parallel
system interactions has been addressed in [17, 14, 13, 4, 5].

This work is part of an on-going project which aims at under-
standing the significant issues in the design of scalable parallel
systems using the above-mentioned top-down approach. In our
earlier work, we studied issues such as task granularity, data
distribution, scheduling, and synchronization, by implementing
frequently used parallel algorithms on shared memory [18] and
message-passing [16] platforms. In [21], we illustrate the top-
down approach for the scalability study of message-passing sys-
tems. In [20], we conduct a similar study for shared memory
systems. The utility of the framework in evaluating machine ab-
stractions and synthesizing network requirements are presented
in [19] and [22] respectively.

The top-down approach and the overhead functions are elab-
orated in Section 2. The different ways of implementing this
approach and details of a simulation platform, SPASM (Simula-
tor for Parallel Architectural Scalability Measurements), which
quantifies these overhead functions, are also discussed in this sec-
tion. Using a set of five parallel applications and three hardware
platforms, we summarize the use of our framework in studying
the scalability of parallel systems (section 3.1), evaluating the
validity of abstractions (section 3.2) and synthesizing network
requirements from an application perspective (section 3.3). Con-
cluding remarks are presented in Section 4.

2 Top-Down Approach

Adhering to the RISC ideology in the evolution of sequential ar-
chitectures, we would like to use real world applications in the
performance evaluation of parallel machines. However, appli-
cations normally tend to contain large volumes of code that are
not easily portable and a level of detail that is not very familiar
to someone outside that application domain. Hence, computer
scientists have traditionally used parallel algorithms that capture



interesting computation phases of applications for benchmarking
their machines. Such abstractions of real applications which cap-
ture the main phases of the computation are called kernels. One
can go even lower than kernels by abstracting the main loops in
the computation (like the Lawrence Livermore loops [11]) and
evaluating their performance. As one goes lower, the outcome of
the evaluation becomes less realistic. Even though an application
may be abstracted by the kernels inside it, the sum of the times
spent in the underlying kernels may not necessarily yield the time
taken by the application. There is usually a cost involved in mov-
ing from one kernel to another such as the data movements and
rearrangements in an application that are not part of the kernels
that it is comprised of. For instance, an efficient implementa-
tion of a kernel may need to have the input data organized in a
certain fashion which may not necessarily be the format of the
output from the preceding kernel in the application. Despite its
limitations, we believe that the scalability of an application with
respect to an architecture can be captured by studying its ker-
nels, since they represent the computationally intensive phases of
an application. Hence, we have used kernels in the subsequent
studies.

Processors

S
pe

ed
up

Linear

Real
Execution

Algorithmic
Overhead

Interaction
Overhead

Contention

Ideal

Other
Overheads

Figure 1: Top-down Approach to Scalability Study

Parallel system overheads (see Figure 1) may be broadly classi-
fied into a purely algorithmic component (algorithmic overhead),
and a component arising from the interaction of the algorithm and
the architecture (interaction overhead). Algorithmic overhead is
due to the inherent serial part [1] and the work-imbalance in
the algorithm, and is independent of architectural characteristics.
Isolating these two components of the algorithmic overhead can
help in re-structuring the algorithm. The algorithmic overhead is
quantified by computing the time taken for execution of a given
parallel program on an ideal machine such as the PRAM [24]
and measuring its deviation from a linear speedup curve. A real
execution could deviate significantly from the ideal execution
due to overheads such as latency, contention, synchronization,
scheduling and cache effects. These overheads are lumped to-
gether as the interaction overhead. In an architecture with no
contention overhead, the communication pattern of the applica-
tion would dictate the latency overhead incurred by it. Thus the
performance of an application (on an architecture devoid of net-
work contention) may lie between the ideal curve and the real
execution curve (see Figure 1). To fully understand the scala-
bility of a parallel system, it is important to further isolate the
influence of each component of the interaction overhead on the
overall performance. For this purpose, we have introduced the

notion of overhead functions that allows separation and quantifi-
cation of these bottlenecks. An overhead function quantifies the
growth of a specific overhead in the parallel system as a function
of system parameters. Constant problem size (where the problem
size remains unchangedas the number of processors is increased),
memory constrained (where the problem size is scaled up linearly
with the number of processors), and time constrained (where the
problem size is scaled up to keep the execution time constant with
increasing number of processors) are three well-accepted scaling
models used in the study of parallel systems. Overhead functions
can be used to study the growth of system overheads for any of
these scaling strategies.

The key elements of our top-down approach for studying the
scalability of parallel systems are:

� experiment with real world applications

� identify parallel kernels that occur in these applications

� study the interaction of these kernels with architectural fea-
tures to separate and quantify the overheads in the parallel
system

� use these overheads for predicting the scalability of parallel
systems.

2.1 Implementing the Top-Down Approach

High

Low

Low

High

High

High

High

Low

Low

Experimentation

Analytical

Simulation

Methods

Statistics Accuracy Space/Time

Table 1: Comparing the Implementation Approaches

Scalability study of parallel systems is complex due to the several
degrees of freedom that they exhibit. Experimentation, simula-
tion, and analytical models are three techniques that have been
commonly used in such studies. But it is well-known that each has
its relative merits and de-merits [17]. Table 1 classifies these tech-
niques in terms of the amount of statistics that can be obtained,
the accuracy of these statistics, and the effort (space and time)
expended in each evaluation technique. The amount of statistics
that can be obtained by experimenting with applications on actual
machines is largely limited by the monitoring support provided
by the underlying hardware. Further, the underlying hardware is
fixed, making it difficult to study the effect of changing individ-
ual architectural parameters on the performance. Instrumenting
the code may also become intrusive affecting the accuracy of the
results. Analytical models can provide a wide range of statistical
information at a moderately low cost. But, it is not clear that such
models can realistically capture the complex and dynamic interac-
tions between applications and architectures. Finally, simulation
has the advantage of providing quite accurate results over a large
set of statistics. But it does require considerable computational
resources in terms of space and time to simulate large systems.
We use a combination of all three for implementing the top-down
approach as shown in Figure 2. Experimentation is used in con-
junction with simulation to understand the performance of real
applications on real architectures, and to identify the interesting
kernels that occur in these applications for subsequent use in the
simulation studies. We use the datapoints obtained from simu-
lation to develop, validate and refine analytical models and use
these to predict the scalability of larger systems. Refined models



of parallel system artifacts thus derived may also be used to ab-
stract features in the application and simulated hardware to speed
up the simulation.

Results

Analytical

Experimentation

Simulation

Kernels

Validation

Refine Models

Applications

Speedup Simulation

Figure 2: Framework

At the heart of our framework lies a simulation platform called
SPASM, that provides an elegant set of mechanisms for quantify-
ing the different overheads. Details of this simulation platform in
the context of simulating shared memory platforms are presented
in the next subsection. The reader is referred to [21] for the
capabilities of SPASM in simulating message-passing platforms.

2.2 SPASM

SPASM is an execution-driven simulator written in CSIM [12].
As with other recent simulators [4, 5, 13], the bulk of the in-
structions in the parallel program is executed at the speed of the
native processor (SPARC in this study) and only the instructions
(such as LOADS and STORES) that may potentially involve a
network access are simulated. The input to the simulator are par-
allel applications written in C. These programs are pre-processed
(to label shared memory accesses), the compiled assembly code
is augmented with cycle counting instructions, and the assembled
binary is linked with the simulator code. The system parameters
that can be specified to SPASM are: the number of processors
(p), the clock speed of the processor, the network topology, the
hardwarebandwidth of the links in the network, and the switching
delays.

2.2.1 Metrics

SPASM provides a wide range of statistical information about the
execution of the program. It gives the total time (simulated time)
which is the maximum of the running times of the individual
parallel processors. This is the time that would be taken by an
execution of the parallel program on the target parallel machine.
Speedup using � processors is measured as the ratio of the total
time on 1 processor to the total time on � processors.

Ideal time is the total time taken by a parallel program to ex-
ecute on an ideal machine such as the PRAM. It includes the
algorithmic overhead but does not include the interaction over-
head. SPASM simulates an ideal machine to provide this metric.
As we mentioned in Section 2, the difference between the linear
time and the ideal time gives the algorithmic overhead.

SPASM also quantifies the different componentsof the interac-
tion overhead. Accesses to variables in a shared memory system

may involve the network, and the physical limitations of the net-
work tend to contribute to overheads in the execution. These
overheads may be broadly classified as latency and contention,
and we associate an overhead function with each. The Latency
Overhead Function is thus defined as the total amount of time
spent by a processor waiting for messages due to the transmis-
sion time on the links and the switching overhead in the network
assuming that the messages did not have to contend for any link.
Likewise, the Contention Overhead Function is the total amount
of time incurred by a processor due to the time spent waiting for
links to become free by the messages. SPASM quantifies both
the latency overhead function as well as the contention overhead
function seen by a processor. This is done by time-stamping mes-
sages when they are sent. At the time a message is received, the
time that the message would have taken in a contention free envi-
ronment is charged to the latency overhead function while the rest
of the time is accounted for in the contention overhead function.
Though not relevant to this study, it is worthwhile to mention
that SPASM provides the latency and contention incurred by a
message as well as the latency and contention that a processor
may choose to see. Even though a message may incur a certain
latency and contention, a processor may choose to hide all or part
of it by overlapping computation with communication. Such a
scenario may arise with a non-blocking message operation on a
message-passingmachine or with a prefetch operation on a shared
memory machine. But for the rest of this paper (since we deal
with blocking load/store shared memory operations), we assume
that a processor sees all of the network latency and contention.

Shared memory systems normally provide some synchroniza-
tion support that is as simple as an atomic read-modify-write
operation, or may provide special hardware for more compli-
cated operations like barriers and queue-based locks. While the
latter may save execution time for complicated synchronization
operations, the former is more flexible for implementing a va-
riety of such operations. For reasons of generality, we assume
that only the test&set operation is supported by shared memory
systems. We also assume that the memory module (at which the
operation is performed), is intelligent enough to perform the nec-
essary operation in unit time. With such an assumption, the only
network overhead due to the synchronizationoperation (test&set)
is a roundtrip message, and the overheads for such a message are
accounted for in the latency and contention overhead functions
described earlier. The waiting time incurred by a processor dur-
ing synchronization operations is accounted for in the CPU time
which would manifest itself as an algorithmic overhead.

SPASM also provides statistical information about the network.
It gives the utilization of each link in the network and the average
queue lengths of messages at any particular link. This information
can be useful in identifying network bottlenecks and comparing
relative merits of different networks and their capabilities.

It is often useful to have the above metrics for different modes
of execution of the algorithm. Such a breakup would help iden-
tify bottlenecks in the program, and also help estimate the poten-
tial gain in performance that may be possible through a specific
hardware or software enhancement. SPASM provides statistics
grouped together for system-defined as well as for user-defined
modes of execution. The statistics are collected by SPASM
for each processor individually for these modes. The results
presented in this paper are for a representative processor. The
system-defined modes are:

� BARRIER: Mode corresponding to a barrier synchroniza-
tion operation.

� MUTEX: Even though the simulated hardware provides
only a test&set operation, mutual exclusion lock (imple-
mented using test-test&set [2]) is available as a library func-
tion in SPASM. A program enters this mode during lock
operations. With this mechanism, we can separate the over-
heads due to the synchronization operations from the rest of
the program execution.



� PGM SYNC: Parallel programs may use Signal-Wait se-
mantics for pairwise synchronization. A lock is unneces-
sary for the Signal variable since only 1 processor writes
into it and the other reads from it. This mode is used to
differentiate such accessesfrom normal load/store accesses.

� NORMAL: A program is in the NORMAL mode if it is not
in any of the other modes. An application programmer may
further define sub-modes if necessary.

The total time for a given application is the sum of the execu-
tion times for each of the above defined modes. The execution
time for each program mode is the sum of the computation time,
the latency overhead and the contention overhead observed in
the mode. Computation time in the NORMAL mode is the actual
time spent in local computation in an application. The sum of
latency and contention overheads in the NORMAL mode is the ac-
tual time incurred for ordinary data accesses. For the BARRIER
and PGM SYNC modes, the computation time is the wait time
incurred by a processor in synchronizing with other processors
that results from the algorithmic work imbalance. The computa-
tion time in the MUTEX mode is the time spent in waiting for a
lock and represents the serial part in an application arising due
to critical sections. For the BARRIER and MUTEX modes, the
computation time also includes the cost of implementing the syn-
chronization primitive and other residual effects due to latency
and contention for prior accesses. In all three synchronization
modes, the latency and contention overheads together represent
the actual time incurred in accessing synchronization variables.
The metrics identified by SPASM thus quantify the interesting
components of the algorithmic and interaction overheads.

3 Uses of the Framework

In illustrating the use of our framework, we use a diverse range of
applications and hardware platforms. Three of the applications
(EP, IS and CG) are from the NAS parallel benchmark suite [3];
CHOLESKY is from the SPLASH benchmark suite [15]; and
FFT is the well-known Fast Fourier Transform algorithm. EP and
FFT are well-structured applications with regular communication
patterns determinable at compile-time, with the difference that EP
has a higher computation to communication ratio. IS also has a
regular communication pattern, but in addition it uses locks for
mutual exclusion during the execution. CG and CHOLESKY are
different from the other applications in that their communication
patterns are not regular (both use sparse matrices) and cannot be
determined at compile time. While a certain number of rows of
the matrix in CG is assigned to a processor at compile time (static
scheduling), CHOLESKY uses a dynamically maintained queue
of runnable tasks. For the underlying hardware, we use shared
memory platforms with three different network topologies: a
fully connected network, a binary hypercube and a 2-D mesh.

The framework described in Section 2 has widespread appli-
cability. It can be used in performance debugging to identify
application and architectural bottlenecks, suggesting application
restructuring and architectural enhancements. It can be used to
predict the performance of the application over a range of sys-
tem parameters. The scalability of the above applications on the
chosen hardware platforms is summarized in Section 3.1. The
framework can be used to develop new analytical models, and to
validate and refine existing analytical/theoretical models for par-
allel systems. In Section 3.2, we illustrate the use of the frame-
work in validating models chosen for abstracting the network
characteristics and locality properties of parallel systems. The
framework can also help in synthesizing architectural require-
ments from an application viewpoint, which is very important for
building well-balanced machines. In particular, the use of the
framework in synthesizing network requirements for the chosen
applications in presented in section 3.3.

3.1 Scalability Study of Parallel Systems

In [20] we illustrated the use of the framework in studying the
scalability of the five parallel applications on the three simulated
platforms. We separated and quantified the different overheads in
the parallel system, and developed models to capture the growth
of overheads with system parameters. The resulting overhead
functions helped us identify and quantify the algorithmic and
architectural bottlenecks in the parallel systems. The results from
the study are summarized below.

EP displays a sufficiently high computation to communication
ratio, with the computation time dominating over the latency and
contention overheads in the network. Further, the algorithmic
overheads in this application are negligible, resulting in a scal-
able execution with increasing processors across all hardware
platforms.

Parallelization of IS increases the amount of work to be done for
a given problem size. This inherent algorithmic overhead causes
a deviation of the ideal curve from the linear curve, making
the application unscalable for small problem sizes. On a fully
connected network, the contention overhead is negligible and the
latency converges to a constant with a sufficiently large number
of processors. Thus, the scalability of this kernel on the fully
connected network is expected to closely follow the ideal curve.
For the hypercube the contention overhead grows logarithmically
with the number of processors, while for the mesh this growth is
linear, thus worsening the scalability of this application on these
two platforms.

In FFT, the algorithmic overheads are marginal and the la-
tency overhead decreases with increasing number of processors.
Thus the contention overhead is the only artifact that can cause
deviation from linear behavior. The communication in FFT is
limited to a single phase where every processor communicates
with every other processor. But these communication steps are
skewed, and the network contention begins to show only on the
mesh network where it grows linearly. FFT is thus scalable for
the fully-connected and cube platforms. For the mesh platform, it
would take 200 processors before the contention overhead starts
dominating for a 64K problem size. Increasing the problem size
improves its scalability on all three platforms.

For CG, the latency overhead decreases with increasing number
of processors while the contention overhead is more pronounced.
The contention overhead is negligible for the fully-connected
network, grows linearly for the cube and the mesh, with a larger
coefficient for the mesh comparedto the cube. CG is thus scalable
for the fully-connected network and becomes less scalable for
networks with lower connectivity like the cube and the mesh.

CHOLESKY is not very scalable for the chosen problem size
due to the inherent algorithmic overheads. Of the interaction
overheads, latency decreases with increasing number of proces-
sors, making the contention component dictate the scalability of
this application. The contention on the fully-connected and cube
networks is negligible thus projecting speedup curves that closely
follow the ideal speedup curve for these platforms. On the other
hand, the contention grows logarithmically on the mesh making
this platform less scalable.

Isolation and separation of the different overheads thus helped
us identify and quantify application and architectural bottlenecks.
Identifying such bottleneckscan suggestapplication restructuring
and architectural enhancements. For instance, an initial imple-
mentation of IS exhibited a substantial contention overhead. An
examination of the overhead functions over the course of the ex-
ecution helped us restructure the implementation to reduce this
overhead.

3.2 Validating Abstractions of Parallel Systems

Abstracting features of parallel systems is a technique often em-
ployed in performance analysis and algorithm development. For
instance, abstracting parallel machines by theoretical models like



the PRAM [24] has facilitated algorithm development and anal-
ysis. Such models try to hide hardware details from the pro-
grammer, providing a simplified view of the machine. Similarly,
analytical models used in performance evaluation abstract com-
plex system interactions with simple mathematical functions, pa-
rameterized by a limited number of degrees of freedom that are
tractable. Abstractions are also useful in execution-driven sim-
ulators where details of the hardware and the application can
be captured by abstract models in order to ease the demands on
resource (time and space) usage in simulating large parallel sys-
tems. Some simulators [20, 4, 5, 13] already abstract details of
instruction-set simulation, since such a detailed simulation is not
likely to contribute significantly to the performance analysis of
parallel systems.

An important question that needs to be addressed in using ab-
stractions is their validity. Our framework serves as a convenient
vehicle for evaluating the accuracy of these abstractions using
real applications. In [19], we illustrate the use of the frame-
work to evaluate the validity and use of abstractions in simulating
the interconnection network and locality properties of parallel
systems. An outline of the evaluation strategy and results are
presented below.

For abstracting the interconnection network, we use the re-
cently proposed LogP [7] model that incorporates the two defin-
ing characteristics of a network, namely, latency and contention.
For abstracting the locality properties of a parallel system, we
model a private cache at each processing node in the system
to capture data locality. Shared memory machines with private
caches usually employ a protocol to maintain coherence. With
a diverse range of cache coherence protocols, it would become
very specific if our abstraction were to model any particular pro-
tocol. Further, memory references (locality) are largely dictated
by application characteristics and are relatively independent of
cache coherence protocols. Hence, instead of modeling any par-
ticular protocol, we choose to maintain the caches coherent in
our abstraction but do not model the overheads associated with
maintaining the coherence. Such an abstraction would represent
an ideal coherent cache that captures the true inherent locality in
an application. Furthermore, if our abstraction closely models
the behavior of a machine with a simple cache coherent protocol,
then it would even more closely model the behavior of a machine
with a fancier cache coherence protocol.

We use our simulation framework for evaluating these abstrac-
tions. We compare the results from simulating the five appli-
cations on a machine incorporating these abstractions with the
results from an exact simulation of the actual hardware. Our
results show that the latency overhead modeled by LogP is fairly
accurate. On the other hand, the contention overhead modeled
by LogP can become pessimistic for some applications since the
model does not capture communication locality. The pessimism
gets amplified as we move to networks with lower connectivity.
With regard to the data locality question, results show that our
ideal cache, which does not model any coherence protocol over-
heads, is a good abstraction for capturing locality over the chosen
range of applications.

Apart from evaluating these abstractions in the context of real
applications, the isolation and quantification of parallel system
overheads helps us validate the individual parameters used in each
abstraction. For instance, even when total execution time curves
were similar, the latency and contention overheads helped us de-
termine whether the LogP parameters were accurate in capturing
the intended machine abstractions. The simulation of the system
which incorporates these two abstractions is around 250-300%
faster than the simulation of the actual machine. This factor can
represent a substantial saving given that execution-driven simu-
lation of real applications can take an inordinate amount of time.
Using a similar approach, one may also use this framework to
refine existing models (like reducing the pessimism in LogP in
modeling contention), or even develop new models for accurately
capturing parallel system behavior.

3.3 Synthesizing Network Requirements

For building a general-purpose parallel machine, it is essential
to identify and quantify the architectural requirements necessary
to assure good performance over a wide range of applications.
Such a synthesis of requirements from an application view-point
can help us make cost vs. performance trade-offs in important
architectural design decisions. Our framework provides a con-
venient platform to study the impact of hardware parameters on
application performance and use the results to project architec-
tural requirements. We conducted such a study in [22] towards
synthesizing the network requirements of the applications men-
tioned earlier, and the experimental strategy along with interesting
results from our study are summarized here.

To quantify link bandwidth requirements for a particular net-
work topology, we simulate the execution of the applications on
such a topology and vary the bandwidth of the links in the net-
work. As the bandwidth is increased, the network overheads
(latency and contention) decrease, yielding a performance that is
close to the ideal execution. From these results, we arrive at link
bandwidths that are needed to limit network overheads (latency
and contention) to an acceptable level of the overall execution
time. We also study the impact of the number of processors, the
CPU clock speed and the application problem size on bandwidth
requirements. Computation to communication ratio tends to de-
crease when the number of processors or the CPU clock speed
is increased, making the network requirements more stringent.
An increase in problem size improves the computation to com-
munication ratio, lowering the bandwidth needed to maintain an
acceptable efficiency. Using regression analysis and analytical
techniques, we extrapolate requirements for systems built with
larger number of processors.

The results from the study suggest that existing link bandwidth
of 200-300 MBytes/sec available on machines like Intel Paragon
and Cray T3D can easily sustain the requirements of two ap-
plications (EP and FFT) even on high-speed processors of the
future. For the other three, one may be able to maintain network
overheads at an acceptable level if the problem size is increased
commensurate with the processing speed.

The separation of the overheads plays an important role in syn-
thesizing the communication requirements of applications. For
instance, an application may have an algorithmic deficiency due to
either a large serial part or due to work-imbalance, in which case
100% efficiency is impossible regardless of other architectural
parameters. The separation of overheads enables us to quan-
tify bandwidth requirements as a function of acceptable network
overheads (latency and contention). The framework may also be
used for synthesizing requirements of other architectural features
such as synchronization primitives and locality capabilities from
an application perspective.

4 Concluding Remarks

In this paper, we presented a novel approach for studying the
scalability of parallel systems using real-world applications. Our
approach uses a combination of experimentation, analytical mod-
eling and simulation towards identifying, isolating and quantify-
ing the different overheads in a parallel system that limit its scal-
ability. We described an execution-driven simulation platform
that can separate the interesting components of the algorithmic
and interaction overheads from the overall execution time. Using
a set of five parallel applications and three hardware platforms,
we illustrated the use of our approach and simulation framework
in 1) studying the scalability of these applications on the chosen
hardware platforms; 2) evaluating the validity of parallel system
abstractions; and 3) synthesizing network requirements from an
application perspective.



References

[1] G. M. Amdahl. Validity of the Single Processor Approach
to achieving Large Scale Computing Capabilities. In Pro-
ceedings of the AFIPS Spring Joint Computer Conference,
pages 483–485, April 1967.

[2] T. E. Anderson. The Performance of Spin Lock Alternatives
for Shared-Memory Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 1(1):6–16, January 1990.

[3] D. Bailey et al. The NAS Parallel Benchmarks. Interna-
tional Journal of Supercomputer Applications, 5(3):63–73,
1991.

[4] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and
W. E. Weihl. PROTEUS : A high-performance parallel-
architecture simulator. Technical Report MIT-LCS-TR-516,
Massachusetts Institute of Technology, Cambridge, MA
02139, September 1991.

[5] R. G. Covington, S. Madala, V. Mehta, J. R. Jump, and
J. B. Sinclair. The Rice parallel processing testbed. In
Proceedings of the ACM SIGMETRICS 1988 Conference
on Measurementand Modeling of Computer Systems, pages
4–11, Santa Fe, NM, May 1988.

[6] M. E. Crovella and T. J. LeBlanc. Parallel Performance
Prediction Using Lost Cycles Analysis. In Proceedings of
Supercomputing ’94, November 1994.

[7] D. Culler et al. LogP : Towards a realistic model of paral-
lel computation. In Proceedings of the 4th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, pages 1–12, May 1993.

[8] J. L. Gustafson, G. R. Montry, and R. E. Benner. Develop-
ment of Parallel Methods for a 1024-nodeHypercube. SIAM
Journal on Scientific and Statistical Computing, 9(4):609–
638, 1988.

[9] A. H. Karp and H. P. Flatt. Measuring Parallel processor
Performance. Communications of the ACM, 33(5):539–543,
May 1990.

[10] V. Kumar and V. N. Rao. Parallel Depth-First Search. Inter-
national Journal of Parallel Programming, 16(6):501–519,
1987.

[11] F. H. McMahon. The Livermore Fortran Kernels : A Com-
puter Test of the Numerical Performance Range. Technical
Report UCRL-53745, Lawrence Livermore National Labo-
ratory, Livermore, CA, December 1986.

[12] Microelectronics and Computer Technology Corporation,
Austin, TX 78759. CSIM User’s Guide, 1990.

[13] S. K. Reinhardt et al. The Wisconsin Wind Tunnel : Virtual
prototyping of parallel computers. In Proceedings of the
ACM SIGMETRICS 1993 Conference on Measurement and
Modeling of Computer Systems, pages 48–60, Santa Clara,
CA, May 1993.

[14] J. P. Singh, E. Rothberg, and A. Gupta. Modeling communi-
cation in parallel algorithms: A fruitful interaction between
theory and systems? In Proceedings of the Sixth Annual
ACM Symposium on Parallel Algorithms and Architectures,
1994.

[15] J. P. Singh, W-D. Weber, and A. Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Technical Report
CSL-TR-91-469, Computer Systems Laboratory, Stanford
University, 1991.

[16] A. Sivasubramaniam, U. Ramachandran, and H. Venkat-
eswaran. Message-Passing: Computational Model, Pro-
gramming Paradigm, and Experimental Studies. Technical
Report GIT-CC-91/11, College of Computing, Georgia In-
stitute of Technology, February 1991.

[17] A. Sivasubramaniam, U. Ramachandran, and H. Venkat-
eswaran. A comparative evaluation of techniques for study-
ing parallel system performance. Technical Report GIT-CC-
94/38, College of Computing, Georgia Institute of Technol-
ogy, September 1994.

[18] A. Sivasubramaniam, G. Shah, J. Lee, U. Ramachandran,
and H. Venkateswaran. Experimental Evaluation of Algo-
rithmic Performance on Two Shared Memory Multiproces-
sors. In Norihisa Suzuki, editor, Shared Memory Multipro-
cessing, pages 81–107. MIT Press, 1992.

[19] A. Sivasubramaniam, A. Singla, U. Ramachandran, and
H. Venkateswaran. Abstracting network characteristics and
locality properties of parallel systems. Technical Report
GIT-CC-93/63, College of Computing, Georgia Institute of
Technology, October 1993.

[20] A. Sivasubramaniam, A. Singla, U. Ramachandran, and
H. Venkateswaran. An Approach to Scalability Study of
Shared Memory Parallel Systems. In Proceedings of the
ACM SIGMETRICS 1994 Conference on Measurement and
Modeling of Computer Systems, pages 171–180, May 1994.

[21] A. Sivasubramaniam, A. Singla, U. Ramachandran, and
H. Venkateswaran. A Simulation-based Scalability Study
of Parallel Systems. Journal of Parallel and Distributed
Computing, 1994. To appear.

[22] A. Sivasubramaniam, A. Singla, U. Ramachandran, and
H. Venkateswaran. Synthesizing network requirements us-
ing parallel scientific applications. Technical Report GIT-
CC-94/31, College of Computing, Georgia Institute of Tech-
nology, July 1994.

[23] X-H. Sun and J. L. Gustafson. Towards a better Parallel
Performance Metric. Parallel Computing, 17:1093–1109,
1991.

[24] J. C. Wyllie. The Complexity of Parallel Computations. PhD
thesis, Department of Computer Science, Cornell Univer-
sity, Ithaca, NY, 1979.


