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Inspired by empirical studies of networked systems such as the Internet, social networks, and bio-
logical networks, researchers have in recent years developed a variet y of techniques and models to
help us understand or predict the behavior of these systems. Here we review developments in this
�eld, including such concepts as the small-world e�ect, degree distributions, clustering, network
correlations, random graph models, models of network growth and preferential attac hment, and
dynamical processestaking place on networks.
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I. INTRODUCTION

A network is a set of items, which we will call vertices
or sometimes nodes, with connections between them,
called edges (Fig. 1). Systems taking the form of net-
works (also called \graphs" in much of the mathematical
literature) abound in the world. Examplesinclude the In-
ternet, the World Wide Web, social networks of acquain-
tance or other connectionsbetween individuals, organi-
zational networks and networks of businessrelations be-
tween companies,neural networks, metabolic networks,
food webs, distribution networks such as blood vessels
or postal delivery routes, networks of citations between
papers,and many others (Fig. 2). This paper reviewsre-
cent (and somenot-so-recent) work on the structure and
function of networked systemssuch as these.

The study of networks, in the form of mathematical
graph theory, is one of the fundamental pillars of dis-
crete mathematics. Euler's celebrated 1735 solution of
the K•onigsberg bridge problem is often cited as the �rst
true proof in the theory of networks, and during the twen-
tieth century graph theory hasdeveloped into a substan-
tial body of knowledge.

Networks have also beenstudied extensively in the so-
cial sciences.Typical network studiesin sociology involve
the circulation of questionnaires,asking respondents to
detail their interactions with others. One can then use
the responsesto reconstruct a network in which vertices
represent individuals and edgesthe interactions between
them. Typical social network studies address issuesof
centralit y (which individuals arebest connectedto others
or have most in
uence) and connectivity (whether and
how individuals are connected to one another through
the network).

Recent yearshowever havewitnesseda substantial new
movement in network research, with the focus shifting
away from the analysis of single small graphs and the
properties of individual vertices or edges within such
graphs to consideration of large-scalestatistical proper-
ties of graphs. This newapproach hasbeendriven largely
by the availabilit y of computersand communication net-
works that allow us to gather and analyze data on a
scale far larger than previously possible. Where stud-
ies usedto look at networks of maybe tens or in extreme
caseshundredsof vertices, it is not uncommonnow to see
networks with millions or even billions of vertices. This
changeof scaleforcesupon us a corresponding changein

edge

vertex

FIG. 1 A small example network with eight vertices and ten
edges.

our analytic approach. Many of the questionsthat might
previously have been asked in studies of small networks
are simply not useful in much larger networks. A social
network analyst might have asked, \Whic h vertex in this
network would prove most crucial to the network's con-
nectivit y if it were removed?" But such a question has
little meaning in most networks of a million vertices|no
singlevertex in such a network will havemuch e�ect at all
when removed. On the other hand, onecould reasonably
ask a question like, \What percentage of verticesneedto
be removed to substantially a�ect network connectivity
in somegiven way?" and this type of statistical question
has real meaning even in a very large network.

However, there is another reason why our approach
to the study of networks has changed in recent years, a
reasonwhoseimportance should not be underestimated,
although it often is. For networks of tens or hundreds
of vertices, it is a relatively straightforward matter to
draw a picture of the network with actual points and lines
(Fig. 2) and to answer speci�c questionsabout network
structure by examining this picture. This hasbeenoneof
the primary methods of network analysts since the �eld
began. The human eye is an analytic tool of remarkable
power, and eyeballing pictures of networks is an excellent
way to gain an understanding of their structure. With
a network of a million or a billion vertices however, this
approach is useless. One simply cannot draw a mean-
ingful picture of a million vertices, even with modern 3D
computer rendering tools, and therefore direct analysis
by eye is hopeless.The recent development of statistical
methods for quantifying large networks is to a large ex-
tent an attempt to �nd somethingto play the part played
by the eye in the network analysis of the twentieth cen-
tury . Statistical methods answer the question, \Ho w can
I tell what this network looks like, when I can't actually
look at it?"

The body of theory that is the primary focus of this
review aims to do three things. First, it aims to �nd sta-
tistical properties, such aspath lengths and degreedistri-
butions, that characterize the structure and behavior of
networked systems,and to suggestappropriate ways to
measuretheseproperties. Second,it aims to createmod-
elsof networks that can help us to understand the mean-
ing of theseproperties|ho w they cameto be asthey are,
and how they interact with one another. Third, it aims
to predict what the behavior of networked systemswill
be on the basisof measuredstructural properties and the
local rules governing individual vertices. How for exam-
ple will network structure a�ect tra�c on the Internet, or
the performanceof a Web search engine,or the dynamics
of social or biological systems?As we will see,the scien-
ti�c communit y has, by drawing on ideas from a broad
variety of disciplines, madean excellent start on the �rst
two of these aims, the characterization and modeling of
network structure. Studies of the e�ects of structure on
system behavior on the other hand are still in their in-
fancy. It remains to be seenwhat the crucial theoretical
developments will be in this area.



I Intro duction 3

(c)(b)

(a)

FIG. 2 Three examples of the kinds of networks that are the topic of this review. (a) A visualization of the network structure
of the Internet at the level of \autonomous systems"|lo cal groups of computers each representing hundreds or thousands of
machines. Picture by Hal Burch and Bill Cheswick, courtesy of Lumeta Corporation. (b) A social network, in this caseof
sexual contacts, redrawn from the HIV data of Potterat et al. [342]. (c) A food web of predator-prey interactions between
speciesin a freshwater lake [272]. Picture courtesy of Richard Williams.

A. Types of networks

A set of vertices joined by edgesis only the simplest
type of network; there are many ways in which networks
may be more complex than this (Fig. 3). For instance,
there may be more than one di�eren t type of vertex in a
network, or more than one di�eren t type of edge. And

vertices or edgesmay have a variety of properties, nu-
merical or otherwise, associated with them. Taking the
example of a social network of people, the vertices may
represent menor women,peopleof di�eren t nationalities,
locations, ages, incomes, or many other things. Edges
may represent friendship, but they could also represent
animosity, or professionalacquaintance, or geographical
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FIG. 3 Examples of various types of networks: (a) an undi-
rected network with only a single type of vertex and a single
type of edge; (b) a network with a number of discrete ver-
tex and edge types; (c) a network with varying vertex and
edge weights; (d) a directed network in which each edge has
a direction.

proximit y. They can carry weights, representing, say,
how well two peopleknow each other. They can also be
directed, pointing in only one direction. Graphs com-
posed of directed edgesare themselves called directed
graphs or sometimesdigraphs, for short. A graph rep-
resenting telephone calls or email messagesbetween in-
dividuals would be directed, since each messagegoes in
only one direction. Directed graphs can be either cyclic,
meaning they contain closed loops of edges,or acyclic
meaningthey do not. Somenetworks, such asfood webs,
are approximately but not perfectly acyclic.

One can also have hyperedges|edges that join more
than two verticestogether. Graphs containing such edges
are called hypergraphs. Hyperedgescould be used to in-
dicate family ties in a social network for example| n in-
dividuals connectedto each other by virtue of belonging
to the same immediate family could be represented by
an n-edge joining them. Graphs may also be naturally
partitioned in various ways. We will see a number of
examplesin this review of bipartite graphs: graphs that
contain verticesof two distinct types,with edgesrunning
only betweenunlike types. So-calleda�liation networks
in which peopleare joined together by commonmember-
ship of groups take this form, the two types of vertices
representing the peopleand the groups. Graphs may also
evolve over time, with verticesor edgesappearing or dis-
appearing, or valuesde�ned on those vertices and edges
changing. And there are many other levels of sophistica-
tion one can add. The study of networks is by no means
a completescienceyet, and many of the possibilities have
yet to be explored in depth, but we will seeexamplesof
at least someof the variations described here in the work
reviewed in this paper.

The jargon of the study of networks is unfortunately
confused by di�ering usagesamong investigators from
di�eren t �elds. To avoid (or at least reduce) confusion,
we give in Table I a short glossaryof terms as they are

usedin this paper.

B. Other resources

A number of other reviews of this area have appeared
recently , which the reader may wish to consult. Alb ert
and Barab�asi [13] and Dorogovtsev and Mendes [120]
have given extensive pedagogicalreviewsfocusingon the
physicsliterature. Both devote the larger part of their at-
tention to the modelsof growing graphs that we describe
in Sec.VI I. Shorter reviewstaking other viewpoints have
been given by Newman [309] and Hayes [189, 190], who
both concentrate on the so-called\small-world" models
(seeSec.VI), and by Strogatz [387], who includes an in-
teresting discussionof the behavior of dynamical systems
on networks.

A number of books also make worthwhile reading.
Dorogovtsev and Mendes [122] have expanded their
above-mentioned review into a book, which again fo-
cuseson models of growing graphs. The edited volumes
by Bornholdt and Schuster [70] and by Pastor-Satorras
and Rubi [330] both contain contributed essays on var-
ious topics by leading researchers. Detailed treatments
of many of the topics covered in the present work can be
found there. The book by Newman et al. [320] is a col-
lection of previously published papers, and also contains
somereview material by the editors.

Three popular books on the subject of networks merit
a mention. Alb ert-L�aszl�o Barab�asi's Linked [31] gives
a personal account of recent developments in the study
of networks, focusing particularly on Barab�asi's work on
scale-freenetworks. Duncan Watts's Six Degrees [414]
givesa sociologist's view, partly historical, of discoveries
old and new. Mark Buchanan's Nexus [76] gives an en-
tertaining portrait of the �eld from the point of view of
a sciencejournalist.

Farther a�eld, there area variety of bookson the study
of networks in particular �elds. Within graph theory the
books by Harary [188] and by Bollob�as [62] are widely
cited and among social network theorists the books by
Wassermanand Faust [409] and by Scott [363]. The book
by Ahuja et al. [7] is a useful sourcefor information on
network algorithms.

C. Outline of the review

The outline of this paper is asfollows. In Sec.I I we de-
scribe empirical studies of the structure of networks, in-
cluding social networks, information networks, technolog-
ical networks and biological networks. In Sec.I I I we de-
scribe someof the common properties that are observed
in many of thesenetworks, how they are measured,and
why they arebelieved to be important for the functioning
of networked systems. SectionsIV to VI I form the heart
of the review. They describe work on the mathematical
modeling of networks, including random graph models
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Vertex (pl. vertices): The fundamental unit of a network, also called a site
(physics), a node (computer science),or an actor (sociology).

Edge: The line connecting two vertices. Also called a bond (physics), a link
(computer science),or a tie (sociology).

Dir ected/undir ected: An edge is directed if it runs in only one direction (such
as a one-way road between two points), and undirected if it runs in both directions.
Directed edges,which are sometimescalled arcs, can be thought of as sporting arrows
indicating their orientation. A graph is directed if all of its edgesare directed. An
undirected graph can be represented by a directed one having two edgesbetweeneach
pair of connected vertices, one in each direction.

Degree: The number of edgesconnected to a vertex. Note that the degreeis not
necessarily equal to the number of vertices adjacent to a vertex, since there may be
more than one edge between any two vertices. In a few recent articles, the degree
is referred to as the \connectivit y" of a vertex, but we avoid this usagebecausethe
word connectivit y already has another meaning in graph theory. A directed graph
has both an in-degree and an out-degree for each vertex, which are the numbers of
in-coming and out-going edgesrespectively.

Component: The component to which a vertex belongs is that set of vertices
that can be reached from it by paths running along edgesof the graph. In a directed
graph a vertex has both an in-component and an out-component, which are the sets
of vertices from which the vertex can be reached and which can be reached from it.

Geodesic path: A geodesic path is the shortest path through the network from
one vertex to another. Note that there may be and often is more than one geodesic
path between two vertices.

Diameter: The diameter of a network is the length (in number of edges)of the
longest geodesic path between any two vertices. A few authors have also used this
term to mean the average geodesic distance in a graph, although strictly the two
quantities are quite distinct.

TABLE I A short glossary of terms.

and their generalizations, exponential random graphs,
p� models and Markov graphs, the small-world model
and its variations, and models of growing graphs includ-
ing preferential attachment models and their many vari-
ations. In Sec.VI I I we discussthe progress,such as it
is, that has beenmade on the study of processestaking
placeon networks, including epidemicprocesses,network
failure, models displaying phasetransitions, and dynam-
ical systemslike random Boolean networks and cellular
automata. In Sec.IX we give our conclusionsand point
to directions for future research.

II. NETW ORKS IN THE REAL WORLD

In this section we look at what is known about the
structure of networks of di�eren t types. Recent work
on the mathematics of networks has beendriven largely
by observations of the properties of actual networks and
attempts to model them, so network data are the ob-
vious starting point for a review such as this. It also
makes senseto examine simultaneously data from dif-
ferent kinds of networks. One of the principal thrusts
of recent work in this area, inspired particularly by a
groundbreaking 1998paper by Watts and Strogatz [416],

has been the comparative study of networks from dif-
ferent branches of science,with emphasison properties
that are commonto many of them and the mathematical
developments that mirror those properties. We here di-
vide our summary into four loosecategoriesof networks:
social networks, information networks, technological net-
works and biological networks.

A. Social networks

A social network is a set of people or groups of peo-
ple with some pattern of contacts or interactions be-
tween them [363, 409]. The patterns of friendships be-
tween individuals [296, 348], businessrelationships be-
tweencompanies[269, 286], and intermarriages between
families [327] are all examplesof networks that have been
studied in the past.1 Of the academicdisciplines the so-
cial scienceshave the longest history of the substantial

1 Occasionally social networks of animals have been investigated
also, such as dolphins [96], not to mention networks of �ctional
characters, such as the protagonists of Tolstoy's Anna Kar en-
ina [244] or Marv el Comics superheroes [10].
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quantitativ e study of real-world networks [162, 363]. Of
particular note amongthe early works on the subject are:
Jacob Moreno's work in the 1920s and 30s on friend-
ship patterns within small groups [296]; the so-called
\southern women study" of Davis et al. [103], which
focused on the social circles of women in an unnamed
city in the American south in 1936; the study by El-
ton Mayo and colleaguesof social networks of factory
workers in the late 1930sin Chicago [357]; the mathe-
matical models of Anatol Rapoport [346], who was one
of the �rst theorists, perhaps the �rst, to stressthe im-
portance of the degree distribution in networks of all
kinds, not just social networks; and the studiesof friend-
ship networks of school children by Rapoport and oth-
ers [149, 348]. In more recent years, studies of business
communities [167, 168, 269] and of patterns of sexual
contacts [45, 218, 243, 266, 303, 342] have attracted par-
ticular attention.

Another important set of experiments are the famous
\small-world" experiments of Milgram [283, 393]. No ac-
tual networks were reconstructed in these experiments,
but nonethelessthey tell us about network structure.
The experiments probed the distribution of path lengths
in an acquaintancenetwork by askingparticipants to pass
a letter2 to oneof their �rst-name acquaintancesin an at-
tempt to get it to an assignedtarget individual. Most of
the letters in the experiment werelost, but about a quar-
ter reached the target and passedon averagethrough the
hands of only about six people in doing so. This exper-
iment was the origin of the popular concept of the \six
degreesof separation," although that phrasedid not ap-
pear in Milgram's writing, being coined some decades
later by Guare [183]. A brief but useful early review of
Milgram's work and work stemming from it wasgiven by
Gar�eld [169].

Traditional social network studies often su�er from
problems of inaccuracy, subjectivit y, and small sample
size. With the exception of a few ingenious indirect
studies such as Milgram's, data collection is usually car-
ried out by querying participants directly using question-
naires or interviews. Such methods are labor-intensive
and therefore limit the size of the network that can be
observed. Survey data are, moreover, in
uenced by sub-
jective biases on the part of respondents; how one re-
spondent de�nes a friend for examplecould be quite dif-
ferent from how another does. Although much e�ort is
put into eliminating possiblesourcesof inconsistency, it
is generally acceptedthat there are large and essentially
uncontrolled errors in most of thesestudies. A review of
the issueshas beengiven by Marsden [271].

Because of these problems many researchers have
turned to other methods for probing social networks.
One sourceof copiousand relatively reliable data is col-
laboration networks. These are typically a�liation net-

2 Actually a folder containing several documents.

works in which participants collaborate in groups of one
kind or another, and links between pairs of individuals
are establishedby commongroup membership. A classic,
though rather friv olous,exampleof such a network is the
collaboration network of �lm actors, which is thoroughly
documented in the online Internet Movie Database.3 In
this network actors collaborate in �lms and two actors
are consideredconnectedif they have appearedin a �lm
together. Statistical properties of this network have been
analyzedby a number of authors [4, 20, 323, 416]. Other
examplesof networks of this type are networks of com-
pany directors, in which two directors are linked if they
belong to the same board of directors [104, 105, 269],
networks of coauthorship among academics,in which in-
dividuals are linked if they have coauthored one or more
papers [36, 43, 68, 107, 182, 279, 292, 311{313], and
coappearancenetworks in which individuals are linked
by mention in the same context, particularly on Web
pages[3, 227] or in newspaper articles [99] (seeFig. 2b).

Another sourceof reliable data about personalconnec-
tions between people is communication records of cer-
tain kinds. For example, one could construct a network
in which each (directed) edge between two people rep-
resented a letter or package sent by mail from one to
the other. No study of such a network has been pub-
lished as far as we are aware, but some similar things
have. Aiello et al. [8, 9] have analyzed a network of
telephone calls made over the AT&T long-distance net-
work on a single day. The vertices of this network repre-
sent telephonenumbersand the directed edgescalls from
one number to another. Even for just a single day this
graph is enormous,having about 50 million vertices, one
of the largest graphs yet studied after the graph of the
World Wide Web. Ebel et al. [136] have reconstructed
the pattern of email communications between �v e thou-
sand students at Kiel University from logs maintained
by email servers. In this network the vertices repre-
sent email addressesand directed edgesrepresent a mes-
sagepassing from one address to another. Email net-
works have also been studied by Newman et al. [321]
and by Guimer�a et al. [185], and similar networks have
been constructed for an \instan t messaging"system by
Smith [371], and for an Internet communit y Web site by
Holme et al. [196]. Dodds et al. [110] have carried out
an email version of Milgram's small-world experiment in
which participants were asked to forward an email mes-
sageto oneof their friends in an e�ort to get the message
ultimately to some chosen target individual. Response
rates for the experiment were quite low, but a few hun-
dred completedchainsof messageswererecorded,enough
to allow various statistical analyses.

3 http://www.imdb.com/
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World-Wide Webcitation network

FIG. 4 The two best studied information networks. Left: the
citation network of academic papers in which the vertices are
papers and the directed edgesare citations of one paper by
another. Since papers can only cite those that came before
them (lower down in the �gure) the graph is acyclic|it has
no closed loops. Right: the World Wide Web, a network of
text pagesaccessibleover the Internet, in which the vertices
are pages and the directed edgesare hyperlinks. There are
no constraints on the Web that forbid cycles and hence it is
in general cyclic.

B. Information networks

Our secondnetwork category is what we will call in-
formation networks (also sometimescalled \kno wledge
networks"). The classicexample of an information net-
work is the network of citations between academic pa-
pers [138]. Most learned articles cite previous work by
others on related topics. Thesecitations form a network
in which the verticesare articles and a directed edgefrom
article A to article B indicates that A cites B. The struc-
ture of the citation network then re
ects the structure of
the information stored at its vertices,hencethe term \in-
formation network," although certainly there are social
aspects to the citation patterns of papers too [420].

Citation networks are acyclic (see Sec. I.A) because
paperscan only cite other papers that have already been
written, not those that have yet to be written. Thus all
edgesin the network point backwards in time, making
closed loops impossible, or at least extremely rare (see
Fig. 4).

As an object of scienti�c study, citation networks have
a great advantage in the copiousand accuratedata avail-
able for them. Quantitativ estudy of publication patterns
stretches back at least as far as Alfred Lotka's ground-
breaking 1926 discovery of the so-called Law of Scien-
ti�c Productivit y, which states that the distribution of
the numbers of papers written by individual scientists
follows a power law. That is, the number of scientists
who have written k papers falls o� as k � � for somecon-
stant � . (In fact, this result extends to the arts and
humanities as well.) The �rst serious work on citation
patterns was conducted in the 1960s as large citation
databasesbecameavailable through the work of Eugene
Gar�eld and other pioneersin the �eld of bibliometrics.

The network formed by citations was discussedin an
early paper by Price [343], in which among other things,
the author points out for the �rst time that both the in-
and out-degreedistributions of the network follow power
laws, a far-reaching discovery which we discussfurther
in Sec. I I I.C. Many other studies of citation networks
have been performed since then, using the ever better
resourcesavailable in citation databases. Of particular
note are the studies by Seglen[364] and Redner [351].4

Another very important example of an information
network is the World Wide Web, which is a network of
Webpagescontaining information, linked together by hy-
perlinks from onepageto another [203]. The Web should
not beconfusedwith the Internet, which is a physical net-
work of computers linked together by optical �bre and
other data connections.5 Unlike a citation network, the
World Wide Web is cyclic; there is no natural ordering
of sites and no constraints that prevent the appearance
of closedloops (Fig. 4). The Web has beenvery heavily
studied sinceits �rst appearancein the early 1990s,with
the studiesby Alb ert et al. [14, 34], Kleinberg et al. [241],
and Broder et al. [74] being particularly in
uen tial. The
Web also appears to have power-law in- and out-degree
distributions (Sec. I I I.C), as well as a variety of other
interesting properties [2, 14, 74, 158, 241, 254].

One important point to notice about the Web is that
our data about it comefrom \crawls" of the network, in
which Web pagesare found by following hyperlinks from
other pages[74]. Our picture of the network structure
of the World Wide Web is therefore necessarilybiased.
A page will only be found if another page points to it, 6

and in a crawl that covers only a part of the Web (as all
crawls do at present) pagesare more likely to be found
the more other pages point to them [263]. This sug-
gestsfor instance that our measurements of the fraction
of pageswith low in-degreemight be an underestimate.7

This behavior contrasts with that of a citation network.
A paper can appear in the citation indices even if it has
never beencited (and in fact a pluralit y of papers in the
indices are never cited).

A few other examples of information networks have

4 An interesting development in the study of citation pat-
terns has been the arriv al of automatic citation \cra wlers"
that construct citation networks from online papers. Exam-
ples include Citeseer (http://citeseer.nj.nec.com/ ), SPIRES
(http://www.slac.stanford.edu/spires/hep/ ) and Citebase
(http://citebase.eprints.org/ ).

5 While the Web is primarily an information network, it, lik e cita-
tion networks, has social aspects to its structure also [3].

6 This is not always strictly true. Some Web search engines allow
the submission of pagesby members of the public for inclusion in
databases, and such pages need not be the target of links from
any other pages. However, such pages also form a very small
fraction of all Web pages, and certainly the biasesdiscussedhere
remain very much present.

7 The degree distribution for the Web shown in Fig. 6 falls o�
slightly at low values of the in-degree, which may perhaps re
ect
this bias.
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been studied to a lesser extent. Ja�e and Trajten-
berg [207], for instance, have studied the network of ci-
tations betweenUS patents, which is similar in somere-
spects to citations betweenacademicpapers. A number
of authors have looked at peer-to-peer networks [5, 6,
205], which are virtual networks of computers that al-
low sharing of �les between computer users over local-
or wide-area networks. The network of relations be-
tween word classesin a thesaurus has been studied by
Knuth [244] and more recently by various other au-
thors [234, 304, 384]. This network canbe lookedupon as
an information network|users of a thesaurus\surf " the
network from one word to another looking for the par-
ticular word that perfectly captures the idea they have
in mind. However, it can also be looked at as a concep-
tual network representing the structure of the language,
or possibly even the mental constructs usedto represent
the language.A number of other semantic word networks
have also beeninvestigated [119, 157, 369, 384].

Preferencenetworks provide an exampleof a bipartite
information network. A preferencenetwork is a network
with two kinds of vertices representing individuals and
the objects of their preference,such as books or �lms,
with an edgeconnecting each individual to the books or
�lms they like. (Preferencenetworks canalsobeweighted
to indicate strength of likes or dislikes.) A widely stud-
ied example of a preferencenetwork is the EachMovie
databaseof �lm preferences.8 Networks of this kind form
the basisfor collaborative �ltering algorithms and recom-
mender systems, which are techniquesfor predicting new
likesor dislikesbasedon comparisonof individuals' pref-
erenceswith thoseof others [176, 352, 367]. Collaborative
�ltering has found considerablecommercial successfor
product recommendation and targeted advertising, par-
ticularly with online retailers. Preferencenetworks can
also be thought of as social networks, linking not only
people to objects, but also people to other people with
similar preferences.This approach has beenadopted oc-
casionally in the literature [227].

C. Technological networks

Our third classof networks is technological networks,
man-made networks designed typically for distribution
of somecommodit y or resource,such as electricity or in-
formation. The electric power grid is a good example.
This is a network of high-voltage three-phasetransmis-
sion lines that spans a country or a portion of a coun-
try (as opposedto the local low-voltage a.c. power deliv-
ery lines that spanindividual neighborhoods). Statistical
studies of power grids have been made by, for example,
Watts and Strogatz [412, 416] and Amaral et al. [20].
Other distribution networks that have been studied in-

8 http://research.compaq.com/SRC/eachmovie/

clude the network of airline routes [20], and networks
of roads [221], railways [262, 366] and pedestrian traf-
�c [87]. River networks could be regardedas a naturally
occurring form of distribution network (actually a collec-
tion network) [111, 270, 353, 356], as could the vascu-
lar networks discussedin Sec. I I.D. The telephone net-
work and delivery networks such as those used by the
post-o�ce or parcel delivery companiesalso fall into this
generalcategory and are presumably studied within the
relevant corporations, if not yet by academicresearchers.
(We distinguish herebetweenthe physical telephonenet-
work of wires and cables and the network of who calls
whom, discussedin Sec. I I.A.) Electronic circuits [155]
fall somewherebetweendistribution and communication
networks.

Another very widely studied technological network is
the Internet, i.e., the network of physical connections
between computers. Since there is a large and ever-
changingnumber of computerson the Internet, the struc-
ture of the network is usually examined at a coarse-
grained level, either the level of routers, special-purpose
computers on the network that control the movement
of data, or \autonomous systems," which are groups of
computers within which networking is handled locally,
but between which data 
o ws over the public Internet.
The computers at a single company or university would
probably form a singleautonomoussystem|autonomous
systemsoften correspond roughly with domain names.

In fact, the network of physical connectionson the In-
ternet is not easy to discover since the infrastructure is
maintained by many separate organizations. Typically
therefore, researchers reconstruct the network by reason-
ing from large samplesof point-to-p oint data routes. So-
called \traceroute" programs can report the sequenceof
network nodes that a data packet passesthrough when
traveling between two points and if we assumean edge
in the network betweenany two consecutive nodesalong
such a path then a su�cien tly large sampleof paths will
give us a fairly complete picture of the entire network.
There may however be someedgesthat never get sam-
pled, so the reconstruction is typically a good, but not
perfect, representation of the true physical structure of
the Internet. Studiesof Internet structure have beencar-
ried out by, among others, Faloutsoset al. [148], Broida
and Cla�y [75] and Chen et al. [86].

D. Biological networks

A number of biological systems can be usefully rep-
resented as networks. Perhaps the classic example of
a biological network is the network of metabolic path-
ways, which is a representation of metabolic substrates
and products with directed edges joining them if a
known metabolic reaction exists that acts on a given
substrate and produces a given product. Most of us
will probably have seenat somepoint the giant maps of
metabolic pathways that many molecular biologists pin
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to their walls.9 Studies of the statistical properties of
metabolic networks havebeenperformedby, for example,
Jeong et al. [214, 340], Fell and Wagner [153, 405], and
Stelling et al. [383]. A separatenetwork is the network
of mechanistic physical interactions betweenproteins (as
opposedto chemical reactionsamongmetabolites), which
is usually referred to as a protein interaction network.
Interaction networks have been studied by a number of
authors [206, 212, 274, 376, 394].

Another important class of biological network is the
genetic regulatory network. The expressionof a gene,
i.e., the production by transcription and translation of
the protein for which the genecodes, can be controlled
by the presenceof other proteins, both activators and in-
hibitors, so that the genomeitself forms a switching net-
work with verticesrepresenting the proteins and directed
edgesrepresenting dependenceof protein production on
the proteins at other vertices. The statistical structure
of regulatory networks hasbeenstudied recently by vari-
ous authors [152, 184, 368]. Genetic regulatory networks
werein fact oneof the �rst networked dynamical systems
for which large-scalemodeling attempts weremade. The
early work on random Boolean nets by Kau�man [224{
226] is a classic in this �eld, and anticipated recent de-
velopments by several decades.

Another much studied exampleof a biological network
is the food web, in which the vertices represent species
in an ecosystemand a directed edge from speciesA to
species B indicates that A preys on B [91, 339]|see
Fig. 2a. (Sometimesthe relationship is drawn the other
way around, becauseecologiststend to think in terms of
energy or carbon 
o ws through food webs; a predator-
prey interaction is thus drawn asan arrow pointing from
prey to predator, indicating energy 
o w from prey to
predator when the prey is eaten.) Construction of com-
plete food webs is a laborious business,but a number
of quite extensive data sets have become available in
recent years [27, 177, 204, 272]. Statistical studies of
the topologies of food webs have been carried out by
Sol�e and Montoya [290, 375], Camacho et al. [82] and
Dunne et al. [132, 133, 423], among others. A particu-
larly thorough study of websof plants and herbivoreshas
been conducted by Jordano et al. [219], which includes
statistics for no lessthan 53 di�eren t networks.

Neural networks are another class of biological net-
works of considerableimportance. Measuring the topol-
ogy of real neural networks is extremely di�cult, but has
been done successfullyin a few cases. The best known
example is the reconstruction of the 282-neuron neural
network of the nematodeC. Elegansby White et al. [421].
The network structure of the brain at larger scalesthan
individual neurons|functional areasand pathways|has

9 The standard chart of the metab olic network is somewhat mis-
leading. For reasons of clarit y and aesthetics, many metab olites
appear in more than one place on the chart, so that some pairs
of vertices are actually the same vertex.

beeninvestigated by Sporns et al. [379, 380].
Blood vesselsand the equivalent vascular networks in

plants form the foundation for oneof the most successful
theoretical models of the e�ects of network structure on
the behavior of a networked system,the theory of biolog-
ical allometry [29, 417, 418], although we are not aware
of any quantitativ e studies of their statistical structure.

Finally we mention two examples of networks from
the physical sciences,the network of free energy min-
ima and saddlepoints in glasses[130] and the network of
conformations of polymers and the transitions between
them [361], both of which appear to have someinterest-
ing structural properties.

III. PROPERTIES OF NETW ORKS

Perhaps the simplest useful model of a network is the
random graph, �rst studied by Rapoport [346, 347, 378]
and by Erd}os and R�enyi [141{143], which we describe in
Sec.IV.A. In this model, undirected edgesare placed at
random betweena �xed number n of vertices to create a
network in which each of the 1

2 n(n � 1) possibleedgesis
independently present with someprobabilit y p, and the
number of edgesconnectedto each vertex|the degreeof
the vertex|is distributed according to a binomial distri-
bution, or a Poissondistribution in the limit of large n.
The random graph has beenwell studied by mathemati-
cians [63, 211, 223] and many results, both approximate
and exact, havebeenprovedrigorously. Most of the inter-
esting featuresof real-world networks that have attracted
the attention of researchers in the last few yearshowever
concern the ways in which networks are not like ran-
dom graphs. Real networks are non-random in somere-
vealing ways that suggestboth possiblemechanismsthat
could be guiding network formation, and possibleways
in which we could exploit network structure to achieve
certain aims. In this section we describe somefeatures
that appear to be commonto networks of many di�eren t
types.

A. The small-world e�ect

In Sec.I I.A we described the famousexperiments car-
ried out by Stanley Milgram in the 1960s,in which let-
ters passedfrom person to person were able to reach a
designated target individual in only a small number of
steps|around six in the published cases. This result is
one of the �rst direct demonstrations of the small-world
e�ect, the fact that most pairs of vertices in most net-
works seemto be connectedby a short path through the
network.

The existenceof the small-world e�ect had beenspecu-
lated upon before Milgram's work, notably in a remark-
able 1929 short story by the Hungarian writer Frigyes
Karin thy [222], and more rigorously in the mathematical
work of Pool and Kochen [341] which, although published



10

network type n m z ` � C(1) C(2) r Ref(s).
so

ci
al

�lm actors undirected 449913 25516482 113:43 3:48 2:3 0:20 0:78 0:208 20, 416
company directors undirected 7673 55392 14:44 4:60 { 0:59 0:88 0:276 105, 323
math coauthorship undirected 253339 496489 3:92 7:57 { 0:15 0:34 0:120 107, 182
physics coauthorship undirected 52909 245300 9:27 6:19 { 0:45 0:56 0:363 311, 313
biology coauthorship undirected 1520251 11803064 15:53 4:92 { 0:088 0:60 0:127 311, 313
telephone call graph undirected 47000000 80000000 3:16 2:1 8, 9
email messages directed 59912 86300 1:44 4:95 1:5=2:0 0:16 136
email addressbooks directed 16881 57029 3:38 5:22 { 0:17 0:13 0:092 321
student relationships undirected 573 477 1:66 16:01 { 0:005 0:001 � 0:029 45
sexual contacts undirected 2810 3:2 265, 266

in
fo

rm
at

io
n

WWW nd.edu directed 269504 1497135 5:55 11:27 2:1/2 :4 0:11 0:29 � 0:067 14, 34
WWW Alta vista directed 203549046 2130000000 10:46 16:18 2:1/2 :7 74
citation network directed 783339 6716198 8:57 3:0/{ 351
Roget's Thesaurus directed 1022 5103 4:99 4:87 { 0:13 0:15 0:157 244
word co-occurrence undirected 460902 17000000 70:13 2:7 0:44 119, 157

te
ch

no
lo

gi
ca

l

Internet undirected 10697 31992 5:98 3:31 2:5 0:035 0:39 � 0:189 86, 148
power grid undirected 4941 6594 2:67 18:99 { 0:10 0:080 � 0:003 416
train routes undirected 587 19603 66:79 2:16 { 0:69 � 0:033 366
software packages directed 1439 1723 1:20 2:42 1:6=1:4 0:070 0:082 � 0:016 318
software classes directed 1377 2213 1:61 1:51 { 0:033 0:012 � 0:119 395
electronic circuits undirected 24097 53248 4:34 11:05 3:0 0:010 0:030 � 0:154 155
peer-to-peer network undirected 880 1296 1:47 4:28 2:1 0:012 0:011 � 0:366 6, 354

bi
ol

og
ic

al

metabolic network undirected 765 3686 9:64 2:56 2:2 0:090 0:67 � 0:240 214
protein interactions undirected 2115 2240 2:12 6:80 2:4 0:072 0:071 � 0:156 212
marine food web directed 135 598 4:43 2:05 { 0:16 0:23 � 0:263 204
freshwater food web directed 92 997 10:84 1:90 { 0:20 0:087 � 0:326 272
neural network directed 307 2359 7:68 3:97 { 0:18 0:28 � 0:226 416, 421

TABLE I I Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total
number of edgesm; mean degreez; mean vertex{v ertex distance `; exponent � of degreedistribution if the distribution follows a power law (or \{" if not; in/out-degree
exponents are given for directed graphs); clustering coe�cien t C(1) from Eq. (3); clustering coe�cien t C(2) from Eq. (6); and degreecorrelation coe�cien t r , Sec.I I I.F.
The last column gives the citation(s) for the network in the bibliograph y. Blank entries indicate unavailable data.
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after Milgram's studies, was in circulation in preprint
form for a decadebefore Milgram took up the problem.
Nowadays, the small-world e�ect has been studied and
veri�ed directly in a large number of di�eren t networks.

Consider an undirected network, and let us de�ne `
to be the mean geodesic(i.e., shortest) distance between
vertex pairs in a network:

` =
1

1
2 n(n + 1)

X

i � j

dij ; (1)

where dij is the geodesic distance from vertex i to ver-
tex j . Notice that we have included the distance from
each vertex to itself (which is zero) in this average. This
is mathematically convenient for a number of reasons,
but not all authors do it. In any case,its inclusion simply
multiplies ` by (n � 1)=(n + 1) and hencegivesa correc-
tion of order n� 1, which is often negligible for practical
purposes.

The quantit y ` can be measuredfor a network of n ver-
tices and m edgesin time O(mn) using simple breadth-
�rst search [7], also called a \burning algorithm" in the
physics literature. In Table I I, we show valuesof ` taken
from the literature for a variety of di�eren t networks. As
the table shows, the valuesare in all casesquite small|
much smaller than the number n of vertices, for instance.

The de�nition (1) of ` is problematic in networks that
have more than one component. In such cases,there
exist vertex pairs that have no connecting path. Con-
ventionally one assignsin�nite geodesicdistance to such
pairs, but then the value of ` also becomesin�nite. To
avoid this problem oneusually de�nes ` on such networks
to be the mean geodesic distance between all pairs that
have a connecting path. Pairs that fall in two di�eren t
components are excluded from the average. The �gures
in Table I I were all calculated in this way. An alterna-
tiv e and perhapsmore satisfactory approach is to de�ne `
to be the \harmonic mean" geodesicdistancebetweenall
pairs, i.e., the reciprocal of the averageof the reciprocals:

` � 1 =
1

1
2 n(n + 1)

X

i � j

d� 1
ij : (2)

In�nite valuesof dij then contribute nothing to the sum.
This approach hasbeenadoptedonly occasionallyin net-
work calculations [260], but perhapsshould be usedmore
often.

The small-world e�ect hasobvious implications for the
dynamics of processestaking place on networks. For
example, if one considersthe spread of information, or
indeed anything else,acrossa network, the small-world
e�ect implies that that spreadwill be fast on most real-
world networks. If it takes only six steps for a rumor
to spread from any person to any other, for instance,
then the rumor will spread much faster than if it takes
a hundred steps, or a million. This a�ects the number
of \hops" a packet must make to get from one computer
to another on the Internet, the number of legsof a jour-
ney for an air or train traveler, the time it takes for a

diseaseto spreadthroughout a population, and so forth.
The small-world e�ect also underlies some well-known
parlor games,particularly the calculation of Erd}os num-
bers [107] and Bacon numbers.10

On the other hand, the small-world e�ect is alsomath-
ematically obvious. If the number of vertices within a
distancer of a typical central vertex grows exponentially
with r |and this is true of many networks, including the
random graph (Sec. IV.A)|then the value of ` will in-
creaseas logn. In recent years the term \small-world
e�ect" has thus taken on a more precisemeaning: net-
works are said to show the small-world e�ect if the value
of ` scaleslogarithmically or slower with network sizefor
�xed mean degree. Logarithmic scaling can be proved
for a variety of network models [61, 63, 88, 127, 164]
and has also been observed in various real-world net-
works [13, 312, 313]. Somenetworks have mean vertex{
vertex distancesthat increaseslower than logn. Bollob�as
and Riordan [64] have shown that networks with power-
law degreedistributions (Sec.I I I.C) have valuesof ` that
increaseno faster than logn= log logn (seealsoRef. 164),
and Cohen and Havlin [95] have given arguments that
suggestthat the actual variation may beslower even than
this.

B. Transitivit y or clustering

A clear deviation from the behavior of the random
graph can be seenin the property of network transitivit y,
sometimesalsocalledclustering, although the latter term
also has another meaning in the study of networks (see
Sec. I I I.G) and so can be confusing. In many networks
it is found that if vertex A is connectedto vertex B and
vertex B to vertex C, then there is a heightened proba-
bilit y that vertex A will also be connectedto vertex C.
In the language of social networks, the friend of your
friend is likely alsoto be your friend. In terms of network
topology, transitivit y meansthe presenceof a heightened
number of triangles in the network|sets of three vertices
each of which is connectedto each of the others. It can
be quanti�ed by de�ning a clustering coe�cien t C thus:

C =
3� number of triangles in the network
number of connectedtriples of vertices

; (3)

where a \connected triple" means a single vertex with
edgesrunning to an unorderedpair of others (seeFig. 5).

In e�ect, C measuresthe fraction of triples that have
their third edge �lled in to complete the triangle. The
factor of three in the numerator accounts for the fact that
each triangle contributes to three triples and ensuresthat
C lies in the range 0 � C � 1. In simple terms, C is
the mean probabilit y that two vertices that are network

10 http://www.cs.virginia.edu/oracle/
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FIG. 5 Illustration of the de�nition of the clustering coe�-
cient C, Eq. (3). This network has one triangle and eight
connected triples, and therefore has a clustering coe�cien t of
3 � 1=8 = 3

8 . The individual vertices have local clustering
coe�cien ts, Eq. (5), of 1, 1, 1

6 , 0 and 0, for a mean value,
Eq. (6), of C = 13

30 .

neighbors of the same other vertex will themselves be
neighbors. It can also be written in the form

C =
6� number of triangles in the network

number of paths of length two
; (4)

wherea path of length two refersto a directed path start-
ing from a speci�ed vertex. This de�nition shows that C
is alsothe meanprobabilit y that the friend of your friend
is also your friend.

The de�nition of C given here has been widely used
in the sociology literature, where it is referred to as the
\fraction of transitiv e triples." 11 In the mathematical
and physical literature it seemsto have been �rst dis-
cussedby Barrat and Weigt [40].

An alternativ e de�nition of the clustering coe�cien t,
also widely used, has been given by Watts and Stro-
gatz [416], who proposedde�ning a local value

Ci =
number of triangles connectedto vertex i

number of triples centered on vertex i
: (5)

For verticeswith degree0 or 1, for which both numerator
and denominator are zero, we put Ci = 0. Then the
clustering coe�cien t for the whole network is the average

C =
1
n

X

i

Ci : (6)

This de�nition e�ectiv ely reversesthe order of the oper-
ations of taking the ratio of triangles to triples and of
averaging over vertices|one here calculatesthe mean of
the ratio, rather than the ratio of the means. It tends
to weight the contributions of low-degreevertices more
heavily, becausesuch vertices have a small denominator
in Eq. (5) and hencecan give quite di�eren t results from
Eq. (3). In Table I I we give both measuresfor a number
of networks (denoted C (1) and C(2) in the table). Nor-
mally our �rst de�nition (3) is easierto calculate analyt-
ically, but (6) is easily calculated on a computer and has

11 For example, the standard network analysis program UCInet in-
cludes a function to calculate this quantit y for any network.

found wide usein numerical studiesand data analysis. It
is important when reading (or writing) literature in this
area to be clear about which de�nition of the clustering
coe�cien t is in use. The di�erence between the two is
illustrated in Fig. 5.

The local clustering Ci above has been used quite
widely in its own right in the sociological literature,
where it is referred to as the \net work density" [363].
Its dependence on the degree ki of the central ver-
tex i has been studied by Dorogovtsev et al. [113] and
Szab�o et al. [389]; both groups found that Ci falls
o� with ki approximately as k � 1

i for certain models
of scale-freenetworks (Sec. I I I.C.1). Similar behavior
has also been observed empirically in real-world net-
works [349, 350, 397].

In general, regardlessof which de�nition of the clus-
tering coe�cien t is used, the values tend to be consid-
erably higher than for a random graph with a similar
number of vertices and edges. Indeed, it is suspected
that for many typesof networks the probabilit y that the
friend of your friend is also your friend should tend to
a non-zero limit as the network becomeslarge, so that
C = O(1) as n ! 1 .12 On the random graph, by con-
trast, C = O(n� 1) for large n (either de�nition of C)
and hencethe real-world and random graph values can
be expected to di�er by a factor of order n. This point
is discussedfurther in Sec.IV.A.

The clustering coe�cien t measuresthe density of tri-
anglesin a network. An obvious generalization is to ask
about the density of longer loops also: loops of length
four and above. A number of authors have looked at such
higher order clustering coe�cien ts [54, 79, 165, 172, 317],
although there is so far no clean theory, similar to a cu-
mulant expansion,that separatesthe independent contri-
butions of the various orders from one another. If more
than one edge is permitted between a pair of vertices,
then there is alsoa lower order clustering coe�cien t that
describes the density of loops of length two. This coe�-
cient is particularly important in directed graphs where
the two edgesin questioncanpoint in oppositedirections.
The probabilit y that two vertices in a directed network
point to each other is called the reciprocity and is often
measuredin directed social networks [363, 409]. It has
beenexaminedoccasionallyin other contexts too, such as
the World Wide Web [3, 137] and email networks [321].

C. Degree distributions

Recall that the degreeof a vertex in a network is the
number of edges incident on (i.e., connected to) that
vertex. We de�ne pk to be the fraction of vertices in

12 An exception is scale-free networks with C i � k � 1
i , as described

above. For such networks Eq. (3) tends to zero as n ! 1 ,
although Eq. (6) is still �nite.
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the network that have degreek. Equivalently , pk is the
probabilit y that a vertex chosen uniformly at random
has degreek. A plot of pk for any given network can
be formed by making a histogram of the degreesof ver-
tices. This histogram is the degreedistribution for the
network. In a random graph of the type studied by Erd}os
and R�enyi [141{143], each edgeis present or absent with
equal probabilit y, and hence the degreedistribution is,
as mentioned earlier, binomial, or Poissonin the limit of
large graph size. Real-world networks are mostly found
to be very unlike the random graph in their degreedis-
tributions. Far from having a Poissondistribution, the
degreesof the vertices in most networks are highly right-
skewed, meaning that their distribution has a long right
tail of valuesthat are far above the mean.

Measuring this tail is somewhat tric ky. Although in
theory one just has to construct a histogram of the de-
grees,in practice onerarely hasenoughmeasurements to
get good statistics in the tail, and direct histograms are
thus usually rather noisy (seethe histograms in Refs.74,
148 and 343 for example). There are two acceptedways
to get around this problem. One is to constructed a his-
togram in which the bin sizesincreaseexponentially with
degree. For example the �rst few bins might cover de-
greeranges1, 2{3, 4{7, 8{15, and so on. The number of
samplesin each bin is then divided by the width of the
bin to normalize the measurement. This method of con-
structing a histogram is often used when the histogram
is to be plotted with a logarithmic degreescale,so that
the widths of the bins will appear even. Becausethe bins
get wider as we get out into the tail, the problems with
statistics are reduced, although they are still present to
someextent as long as pk falls o� faster than k � 1, which
it must if the distribution is to be integrable.

An alternativ eway of presenting degreedata is to make
a plot of the cumulativ e distribution function

Pk =
1X

k 0= k

pk 0; (7)

which is the probabilit y that the degreeis greater than
or equal to k. Such a plot has the advantage that all the
original data are represented. When we make a conven-
tional histogram by binning, any di�erences betweenthe
values of data points that fall in the samebin are lost.
The cumulativ edistribution function doesnot su�er from
this problem. The cumulativ e distribution also reduces
the noise in the tail. On the downside, the plot doesn't
give a direct visualization of the degreedistribution it-
self, and adjacent points on the plot are not statistically
independent, making correct �ts to the data tric ky.

In Fig. 6 we show cumulativ e distributions of degree
for a number of the networks described in Sec. I I. As
the �gure shows, the distributions are indeed all right-
skewed. Many of them follow power laws in their tails:
pk � k � � for someconstant exponent � . Note that such
power-law distributions show up as power laws in the
cumulativ e distributions also, but with exponent � � 1

rather than � :

Pk �
1X

k 0= k

k0� � � k � ( � � 1) : (8)

Some of the other distributions have exponential tails:
pk � e� k=� . Thesealso give exponentials in the cumula-
tiv e distribution, but with the same exponent:

Pk =
1X

k 0= k

pk �
1X

k 0= k

e� k 0=� � e� k=� : (9)

This makespower-law and exponential distributions par-
ticularly easyto spot experimentally , by plotting the cor-
responding cumulativ edistributions on logarithmic scales
(for power laws) or semi-logarithmic scales(for exponen-
tials).

For other types of networks degreedistributions can
be more complicated. For bipartite graphs, for instance
(Sec.I.A), there are two degreedistributions, onefor each
type of vertex. For directed graphs each vertex has both
an in-degreeand an out-degree,and the degreedistribu-
tion therefore becomesa function pj k of two variables,
representing the fraction of vertices that simultaneously
have in-degreej and out-degreek. In empirical studies
of directed graphs like the Web, researchers have usually
given only the individual distributions of in- and out-
degree[14, 34, 74], i.e., the distributions derived by sum-
ming pj k over one or other of its indices. This however
discardsmuch of the information present in the joint dis-
tribution. It hasbeenfound that in- and out-degreesare
quite strongly correlated in somenetworks [321], which
suggeststhat there is more to be gleanedfrom the joint
distribution than is normally appreciated.

1. Scale-freenetworks

Networks with power-law degree distributions have
been the focus of a great deal of attention in the lit-
erature [13, 120, 387]. They are sometimesreferred to
as scale-free networks [32], although it is only their de-
greedistributions that are scale-free;13 one can and usu-
ally doeshave scalespresent in other network properties.
The earliest published exampleof a scale-freenetwork is
probably Price's network of citations between scienti�c
papers [343] (seeSec.I I.B). He quoted a value of � = 2:5
to 3 for the exponent of his network. In a later paper he
quoted a more accurate �gure of � = 3:04 [344]. He also
found a power-law distribution for the out-degreeof the

13 The term \scale-free" refers to any functional form f (x) that re-
mains unchanged to within a multiplicativ e factor under a rescal-
ing of the independent variable x. In e�ect this means power-law
forms, since these are the only solutions to f (ax) = bf (x), and
hence \p ower-law" and \scale-free" are, for our purp oses, syn-
onymous.
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FIG. 6 Cumulativ e degreedistributions for six di�eren t networks. The horizontal axis for each panel is vertex degreek (or in-
degreefor the citation and Web networks, which are directed) and the vertical axis is the cumulativ e probabilit y distribution of
degrees,i.e., the fraction of vertices that have degreegreater than or equal to k. The networks shown are: (a) the collaboration
network of mathematicians [182]; (b) citations between 1981 and 1997 to all papers cataloged by the Institute for Scienti�c
Information [351]; (c) a 300 million vertex subset of the World Wide Web, circa 1999 [74]; (d) the Internet at the level of
autonomous systems, April 1999 [86]; (e) the power grid of the western United States [416]; (f ) the interaction network of
proteins in the metabolism of the yeast S. Cerevisiae [212]. Of these networks, three of them, (c), (d) and (f ), appear to have
power-law degreedistributions, as indicated by their approximately straight-line forms on the doubly logarithmic scales,and
one (b) has a power-law tail but deviates markedly from power-law behavior for small degree. Network (e) has an exponential
degreedistribution (note the log-linear scalesused in this panel) and network (a) appears to have a truncated power-law degree
distribution of sometype, or possibly two separate power-law regimes with di�eren t exponents.

network (number of bibliography entries in each paper),
although later work has called this into question [396].
More recently , power-law degreedistributions have been
observed in a host of other networks, including no-
tably other citation networks [351, 364], the World Wide
Web [14, 34, 74], the Internet [86, 148, 401], metabolic
networks [212, 214], telephonecall graphs [8, 9], and the
network of human sexual contacts [218, 266]. The de-
greedistributions of someof thesenetworks are shown in
Fig. 6.

Other common functional forms for the degreedistri-
bution are exponentials, such as those seenin the power
grid [20] and railway networks [366], and power laws with
exponential cuto�s, such as those seenin the network of
movie actors [20] and somecollaboration networks [313].
Note alsothat while a particular form may be seenin the
degreedistribution for the network as a whole, speci�c
subnetworks within the network can have other forms.
The World Wide Web, for instance, shows a power-law
degree distribution overall but unimodal distributions
within domains [338].

2. Maximum degree

The maximum degreekmax of a vertex in a network
will in general depend on the size of the network. For
some calculations on networks the value of this maxi-
mum degreematters (see, for example, Sec. VI I I.C.2).
In work on scale-freenetworks, Aiello et al. [8] assumed
that the maximum degreewas approximately the value
abovewhich there is lessthan onevertex of that degreein
the graph on average,i.e., the point wherenpk = 1. This
means,for instance, that kmax � n1=� for the power-law
degreedistribution pk � k � � . This assumption however
can give misleading results; in many casesthere will be
vertices in the network with signi�cantly higher degree
than this, as discussedby Adamic et al. [6].

Given a particular degreedistribution (and assuming
all degreesto be sampled independently from it, which
may not be true for networks in the real world), the prob-
abilit y of there being exactly m vertices of degreek and
no vertices of higher degreeis

� n
m

�
pm

k (1 � Pk )n � m , where
Pk is the cumulativ e probabilit y distribution, Eq. (7).
Hencethe probabilit y hk that the highest degreeon the
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graph is k is

hk =
nX

m =1

�
n
m

�
pm

k (1 � Pk )n � m

= (pk + 1 � Pk )n � (1 � Pk )n ; (10)

and the expected value of the highest degreeis kmax =P
k khk .
For both small and large valuesof k, hk tends to zero,

and the sumover k is dominated by the terms closeto the
maximum. Thus, in most cases,a good approximation
to the expected value of the maximum degreeis given
by the modal value. Di�eren tiating and observing that
dPk =dk = pk , we �nd that the maximum of hk occurs
when
�

dpk

dk
� pk

�
(pk + 1� Pk )n � 1 + pk (1 � Pk )n � 1 = 0; (11)

or kmax is a solution of

dpk

dk
' � np2

k ; (12)

where we have made the (fairly safe) assumption that
pk is su�cien tly small for k & kmax that npk � 1 and
Pk � 1.

For example, if pk � k � � in its tail, then we �nd that

kmax � n1=( � � 1) : (13)

As shown by Cohenet al. [93], a simplerule of thumb that
leads to the sameresult is that the maximum degreeis
roughly the value of k that solvesnPk = 1. Note however
that, as shown by Dorogovtsev and Samukhin [129], the

uctuations in the tail of the degreedistribution are very
large for the power-law case.

Dorogovtsev et al. [126] have also shown that Eq. (13)
holds for networks generatedusing the \preferential at-
tachment" procedure of Barab�asi and Alb ert [32] de-
scribed in Sec. VI I.B, and a detailed numerical study
of this casehas beencarried out by Moreira et al. [295].

D. Network resilience

Related to degreedistributions is the property of re-
silienceof networks to the removal of their vertices,which
has been the subject of a good deal of attention in the
literature. Most of the networks we have beenconsider-
ing rely for their function on their connectivity, i.e., the
existenceof paths leading between pairs of vertices. If
verticesare removed from a network, the typical length of
thesepaths will increase,and ultimately vertex pairs will
becomedisconnectedand communication between them
through the network will becomeimpossible. Networks
vary in their level of resilienceto such vertex removal.

There are alsoa variety of di�eren t ways in which ver-
tices can be removed and di�eren t networks show vary-
ing degreesof resilienceto these also. For example, one
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FIG. 7 Mean vertex{v ertex distance on a graph represen-
tation of the Internet at the autonomous system level, as
vertices are removed one by one. If vertices are removed in
random order (squares), distance increasesonly very slightly ,
but if they are removed in order of their degrees,starting with
the highest degree vertices (circles), then distance increases
sharply. After Alb ert et al. [15].

could remove vertices at random from a network, or one
could target somespeci�c classof vertices, such as those
with the highest degrees.Network resilienceis of partic-
ular importance in epidemiology, where\removal" of ver-
tices in a contact network might correspond for example
to vaccination of individuals against a disease.Because
vaccination not only prevents the vaccinated individuals
from catching the diseasebut may alsodestroy paths be-
tweenother individuals by which the diseasemight have
spread,it canhavea wider reaching e�ect than onemight
at �rst think, and careful consideration of the e�cacy of
di�eren t vaccination strategies could lead to substantial
advantagesfor public health.

Recent interest in network resiliencehas beensparked
by the work of Alb ert et al. [15], who studied the ef-
fect of vertex deletion in two example networks, a 6000-
vertex network representing the topology of the Internet
at the level of autonomous systems(seeSec. I I.C), and
a 326000-pagesubset of the World Wide Web. Both of
the Internet and the Web have beenobserved to have de-
gree distributions that are approximately power-law in
form [14, 74, 86, 148, 401] (Sec. I I I.C.1). The authors
measuredaveragevertex{vertex distancesas a function
of number of vertices removed, both for random removal
and for progressive removal of the verticeswith the high-
est degrees.14 In Fig. 7 we show their results for the

14 In removing the vertices with the highest degrees, Alb ert et al.
recalculated degrees following the removal of each vertex. Most
other authors who have studied this issuehave adopted a slightly
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Internet. They found for both networks that distance
wasalmost entirely una�ected by random vertex removal,
i.e., the networks studied werehighly resilient to this type
of removal. This is intuitiv ely reasonable, since most
of the vertices in these networks have low degree and
therefore lie on few paths betweenothers; thus their re-
moval rarely a�ects communications substantially . On
the other hand, when removal is targeted at the high-
est degreevertices, it is found to have devastating e�ect.
Mean vertex{vertex distance increasesvery sharply with
the fraction of vertices removed, and typically only a few
percent of vertices needbe removed beforeessentially all
communication through the network is destroyed. Al-
bert et al. expressedtheir results in terms of failure or
sabotage of network nodes. The Internet (and the Web)
they suggest,is highly resilient against the random fail-
ure of vertices in the network, but highly vulnerable to
deliberate attack on its highest-degreevertices.

Similar results to those of Alb ert et al. were found in-
dependently by Broder et al. [74] for a much larger subset
of the Web graph. Interestingly, however, Broder et al.
gave an entirely opposite interpretation of their results.
They found that in order to destroy connectivity in the
Web one has to remove all vertices with degreegreater
than �v e, which seemslike a drastic attack on the net-
work, given that somevertices have degreesin the thou-
sands. They thus concluded that the network was very
resilient against targeted attack. In fact however there
is not such a con
ict betweentheseresults as at �rst ap-
pears. Becauseof the highly skewed degreedistribution
of the Web, the fraction of vertices with degreegreater
than �v e is only a small fraction of all vertices.

Following thesestudies,many authors have looked into
the question of resilience for other networks. In gen-
eral the picture seemsto be consistent with that seen
in the Internet and Web. Most networks are robust
against random vertex removal but considerably lessro-
bust to targeted removal of the highest-degreevertices.
Jeong et al. [212] have looked at metabolic networks,
Dunne et al. [132, 133] at food webs,Newmanet al. [321]
at email networks, and a variety of authors at resilienceof
model networks [15, 81, 93, 94, 200], which we discussin
more detail in later sectionsof the review. A particularly
thorough study of the resilienceof both real-world and
model networks hasbeenconductedby Holme et al. [200],
who lookednot only at vertex removal but alsoat removal
of edges,and consideredsome additional strategies for
selecting vertices basedon so-called \b etweenness"(see
Secs.I I I.G and I I I.I).

di�eren t strategy of removing vertices in order of their initial
degree in the network before any removal.

women
black hispanic white other

m
en

black 506 32 69 26
hispanic 23 308 114 38

white 26 46 599 68
other 10 14 47 32

TABLE I I I Couples in the study of Catania et al. [85] tabu-
lated by race of either partner. After Morris [302].

E. Mixing patterns

Delving a little deeper into the statistics of network
structure, one can ask about which vertices pair up with
which others. In most kinds of networks there are at
least a few di�eren t types of vertices, and the proba-
bilities of connection between vertices often depends on
types. For example, in a food web representing which
specieseat which in an ecosystem(Sec. I I.D) one sees
vertices representing plants, herbivores, and carnivores.
Many edgeslink the plants and herbivores, and many
more the herbivores and carnivores. But there are few
edgeslinking herbivores to other herbivores, or carni-
vores to plants. For the Internet, Maslov et al. [275]
have proposedthat the structure of the network re
ects
the existenceof three broad categoriesof nodes: high-
level connectivity providers who run the Internet back-
bone and trunk lines, consumerswho are end users of
Internet service,and ISPs who join the two. Again there
are many links between end users and ISPs, and many
between ISPs and backbone operators, but few between
ISPs and other ISPs, or betweenbackboneoperators and
end users.

In social networks this kind of selective linking is called
assortative mixing or homophily and has been widely
studied, as it has also in epidemiology. (The term \as-
sortative matching" is alsoseenin the ecologyliterature,
particularly in referenceto mate choice among animals.)
A classicexampleof assortativemixing in social networks
is mixing by race. Table I I I for example reproducesre-
sults from a study of 1958 couples in the city of San
Francisco, California. Among other things, the study
recordedthe race(self-identi�ed) of study participants in
each couple. As the table shows, participants appear to
draw their partners preferentially from thoseof their own
race,and this is believed to be a commonphenomenonin
many social networks: we tend to associate preferentially
with peoplewho are similar to ourselves in someway.

Assortative mixing can be quanti�ed by an \assorta-
tivit y coe�cien t," which can be de�ned in a coupleof dif-
ferent ways. Let E ij be the number of edgesin a network
that connectverticesof typesi and j , with i; j = 1: : : N ,
and let E be the matrix with elements E ij , as depicted
in Table I I I. We de�ne a normalized mixing matrix by

e =
E

k E k
; (14)
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wherek x k meansthe sum of all the elements of the ma-
trix x. The elements eij measurethe fraction of edges
that fall betweenvertices of types i and j . One can also
askabout the conditional probabilit y P(j ji ) that my net-
work neighbor is of type j given that I am of type i , which
is given by P(j ji ) = eij =

P
j eij . Thesequantities satisfy

the normalization conditions
X

ij

eij = 1;
X

j

P(j ji ) = 1: (15)

Gupta et al. [186] have suggestedthat assortative mix-
ing be quanti�ed by the coe�cien t

Q =
P

i P(i ji ) � 1
N � 1

: (16)

This quantit y has the desirableproperties that it is 1 for
a perfectly assortative network (every edgefalls between
vertices of the same type), and 0 for randomly mixed
networks, and it hasbeenquite widely usedin the litera-
ture. But it su�ers from two shortcomings [318]: (1) for
an asymmetric matrix like the onein Table I I I, Q hastwo
di�eren t values, depending on whether we put the men
or the women along the horizontal axis, and it is unclear
which of thesetwo valuesis the \correct" onefor the net-
work; (2) the measureweights each vertex type equally,
regardlessof how many vertices there are of each type,
which can give rise to misleading �gures for Q in cases
where communit y size is heterogeneous,as it often is.

An alternativ e assortativity coe�cien t that remedies
theseproblems is de�ned by [318]

r =
Tr e � k e2 k

1 � k e2 k
: (17)

This quantit y is also 0 in a randomly mixed network
and 1 in a perfectly assortative one. But its value is
not altered by transposition of the matrix and it weights
vertices equally rather than communities, so that small
communities make an appropriately small contribution
to r . For the data of Table I I I we �nd r = 0:621.

Another type of assortative mixing is mixing by scalar
characteristics such as ageor income. Again it is usually
found that peopleprefer to associate with others of simi-
lar ageand incometo themselves,although of courseage
and income, like race, may be proxies for other driving
forces,such as cultural di�erences. Gar�nk el et al. [170]
and Newman [318], for example, have analyzed data for
unmarried and married couplesrespectively to show that
there is strong correlation between the agesof partners.
Mixing by scalarcharacteristics can be quanti�ed by cal-
culating a correlation coe�cien t for the characteristic in
question.

In theory assortative mixing according to vector char-
acteristics should also be possible. For example, geo-
graphic location probably a�ects individuals' propensity
to becomeacquainted. Location could be viewed as a
two-vector, with the probabilit y of connection between
pairs of individuals being assortative on the values of
thesevectors.

F. Degree correlations

A special case of assortative mixing according to a
scalar vertex property is mixing according to vertex de-
gree, also commonly referred to simply as degreecorre-
lation. Do the high-degreevertices in a network asso-
ciate preferentially with other high-degreevertices? Or
do they prefer to attach to low-degreeones? Both situ-
ations are seenin somenetworks, as it turns out. The
caseof assortative mixing by degreeis of particular in-
terest because,since degree is itself a property of the
graph topology, degreecorrelations can give rise to some
interesting network structure e�ects.

Several di�eren t ways of quantifying degree correla-
tions have been proposed. Maslov et al. [274, 275] have
simply plotted the two-dimensionalhistogram of the de-
greesof vertices at either ends of an edge. They have
shown results for protein interaction networks and the
Internet. A more compact representation of the situa-
tion is that proposedby Pastor-Satorraset al. [331, 401],
who in studies of the Internet calculated the mean de-
greeof the network neighbors of a vertex asa function of
the degreek of that vertex. This gives a one-parameter
curve which increaseswith k if the network is assorta-
tiv ely mixed. For the Internet in fact it is found to de-
creasewith k, a situation we call disassortativity. New-
man [314, 318] reduced the measurement still further to
a single number by calculating the Pearson correlation
coe�cien t of the degreesat either endsof an edge. This
gives a single number that should be positive for assor-
tativ ely mixed networks and negative for disassortative
ones. In Table I I weshow results for a number of di�eren t
networks. An interesting observation is that essentially
all social networks measuredappear to be assortative,
but other typesof networks (information networks, tech-
nological networks, biological networks) appear to be dis-
assortative. It is not clear what the explanation for this
result is, or even if there is any one single explanation.
(Probably there is not.)

G. Communit y structure

It is widely assumed[363, 409] that most social net-
works show \communit y structure," i.e., groups of ver-
tices that have a high density of edgeswithin them, with
a lower density of edgesbetween groups. It is a matter
of common experiencethat peopledo divide into groups
along lines of interest, occupation, age,and so forth, and
the phenomenonof assortativity discussedin Sec. I I I.E
certainly suggeststhat this might be the case.(It is pos-
sible for a network to have assortative mixing but no
communit y structure. This can occur, for example,when
there is assortative mixing by ageor other scalar quanti-
ties. Networks with this type of structure are sometimes
said to be \strati�ed.")

In Fig. 8 we show a visualization of the friendship net-
work of children in a US school taken from a study by
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White

Black

Other

FIG. 8 Friendship network of children in a US school. Friendships are determined by asking the participan ts, and hence are
directed, since A may say that B is their friend but not vice versa. Vertices are color coded according to race, as marked, and
the split from left to right in the �gure is clearly primarily along lines of race. The split from top to bottom is between middle
school and high school, i.e., between younger and older children. Picture courtesy of James Moody.

Moody [291].15 The �gure was created using a \spring
embedding" algorithm, in which linear springsare placed
betweenvertices and the system is relaxed using a �rst-
order energy minimization. We have no special reason
to supposethat this very simple algorithm would reveal
anything particularly useful about the network, but the
network appearsto havestrong enoughcommunit y struc-
ture that in fact the communities appear clearly in the
�gure. Moreover, when Moody colors the vertices ac-
cording to the race of the individuals they represent, as
shown in the �gure, it becomesimmediately clear that
one of the principal divisions in the network is by indi-
viduals' race, and this is presumably what is driving the
formation of communities in this case.(The other princi-
pal division visible in the �gure is betweenmiddle school
and high school, which are agedivisions in the American
education system.)

It would be of someinterest, and indeed practical im-
portance, were we to �nd that other types of networks,

15 This image does not appear in the paper cited, but it and a
number of other images from the same study can be found on
the Web at http://www.sociology.ohio-state.edu/jwm/ .

such as those those listed in Table I I, show similar group
structure also. One might well imagine for example
that citation networks would divide into groups repre-
senting particular areasof research interest, and a good
deal of energy has been invested in studies of this phe-
nomenon[101, 138]. Similarly communities in the World
Wide Webmight re
ect the subject matter of pages,com-
munities in metabolic, neural, or softwarenetworks might
re
ect functional units, communities in food websmight
re
ect subsystemswithin ecosystems,and so on.

The traditional method for extracting communit y
structure from a network is cluster analysis [147], some-
times also called hierarchical clustering.16 In this
method, one assignsa \connection strength" to vertex
pairs in the network of interest. In general each of the
1
2 n(n � 1) possible pairs in a network of n vertices is
assignedsuch a strength, not just those that are con-
nected by an edge, although there are versions of the
method where not all pairs are assigneda strength; in
that caseone can assumethe remaining pairs to have a

16 Not to be confused with the entirely di�eren t use of the word
clustering intro duced in Sec. I I I.B.
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FIG. 9 An example of a dendrogram showing the hierarchical
clustering of ten vertices. A horizontal cut through the den-
drogram, such as that denoted by the dotted line, splits the
vertices into a set of communities, �v e in this case.

connection strength of zero. Then, starting with n ver-
tices with no edgesbetweenany of them, oneadds edges
in order of decreasingvertex{vertex connectionstrength.
One can pauseat any point in this processand examine
the component structure formed by the edgesadded so
far; these components are taken to be the communities
(or \clusters") at that stage in the process. When all
edgeshave been added, all vertices are connectedto all
others, and there is only onecommunit y. The entire pro-
cesscan be represented by a tree or dendrogram of union
operations betweenvertex setsin which the communities
at any level correspond to a horizontal cut through the
tree|see Fig. 9.17

Clustering is possibleaccording to many di�eren t de�-
nitions of the connectionstrength. Reasonablechoicesin-
clude various weighted vertex{vertex distance measures,
the sizesof minimum cut-sets (i.e., maximum 
o w) [7],
and weighted path counts between vertices. Recently a
number of authors have had successwith methods based
on \edge betweenness,"which is the count of how many
geodesic paths between vertices run along each edge in
the network [171, 185, 197, 422]. Results appear to show
that, for social and biological networks at least, commu-
nit y structure is a common network property, although
somefood webs are found not to break up into commu-
nities in any simple way. (Food webs may be di�eren t
from other networks in that they appear to be dense:
mean vertex degreeincreasesroughly linearly with net-
work size, rather than remaining constant as it does in
most networks [132, 273]. The same may be true of
metabolic networks also [P. Holme, personal communi-
cation].)

Network clustering should not be confused with the
technique of data clustering, which is a way of detect-
ing groupings of data-points in high-dimensional data
spaces[208]. The two problems do have some com-
mon features however, and algorithms for one can be
adapted for the other, and vice versa. For example,high-
dimensional data can be converted into a network by

17 For somereason such trees are conventionally depicted with their
\ro ot" at the top and their \lea ves" at the bottom, which is not
the natural order of things for most trees.

placing edgesbetween closely spaced data points, and
then network clustering algorithms can be applied to the
result. On balance,however, one normally �nds that al-
gorithms specially devisedfor data clustering work better
than such borrowed methods, and the sameis true in re-
verse.

In the social networks literature, network clustering
has been discussedto a great extent in the context of
so-calledblock models, [71, 419] which are essentially just
divisions of networks into communities or blocks accord-
ing to onecriterion or another. Sociologistshave concen-
trated particularly on structural equivalence. Two ver-
tices in a network are said to be structurally equivalent
if they have all of the sameneighbors. Exact structural
equivalenceis rare, but approximate equivalencecan be
usedasthe basisfor a hierarchical clustering method such
as that described above.

Another slightly di�eren t question about communit y
structure, but related to the onediscussedhere,hasbeen
studied by Flake et al. [158]: if one is given an example
vertex drawn from a known network, can oneidentify the
communit y to which it belongs?Algorithmic methods for
answering this questionwould clearly beof somepractical
value for searching networks such asthe World Wide Web
and citation networks. Flake et al. give what appears to
be a very successfulalgorithm, at least in the context of
the Web, basedon a maximum 
o w method.

H. Network navigation

Stanley Milgram's famous small-world experiment
(Sec. I I.A), in which letters were passedfrom person to
person in an attempt to get them to a desired target
individual, showed that there exist short paths through
social networks between apparently distant individuals.
However, there is another conclusion that can be drawn
from this experiment which Milgram apparently failed to
notice; it waspointed out in 2000by Kleinberg [238, 239].
Milgram's results demonstrate that there exist short
paths in the network, but they also demonstrate that
ordinary peopleare good at �nding them. This is, upon
re
ection, perhaps an even more surprising result than
the existenceof the paths in the �rst place. The partic-
ipants in Milgram's study had no special knowledge of
the network connecting them to the target person. Most
peopleknow only who their friends are and perhapsa few
of their friends' friends. Nonethelessit proved possible
to get a messageto a distant target in only a small num-
ber of steps. This indicates that there is somethingquite
special about the structure of the network. On a random
graph for instance,asKleinberg pointed out, short paths
between vertices exist but no one would be able to �nd
them given only the kind of information that peoplehave
in realistic situations. If it werepossibleto construct arti-
�cial networks that wereeasyto navigate in the sameway
that social networks appear to be, it has beensuggested
they could be usedto build e�cien t databasestructures
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or better peer-to-peer computer networks [5, 6, 415] (see
Sec.VI I I.C.3).

I. Other network properties

In addition to the heavily studied network properties
of the preceding sections, a number of others have re-
ceived someattention. In somenetworks the size of the
largest component is an important quantit y. For exam-
ple, in a communication network like the Internet the size
of the largest component represents the largest fraction
of the network within which communication is possible
and henceis a measureof the e�ectiv enessof the network
at doing its job [74, 81, 93, 94, 125, 323]. The sizeof the
largest component is often equatedwith the graph theo-
retical conceptof the \gian t component" (seeSec.IV.A),
although technically the two are only the same in the
limit of large graph size. The size of the second-largest
component in a network is also measuredsometimes. In
networks well above the density at which a giant compo-
nent �rst forms, the largest component is expected to be
much larger than the secondlargest (Sec. IV.A).

Goh et al. [175] have made a statistical study of the
distribution of the \b etweennesscentralit y" of vertices in
networks. The betweennesscentralit y of a vertex i is the
number of geodesicpaths betweenother verticesthat run
through i [161, 363, 409]. Goh et al. show that between-
nessappears to follow a power law for many networks
and propose a classi�cation of networks into two kinds
basedon the exponent of this power law. Betweenness
centralit y can also be viewed as a measureof network
resilience[200, 312]|it tells us how many geodesicpaths
will get longer when a vertex is removed from the net-
work. Latora and Marchiori [260, 261] have considered
the harmonic meandistancebetweena vertex and all oth-
ers, which they call the \e�ciency" of the vertex. This,
like betweennesscentralit y, can be viewed as a measure
of network resilience,indicating how much e�ect on path
length the removal of a vertex will have. A number of
authors have looked at the eigenvalue spectra and eigen-
vectors of the graph Laplacian (or equivalently the adja-
cency matrix) of a network [55, 146, 151], which tells us
about di�usion or vibration modes of the network, and
about vertex centralit y [66, 67] (seealso the discussion
of network search strategies in Sec.VI I I.C.1).

Milo et al. [284, 368] have presented a novel analysis
that picks out recurrent motifs|small subgraphs|from
complete networks. They apply their method to genetic
regulatory networks, food webs,neural networks and the
World Wide Web, �nding di�eren t motifs in each case.
They havealsomadesuggestionsabout the possiblefunc-
tion of these motifs within the networks. In regulatory
networks, for instance, they identify common subgraphs
with particular switching functions in the system, such
as gatesand other feed-forward logical operations.

IV. RANDOM GRAPHS

The remainder of this review is devoted to our pri-
mary topic of study, the mathematics of model networks
of various kinds. Recent work has focused on models
of four general types, which we treat in four following
sections. In this section we look at random graph mod-
els, starting with the classic Poisson random graph of
Rapoport [346, 378] and Erd}os and R�enyi [141, 142],
and concentrating particularly on the generalized ran-
dom graphs studied by Molloy and Reed [287, 288] and
others. In Sec.V we look at the somewhatneglectedbut
potentially very useful Markov graphs and their more
general forms, exponential random graphs and p� mod-
els. In Section VI we look at the \small-world model" of
Watts and Strogatz [416] and its generalizations. Then
in Section VI I we look at models of growing networks,
particularly the models of Price [344] and Barab�asi and
Alb ert [32], and generalizations. Finally, in Section VI I I
we look at a number of models of processesoccurring on
networks, such as search and navigation processes,and
network transmission and epidemiology.

The �rst seriousattempt at constructing a model for
large and (apparently) random networks was the \ran-
dom net" of Rapoport and collaborators [346, 378], which
was independently rediscovered a decadelater by Erd}os
and R�enyi [141], who studied it exhaustively and rig-
orously, and who gave it the name \random graph" by
which it is most often known today. Where necessary, we
will here refer to it as the \P oisson random graph," to
avoid confusion with other random graph models. It is
also sometimescalled the \Bernoulli graph." As we will
seein this section, the random graph, while illuminating,
is inadequate to describe some important properties of
real-world networks, and so has been extended in a va-
riety of ways. In particular, the random graph's Poisson
degreedistribution is quite unlike the highly skewed dis-
tributions of Section I I I.C and Fig. 6. Extensions of the
model to allow for other degreedistributions lead to the
classof models known as \generalized random graphs,"
\random graphswith arbitrary degreedistributions" and
the \con�guration model."

We here look �rst at the Poissonrandom graph, and
then at its generalizations. Our treatment of the Poisson
caseis brief. A much more thorough treatment can be
found in the booksby Bollob�as[63] and Jansonet al. [211]
and the review by Karo�nski [223].

A. Poisson random graphs

Solomono� and Rapoport [378] and independently
Erd}os and R�enyi [141] proposedthe following extremely
simple model of a network. Take somenumber n of ver-
tices and connect each pair (or not) with probabilit y p
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(or 1� p).18 This de�nes the model that Erd}osand R�enyi
called Gn;p . In fact, technically, Gn;p is the ensembleof
all such graphs in which a graph having m edgesappears
with probabilit y pm (1 � p)M � m , where M = 1

2 n(n � 1)
is the maximum possible number of edges. Erd}os and
R�enyi also de�ned another, related model, which they
called Gn;m , which is the ensemble of all graphs hav-
ing n vertices and exactly m edges,each possiblegraph
appearing with equal probabilit y.19 Here we will dis-
cussGn;p , but most of the results carry over to Gn;m in
a straightforward fashion.

Many properties of the random graph are exactly solv-
able in the limit of large graph size, as was shown by
Erd}os and R�enyi in a seriesof papers in the 1960s[141{
143]. Typically the limit of large n is taken holding the
mean degreez = p(n � 1) constant, in which casethe
model clearly hasa Poissondegreedistribution, sincethe
presenceor absenceof edgesis independent, and hence
the probabilit y of a vertex having degreek is

pk =
�

n
k

�
pk (1 � p)n � k '

zk e� z

k!
; (18)

with the last approximate equality becomingexact in the
limit of large n and �xed k. This is the reason for the
name \P oissonrandom graph."

The expected structure of the random graph varies
with the value of p. The edgesjoin vertices together
to form components, i.e., (maximal) subsetsof vertices
that are connectedby paths through the network. Both
Solomono� and Rapoport and also Erd}os and R�enyi
demonstrated what is for our purposesthe most impor-
tant property of the random graph, that it possesseswhat
we would now call a phasetransition, from a low-density,
low-p state in which there are few edgesand all compo-
nents are small, having an exponential size distribution
and �nite mean size, to a high-density, high-p state in
which an extensive (i.e., O(n)) fraction of all verticesare
joined together in a single giant component, the remain-
der of the vertices occupying smaller components with
again an exponential size distribution and �nite mean
size.

We can calculate the expectedsizeof the giant compo-
nent from the following simple heuristic argument. Let
u be the fraction of vertices on the graph that do not

18 Slight variations on the model are possible depending one
whether one allows self-edges or not (i.e., edges that connect a
vertex to itself ), but this distinction makesa negligible di�erence
to the average behavior of the model in the limit of large n.

19 Those familiar with statistical mechanics will notice a similar-
it y between these two models and the so-called canonical and
grand canonical ensembles. In fact, the analogy is exact, and one
can de�ne equivalents of the Helmholtz and Gibbs free energies,
which are generating functions for moments of graph prop erties
over the distribution of graphs and which are related by a La-
grange transform with respect to the \�eld" p and the \order
parameter" m.
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FIG. 10 The mean component size (solid line), excluding the
giant component if there is one, and the giant component
size (dotted line), for the Poisson random graph, Eqs. (20)
and (21).

belong to the giant component, which is also the proba-
bilit y that a vertex chosenuniformly at random from the
graph is not in the giant component. The probabilit y
of a vertex not belonging to the giant component is also
equal to the probabilit y that noneof the vertex's network
neighbors belong to the giant component, which is just
uk if the vertex has degreek. Averaging this expression
over the probabilit y distribution of k, Eq. (18), we then
�nd the following self-consistencyrelation for u in the
limit of large graph size:

u =
1X

k=0

pk uk = e� z
1X

k=0

(zu)k

k!
= ez(u � 1) : (19)

The fraction S of the graph occupied by the giant com-
ponent is S = 1 � u and hence

S = 1 � e� zS : (20)

By an argument only slightly more complex, which we
give in the following section, we can show that the mean
size hsi of the component to which a randomly chosen
vertex belongs(for non-giant components) is

hsi =
1

1 � z + zS
: (21)

The form of these two quantities is shown in Fig. 10.
Equation (20) is transcendental and has no closed-form
solution, but it is easyto seethat for z < 1 its only non-
negative solution is S = 0, while for z > 1 there is also
a non-zero solution, which is the size of the giant com-
ponent. The phase transition occurs at z = 1. This is
also the point at which hsi diverges,a behavior that will
be recognizedby those familiar with the theory of phase
transitions: S plays the role of the order parameter in
this transition and hsi the role of the order-parameter

uctuations. The corresponding critical exponents, de-
�ned by S � (z � 1)� and hsi � jz � 1j � 
 , take the values
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� = 1 and 
 = 1. Preciselyat the transition, z = 1, there
is a \double jump"|the meansizeof the largest compo-
nent in the graph goesas O(n2=3) for z = 1, rather than
O(n) as it does above the transition. The components
at the transition have a power-law sizedistribution with
exponent � = 5

2 (or 3
2 if one asks about the component

to which a randomly chosenvertex belongs). We look at
these results in more detail in the next section for the
more general \con�guration model."

The random graph reproduces well one of the prin-
cipal features of real-world networks discussedin Sec-
tion I I I, namely the small-world e�ect. The mean num-
ber of neighbors a distance ` away from a vertex in a
random graph is zd, and hencethe value of d neededto
encompassthe entire network is z` ' n. Thus a typical
distance through the network is ` = logn= logz, which
satis�es the de�nition of the small-world e�ect given in
Sec. I I I.A. Rigorous results to this e�ect can be found
in, for instance, Refs. 61 and 63. However in almost all
other respects, the properties of the random graph do not
match those of networks in the real world. It has a low
clustering coe�cien t: the probabilit y of connectionof two
vertices is p regardlessof whether they have a common
neighbor, and henceC = p, which tends to zeroasn � 1 in
the limit of large systemsize[416]. The model alsohasa
Poissondegreedistribution, quite unlike the distributions
in Fig. 6. It hasentirely random mixing patterns, no cor-
relation betweendegreesof adjacent vertices,no commu-
nit y structure, and navigation is impossibleon a random
graph using local algorithms [238, 239, 314, 318, 401].
In short it makes a good straw man but is rarely taken
seriously in the modeling of real systems.

Nonetheless,much of our basicintuition about the way
networks behave comes from the study of the random
graph. In particular, the presenceof the phase transi-
tion and the existence of a giant component are ideas
that underlie much of the work described in this review.
One often talks about the giant component of a network,
meaning in fact the largest component; one looks at the
sizes of smaller components, often �nding them to be
much smaller than the largest component; one seesa gi-
ant component transition in many of the more sophisti-
cated models that we will look at in the coming sections.
All of theseare ideas that started with the Poissonran-
dom graph.

B. Generalized random graphs

Random graphscanbeextendedin a variety of ways to
make them more realistic. The property of real graphs
that is simplest to incorporate is the property of non-
Poisson degreedistributions, which leads us to the so-
called \con�guration model." Here we examine this
model in detail; in Sec. IV.B.3{IV.B.5 we describe fur-
ther generalizations of the random graph to add other
features.

1. The con�guration model

Consider the model de�ned in the following way. We
specify a degreedistribution pk , such that pk is the frac-
tion of vertices in the network having degree k. We
choose a degree sequence, which is a set of n values of
the degreeski of vertices i = 1: : : n, from this distribu-
tion. We can think of this as giving each vertex i in our
graph ki \stubs" or \sp okes" sticking out of it, which are
the ends of edges-to-be. Then we choosepairs of stubs
at random from the network and connect them together.
It is straightforward to demonstrate [287] that this pro-
cessgeneratesevery possible topology of a graph with
the given degreesequencewith equal probabilit y.20 The
con�gur ation model is de�ned as the ensemble of graphs
so produced, with each having equal weight. 21

Sincethe 1970sthe con�guration model hasbeenstud-
ied by a number of authors [46, 47, 60, 88, 89, 268, 287,
288, 323, 425]. An exact condition is known in terms
of pk for the model to possessa giant component [287],
the expected sizeof that component is known [288], and
the averagesizeof non-giant components both above and
below the transition is known [323], along with a variety
of other properties, such as mean numbers of vertices a
given distance away from a central vertex and typical
vertex{vertex distances[88]. Here we give a brief deriva-
tion of the main results using the generatingfunction for-
malism of Newmanet al. [323]. More rigorous treatments
of the sameresults can be found in Refs.88, 89, 287, 288.

There are two important points to grasp about the
con�guration model. First, pk is, in the limit of large
graph size, the distribution of degreesof vertices in our
graph, but the degreeof the vertex we reach by following
a randomly chosenedgeon the graph is not given by pk .
Sincethere are k edgesthat arrive at a vertex of degreek,
we are k times as likely to arrive at that vertex as we
are at some other vertex that has degree1. Thus the
degreedistribution of the vertex at the endof a randomly
chosenedgeis proportional to kpk . In most case,we are
interested in how many edgesthere are leaving such a
vertex other than the one we arrived along, i.e., in the
so-calledexcess degree, which is one less than the total

20 Each possible graph can be generated
Q

i k i ! di�eren t ways, since
the stubs around each vertex are indistinguishable. This factor
is a constant for a given degree sequenceand hence each graph
appears with equal probabilit y.

21 An alternativ e model has recently been prop osed by Chung and
Lu [88, 89]. In their model, each vertex i is assigned a de-
sired degree k i chosen from the distribution of interest, and then
m = 1

2

P
i k i edges are placed between vertex pairs (i; j ) with

probabilit y prop ortional to k i k j . This model has the disadvan-
tage that the �nal degree sequence is not in general precisely
equal to the desired degree sequence,but it has some signi�can t
calculational advantages that make the derivation of rigorous re-
sults easier. It is also a logical generalization of the Poisson
random graph, in a way that the con�guration model is not.
Similar approaches have also been tak en by a number of other
authors [78, 128, 174].
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degree of the vertex. In the con�guration model, the
excessdegreehas a distribution qk given by

qk =
(k + 1)pk+1P

k kpk
=

(k + 1)pk+1

z
; (22)

where z =
P

k kpk is, as before, the mean degreein the
network.

The secondimportant point about the model is that
the chanceof �nding a loop in a small component of the
graph goesasn� 1. The number of verticesin a non-giant
component is O(n� 1), and hencethe probabilit y of there
being more than one path between any pair of vertices
is also O(n� 1) for suitably well-behaved degreedistribu-
tions.22 This property is crucial to the solution of the
con�guration model, but is de�nitely not true of most
real-world networks (seeSec.I I I.B). It is an open ques-
tion how much the predictions of the model would change
if we were able to incorporate the true loop structure of
real networks into it.

We now proceedby de�ning two generating functions
for the distributions pk and qk :23

G0(x) =
1X

k=0

pk xk ; G1(x) =
1X

k=0

qk xk : (23)

Note that, using Eq. (22), we also �nd that G1(x) =
G0

0(x)=z, which is occasionally convenient. Then the
generating function H 1(x) for the total number of ver-
tices reachable by following an edge satis�es the self-
consistencycondition

H1(x) = xG1(H1(x)) : (24)

This equation says that when we follow an edge,we �nd
at least one vertex at the other end (the factor of x on
the right-hand side), plus someother clusters of vertices
(each represented by H 1) which are reachable by follow-
ing other edgesattached to that one vertex. The num-
ber of theseother clusters is distributed according to qk ,
hence the appearanceof G1. A detailed derivation of
Eq. (24) is given in Ref. 323.

The total number of vertices reachable from a ran-
domly chosenvertex, i.e., the size of the component to
which such a vertex belongs,is generatedby H 0(x) where

H0(x) = xG0(H1(x)) : (25)

The solution of Eqs. (24) and (25) gives us the entire
distribution of component sizes. Mean component size

22 Using arguments similar to those leading to Eq. (31), we can
show that the density of loops in small components will tend to
zero as graph size becomes large provided that z is �nite and
hk2 i grows slower than n1=2 . Seealso footnote 25.

23 Traditionally , the independent variable in a generating function
is denoted z, but here we use x to avoid confusion with the mean
degree z.

below the phase transition in the region where there is
no giant component is given by

hsi = H 0
0(1) = 1 +

G0
0(1)

1 � G0
1(1)

= 1 +
z2

1

z1 � z2
; (26)

where z1 = z = hki = G0
0(1) is the average number of

neighbors of a vertex and z2 = hk2i � hki = G0
0(1)G0

1(1)
is the averagenumber of secondneighbors. We seethat
this divergeswhen z1 = z2, or equivalently when

G0
1(1) = 1: (27)

This point marks the phase transition at which a gi-
ant component �rst appears. Substituting Eq. (23) into
Eq. (27), we can also write the condition for the phase
transition as

X

k

k(k � 2)pk = 0: (28)

Indeed, since this sum increasesmonotonically as edges
are added to the graph, it follows that the giant compo-
nent exists if and only if this sum is positive. A more
rigorous derivation of this result has beengiven by Mol-
loy and Reed[287].

Above the transition there is a giant component which
occupiesa fraction S of the graph. If we de�ne u to be
the probabilit y that a randomly chosenedge leads to a
vertex that is not a part of this giant component, then,
by an argument preciselyanalogousto the onepreceding
Eq. (20), this probabilit y must satisfy the self-consistency
condition u = G1(u) and S is given by the solution of

S = 1 � G0(u); u = G1(u): (29)

An equivalent result is derived in Ref. 288. Normally
the equation for u cannot be solved in closedform, but
once the generating functions are known a solution can
be found to any desiredlevel of accuracyby numerical it-
eration. And oncethe value of S is known, the meansize
of small components above the transition can be found
by subtracting o� the giant component and applying the
arguments that led to Eq. (26) again, giving

hsi = 1 +
zu2

[1 � S][1 � G0
1(u)]

: (30)

The result is a behavior qualitativ ely similar to that of
the Poissonrandom graph, with a continuousphasetran-
sition at a point de�ned by Eq. (28), characterizedby the
appearanceof a giant component and the divergenceof
the mean sizeof non-giant components. The ratio z2=z1
of the mean number of vertices two steps away to the
number one step away plays the role of the independent
parameter governing the transition, asthe meandegreez
doesin the Poissoncase,and onecan again de�ne critical
exponents for the transition, which take the samevalues
as for the Poissoncase,� = 
 = 1, � = 5

2 .
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We can also �nd an expressionfor the clustering co-
e�cien t, Eq. (3), of the con�guration model. A simple
calculation shows that [136, 319]

C =
1

nz1

�
z2

z1

� 2

=
z
n

�
hk2i � hki

hki 2

� 2

; (31)

which is the value C = z=n for the Poissonrandom graph
times an extra factor that dependson z and on the ratio
hk2i =hki 2. Thus C will normally go to zero as n � 1 for
large graphs, but for highly skewed degreedistributions,
like someof those in Fig. 6, the factor of hk2i =hki 2 can
be quite large, so that C is not necessarilynegligible for
the graph sizesseenin empirical studies of networks (see
below).

2. Example: power-law degreedistribution

As an exampleof the application of theseresults, con-
sider the much studied caseof a network with a power-law
degreedistribution:

pk =
�

0 for k = 0
k� � =� (� ) for k � 1,

(32)

for given constant � . Here � (� ) is the Riemann � -
function, which functions as a normalizing constant.
Substituting into Eq. (23) we �nd that

G0(x) =
Li � (x)
� (� )

; G1(x) =
Li � � 1(x)
x� (� � 1)

; (33)

where Li n (x) is the nth polylogarithm of x. Then
Eq. (27) tells us that the phasetransition occurs at the
point

� (� � 2) = 2� (� � 1); (34)

which givesa critical value for � of � c = 3:4788: : : Below
this value a giant component exists; above it there is no
giant component. For � < � c, the value of the variable u
of Eq. (29) is

u =
Li � � 1(u)
u� (� � 1)

; (35)

which gives u = 0 below � = 2 and henceS = 1. Thus
the giant component occupiesthe entire graph below this
point, or more strictly , a randomly chosenvertex belongs
to the giant component with probabilit y 1 in the limit
of large graph size (but seethe following discussionof
the clustering coe�cien t and footnote 25). In the range
2 < � < � c we have a non-zero giant component whose
size is given by Eq. (29). All of these results were �rst
shown by Aiello et al. [8].

We can also calculate the clustering coe�cien t for the
power-law caseusing Eq. (31). For � < 3 we have hk2i �

k3� �
max , wherekmax is the maximum degreein the network.

Using Eq. (13) for kmax , Eq. (31) then gives

C � n� � ; � =
3� � 7
� � 1

: (36)

This gives interesting behavior for the typical values
2 � � � 3 of the exponent � seen in most networks
(see Table I I). If � > 7

3 , then C tends to zero as the
graph becomeslarge, although it doessoslower than the
C � n� 1 of the Poissonrandom graph provided � < 3.
At � = 7

3 , C becomesconstant (or logarithmic) in the
graph size, and for � < 7

3 it actually increaseswith in-
creasingsystemsize.24 Thus for scale-freenetworks with
smaller exponents � , we would not be surprised to see
quite substantial valuesof the clustering coe�cien t, even
if the pattern of connectionswere completely random.25

This mechanism can, for instance, account for much of
the clustering seenin the World Wide Web [319].

3. Directed graphs

Substantially more sophisticatedextensionsof random
graph models are possible than the simple �rst exam-
ple given above. In this and the next few sections we
list someof the many possibilities, starting with directed
graphs.

Each vertex in a directed graph hasboth an in-degreej
and an out-degreek, and the degreedistribution there-
fore becomes,in general, a double distribution pj k over
both degrees,as discussedin Sec. I I I.C. The generat-
ing function for such a distribution is a function of two
variables

G(x; y) =
X

j k

pj k x j yk : (37)

Each vertex A also belongsto an in-component and an
out-component, which are, respectively, the set of vertices
from which A can be reached, and the set that can be
reached from A, by following directed edgesonly in their
forward direction. There is also the strongly connected
component, which is the set of vertices which can both
reach and be reached from A. In a random directed graph
with a given degreedistribution, the giant in, out, and

24 For su�cien tly large networks this implies that the clustering
coe�cien t will be greater than 1. Physically this means that
there will be more than one edgeon averagebetween two vertices
that share a common neighbor.

25 This means in fact that the generating function formalism breaks
down for � < 7

3 , invalidating someof the preceding results for the
power-law graph, since a fundamental assumption of the metho d
is that there are no short loops in the network. Aiello et al. [8]
get around this problem by assuming that the degreedistribution
is cut o� at kmax � n1=� (see Sec. I I I.C.2), which gives C ! 0
as n ! 1 for all � > 2. This however is somewhat arti�cial; in
real power-law networks there is normally no such cuto�.
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strongly connectedcomponents can all be shown [323] to
form at a single transition that takesplace when

X

j k

(2j k � j � k)pj k = 0: (38)

De�ning generating functions for in- and out-degreesep-
arately and their excess-degreecounterparts,

F0(x) = G(x; 1); F1(x) =
1
z

@G
@y

�
�
�
�
y=1

; (39a)

G0(y) = G(1; y); G1(y) =
1
z

@G
@x

�
�
�
�
x =1

; (39b)

the sizesof the giant out-, in-, and strongly connected
components are given by [125, 323]

Sout = 1 � F0(u); (40a)

Sin = 1 � G0(v); (40b)

Sstr = 1 � G(u; 1) � G(1; v) + G(u; v); (40c)

where

u = F1(u); v = G1(v): (41)

4. Bipartite graphs

Another classof generalizationsof random graph mod-
elsis to networks with more than onetype of vertex. One
of the simplest and most important examplesof such a
network is the bipartite graph, which has two types of
vertices and edgesrunning only between vertices of un-
like types. As discussedin Sec.I.A, many social networks
arebipartite, forming what the sociologistscall a�liation
networks, i.e., networks of individuals joined by common
membership of groups. In such networks the individ-
uals and the groups are represented by the two vertex
typeswith edgesbetweenthem representing group mem-
bership. Networks of CEOs [167, 168], boards of direc-
tors [104, 105, 269], and collaborations of scientists [313]
and �lm actors [416] are all examplesof a�liation net-
works. Someother networks, such asthe railway network
studied by Senet al. [366], are also bipartite, and bipar-
tite graphs have been used as the basis for models of
sexual contact networks [144, 315].

Bipartite graphs have two degree distributions, one
each for the two types of vertices. Since the total num-
ber of edgesattached to each type of vertex is the same,
the means � and � of the two distributions are related
to the numbers M and N of the types of vertices by
�= M = � =N . One can de�ne generating functions as
before for the two typesof vertices, generating both the
degree distribution and the excessdegree distribution,
and denoted f 0(x), f 1(x), g0(x), and g1(x). Then for
example we can show that there is a phasetransition at
which a giant component appears when f 0

1(1)g0
1(1) = 1.

Expressionsfor the expected sizeof giant and non-giant
components can easily be derived [323].

In many cases,graphs that are fundamentally bipar-
tite are actually studied by projecting them down onto
one set of vertices or the other|so called \one-mode"
projections. For example, in the study of boards of di-
rectors of companies,it has becomestandard to look at
board \in terlocks." Two boards are said to be inter-
locked if they shareone or more common members, and
the graph of board interlocks is the one-mode projection
of the full board graph onto the verticesrepresenting just
the boards. Many results for theseone-mode projections
can also be extracted from the generating function for-
malism. To give one example, the projected networks
do not have a vanishing clustering coe�cien t C in the
limit of large system size, but instead can be shown to
obey [323]

1
C

� 1 =
(� 2 � � 1)( � 2 � � 1)2

� 1� 1(2� 1 � 3� 2 + � 3)
; (42)

where � n and � n are the nth moments of the degreedis-
tributions of the two vertex types.

More complicated types of network structure can be
intro duced by increasing the number of di�eren t types
of vertices beyond two, and by relaxing the patterns of
connection between vertex types. For example, one can
de�ne a model with the type of mixing matrix shown
in Table I I I, and solve exactly for many of the standard
properties [318, 374].

5. Degreecorrelations

The type of degreecorrelations discussedin Sec.I I I.F
can also be intro duced into a random graph model [314].
Extending the formalism of Sec.I I I.E, we can de�ne the
probabilit y distribution ej k to be the probabilit y that a
randomly chosen edge on a graph connects vertices of
excessdegreesj and k. On an undirected graph, this
quantit y is symmetric and satis�es

X

j k

ej k = 1;
X

j

ej k = qk : (43)

Then the equivalent of Eq. (29) is

S = 1 � p0 �
1X

k=1

pk uk
k � 1; uj =

P
k ej k uk

kP
k ej k

; (44)

which must be solved self-consistently for the entire set
f uk g of quantities, one for each possible value of the
excessdegree. The phase transition at which a giant
component appears takes place when det(I � m) = 0,
where m is the matrix with elements m j k = kej k =qj .
Matrix conditions of this form appear to be the typical
generalization of the criterion for the appearance of a
giant component to graphs with non-trivial mixing pat-
terns [58, 318, 400].

Two other random graph models for degreecorrela-
tions are also worth mentioning. One is the exponential
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random graph, which we study in more detail in the fol-
lowing section. This is a generalmodel, which has been
applied to the particular problem of degreecorrelations
by Berg and L•assig[48].

A more specializedmodel that aims to explain the de-
gree anticorrelations seenin the Internet has been put
forward by Maslov et al. [275]. They suggestthat these
anticorrelations are a simple result of the fact that the
Internet graph has at most one edge between any ver-
tex pair. Thus they are led to consider the ensemble of
all networks with a given degreesequenceand no dou-
ble edges.(The con�guration model, by contrast, allows
double edges,and typical graphs usually have at least a
few such edges,which would disqualify them from mem-
bership in the ensemble of Maslov et al.) The ensemble
with no duplicate edges, it turns out, is hard to treat
analytically [47, 407], soMaslov et al. instead investigate
it numerically, sampling the ensemble at random using a
Monte Carlo algorithm. Their results appear to indicate
that anticorrelations of the type seenin the Internet do
indeed arise as a �nite-size e�ect within this model. (An
alternativ eexplanation of the sameobservations hasbeen
put forward by Capocci et al. [83], who use a modi�ed
version of the model of Barab�asi and Alb ert discussedin
Sec. VI I.B to show that correlations can arise through
network growth processes.)

V. EXPONENTIAL RANDOM GRAPHS AND MARK OV
GRAPHS

The generalizedrandom graph models of the previous
sectionse�ectiv ely addressoneof the principal shortcom-
ings of early network modelssuch as the Poissonrandom
graph, their unrealistic degree distribution. However,
they have a seriousshortcoming in that they fail to cap-
ture the common phenomenonof transitivit y described
in Sec. I I I.B. The only solvable random graph models
that currently incorporate transitivit y are the bipartite
and communit y-structured modelsof Sec.IV.B.4 and cer-
tain dual-graph models [345], and thesecover rather spe-
cial cases. For general networks we currently have no
idea how to incorporate transitivit y into random graph
models; the crucial property of independencebetweenthe
neighbors of a vertex is destroyedby the presenceof short
loops in a network, invalidating all the techniques used
to derive solutions. Someapproximate methods may be
useful in limited ways [317] or perhapssomesort of per-
turbativ eanalysiswill provepossible,but no progresshas
yet beenmade in this direction.

The main hope for progress in understanding the
e�ects of transitivit y, which are certainly substantial,
seemsto lie in formulating a completely di�eren t model
or models, based around some alternativ e ensemble of
graph structures. In this and the following section we
describe two candidate models, the Markov graphs of
Holland and Leinhardt [194] and Strauss [160, 385] and
the small-world model of Watts and Strogatz [416].

Strauss[385] considersexponential randomgraphs, also
(in a slightly generalizedform) called p� models [22, 410],
which are a classof graph ensemblesof �xed vertex num-
ber n de�ned by analogywith the Boltzmann ensemble of
statistical mechanics.26 Let f � i g be a set of measurable
properties of a singlegraph, such asthe number of edges,
the number of vertices of given degree,or the number of
triangles of edgesin the graph. These quantities play a
role similar to energy in statistical mechanics. And let
f � i g be a set of inverse-temperature or �eld parameters,
whosevalues we are free to choose. We then de�ne the
exponential random graph model to be the set of all pos-
siblegraphs(undirected in the simplestcase)of n vertices
in which each graph G appearswith probabilit y

P(G) =
1
Z

exp
�

�
X

i

� i � i

�
; (45)

where the partition function Z is

Z =
X

G

exp
�

�
X

i

� i � i

�
: (46)

For a su�cien tly large set of temperature parameters
f � i g, this de�nition canencompassany probabilit y distri-
bution over graphs that we desire,although its practical
application requires that the sizeof the set be limited to
a reasonablysmall number.

The calculation of the ensemble average of a graph
observable � i is then found by taking a suitable derivative
of the (reduced) free energy f = � logZ :

h� i i =
X

G

� i (G)P(G) =
1
Z

X

G

� i exp
�

�
X

i

� i � i

�

=
@f
@� i

: (47)

Thus, the free energy is a generating function for the ex-
pectation valuesof the observables, in a manner familiar
from statistical �eld theory. If a particular observable
of interest does not appear in the exponent of (45) (the
\graph Hamiltonian"), then onecan simply intro duce it,
with a corresponding temperature � i which is set to zero.

While these preliminary developments appear elegant
in principle, little real progress has been made. One
would like to �nd the appropriate Gaussian �eld the-
ory for which f can be expressedin closed form, and
then perturb around it to derive a diagrammatic expan-
sion for the e�ects of higher-order graph operators. In
fact, one can show that the Feynman diagrams for the
expansion are the networks themselves. Unfortunately,
carrying through the entire �eld-theoretic program has

26 Indeed, in a development typical of this highly interdisciplinary
�eld, exponential random graphs have recently been rediscov-
ered, apparently quite independently , by physicists [48, 77].
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not proved easy. The general approach one should take
is clear [48, 77], but the mechanics appear intractable
for most casesof interest. Someprogresscan be madeby
restricting ourselvesto Markov graphs, which are the sub-
set of graphs in which the presenceor absenceof an edge
betweentwo vertices in the graph is correlated only with
those edgesthat share one of the same two vertices|
edgepairs that are disjoint (have no vertices in common)
are uncorrelated. Overall however, the question of how
to carry out calculations in exponential random graph
ensembles is an open one.

In the absenceof analytic progresson the model, there-
fore, researchers have turned to Monte Carlo simulation,
a technique to which the exponential random graph lends
itself admirably. Once the valuesof the parametersf � i g
are speci�ed, the form (45) of P(G) makes generation
of graphs correctly sampled from the ensemble straight-
forward using a Metropolis{Hastings type Markov chain
method. One de�nes an ergodic move-set in the space
of graphs with given n, and then repeatedly generates
movesfrom this set, accepting them with probabilit y

p =
�

1 if P(G0) > P(G)
P(G0)=P(G) otherwise,

(48)

and rejecting them with probabilit y 1 � p, where G0 is
the graph after performance of the move. Becauseof
the particular form, Eq. (45), assumedfor P(G), this
acceptanceprobabilit y is particularly simple to calculate:

P(G0)
P(G)

= exp
�

�
X

i

� i [� 0
i � � i ]

�
: (49)

This expressionis independent of the value of the parti-
tion function and its evaluation involvescalculating only
the di�erences � 0

i � � i of the energy-like graph proper-
ties � i , which for local move-sets and local properties
can often be accomplishedin time independent of graph
size. Suitable move-setsare: (a) addition and removal of
edgesbetweenrandomly chosenvertex pairs for the case
of variable edge numbers; (b) movement of edgesran-
domly from oneplaceto another for the caseof �xed edge
numbers but variable degree sequence;(c) edge swaps
of the form f (v1; w1); (v2; w2)g ! f (v1; v2); (w1; w2)g for
the caseof �xed degreesequence,where (v1; w1) denotes
an edge from vertex v1 to vertex w1. Monte Carlo al-
gorithms of this type are straightforward to implement
and appear to convergequickly allowing us to study quite
large graphs.

There is however, one unfortunate pathology of the
exponential random graph that plaguesnumerical work,
and particularly a�ects Markov graphs as they are used
to model transitivit y. If, for example, we include a term
in the graph Hamiltonian that is linear in the number
of triangles in the graph, with an accompanying positive
temperature favoring thesetriangles, then the model has
a tendency to \condense," forming regions of the graph
that are essentially complete cliques|subsets of vertices
within which every possible edge exists. It is easy to

seewhy the model shows this behavior: cliqueshave the
largest number of triangles for the number of edgesthey
contain, and are therefore highly energetically favored,
while costing the systema minimum in entropy by virtue
of leaving the largest possiblenumber of other edgesfree
to contribute to the (presumably extensive) entropy of
the rest of the graph. Networks in the real world however
do not seemto have this sort of \clump y" transitivit y|
regions of cliquishnesscontributing heavily to the clus-
tering coe�cien t, separated by other regions with few
triangles. It is not clear how this problem is to be cir-
cumvented, although for higher temperatures (lower val-
ues of the parameters f � i g) it is lessproblematic, since
higher temperatures favor entropy over energy.

Another area in which someprogresshasbeenmadeis
in techniques for extracting appropriate values for the
temperature parameters in the model from real-world
network data. Proceduresfor doing this havebeenpartic-
ularly important for social network applications. Param-
eters so extracted can be fed back into the Monte Carlo
graph generation methods described above to generate
model graphs which have similar statistical properties to
their real-world counterparts and which can be used for
hypothesis testing or as a substrate for further network
simulations. Reviewsof parameter extraction techniques
can be found in Refs. 22 and 372.

VI. THE SMALL-W ORLD MODEL

A less sophisticated but more tractable model of a
network with high transitivit y is the small-world model
proposed by Watts and Strogatz [411, 412, 416].27 As
touched upon in Sec. I I I.E, networks may have a geo-
graphical component to them; the verticesof the network
have positions in spaceand in many casesit is reasonable
to assumethat geographicalproximit y will play a role in
deciding which vertices are connected to which others.
The small-world model starts from this idea by positing
a network built on a low-dimensional regular lattice and
then adding or moving edgesto create a low density of
\shortcuts" that join remote parts of the lattice to one
another.

Small-world models can be built on lattices of any di-
mensionor topology, but the best studied caseby far is
one-dimensionalone. If we take a one-dimensionallattice
of L vertices with periodic boundary conditions, i.e., a
ring, and join each vertex to its neighbors k or fewer lat-
tice spacingsaway, we get a systemlike Fig. 11a,with Lk
edges.The small-world model is then created by taking
a small fraction of the edgesin this graph and \rewiring"
them. The rewiring procedure involves going through

27 An equivalent model was prop osed by Ball et al. [28] some years
earlier, as a model of the spread of diseasebetween households,
but appears not to have been widely adopted.
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(c)(b)(a)

FIG. 11 (a) A one-dimensional lattice with connections between all vertex pairs separated by k or fewer lattice spacing, with
k = 3 in this case. (b) The small-world model [412, 416] is created by choosing at random a fraction p of the edgesin the graph
and moving one end of each to a new location, also chosenuniformly at random. (c) A slight variation on the model [289, 324]
in which shortcuts are added randomly betweenvertices, but no edgesare removed from the underlying one-dimensional lattice.

each edge in turn and, with probabilit y p, moving one
end of that edgeto a new location chosenuniformly at
random from the lattice, except that no double edgesor
self-edgesare ever created. This processis illustrated in
Fig. 11b.

The rewiring process allows the small-world model
to interpolate between a regular lattice and something
which is similar, though not identical (seebelow), to a
random graph. When p = 0, we have a regular lattice.
It is not hard to show that the clustering coe�cien t of
this regular lattice is C = (3k � 3)=(4k � 2), which tends
to 3

4 for large k. The regular lattice, however, does not
show the small-world e�ect. Mean geodesicdistancesbe-
tween vertices tend to L=4k for large L . When p = 1,
every edgeis rewired to a new random location and the
graph is almost a random graph, with typical geodesic
distanceson the order of logL= logk, but very low clus-
tering C ' 2k=L (see Sec. IV.A). As Watts and Stro-
gatz showed by numerical simulation, however, there ex-
ists a sizable region in between these two extremes for
which the model has both low path lengths and high
transitivit y|see Fig. 12.

The original model proposedby Watts and Strogatz is
somewhat baroque. The fact that only one end of each
chosenedgeis rewired, not both, that no vertex is ever
connectedto itself, and that an edgeis never added be-
tween vertex pairs where there is already one, makes it
quite di�cult to enumerate or averageover the ensemble
of graphs. For the purposesof mathematical treatment,
the model canbesimpli�ed considerablyby rewiring both
ends of each chosenedge, and by allowing both double
and selfedges.This results in a systemthat genuinely in-
terpolatesbetweena regular lattice and a random graph.
Another variant of the model that has becomepopular
was proposed independently by Monasson[289] and by
Newman and Watts [324]. In this variant, no edgesare
rewired. Instead \shortcuts" joining randomly chosen
vertex pairs are added to the low-dimensional lattice|
seeFig. 11c. The parameter p governing the density of
these shortcuts is de�ned so as to make it as similar as
possible to the parameter p in the �rst version of the
model: p is de�ned as the probabilit y per edge on the

underlying lattice, of there being a shortcut anywhere
in the graph. Thus the mean total number of shortcuts
is Lk p and the mean degreeis 2k(1 + p). This version
of the model has the desirableproperty that no vertices
ever becomedisconnectedfrom the rest of the network,
and hencethe meanvertex{vertex distance is always for-
mally �nite. Both this versionand the original have been
studied at somelength in the mathematical and physical
literature [309].

A. Clustering coe�cient

The clustering coe�cien t for both versionsof the small-
world model can be calculated relatively easily. For the
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FIG. 12 The clustering coe�cien t C and mean vertex{v ertex
distance ` in the small-world model of Watts and Stro-
gatz [416] as a function of the rewiring probabilit y p. For
convenience,both C and ` are divided by their maximum val-
ues, which they assumewhen p = 0. Between the extremes
p = 0 and p = 1, there is a region in which clustering is high
and mean vertex{v ertex distance is simultaneously low.
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original version, Barrat and Weigt [40] showed that

C =
3(k � 1)
2(2k � 1)

(1 � p)3; (50)

while for the version without rewiring, Newman [316]
showed that

C =
3(k � 1)

2(2k � 1) + 4kp(p + 2)
: (51)

B. Degree distribution

The degreedistribution of the small-world model does
not match most real-world networks very well, although
this is not surprising, since this was not a goal of the
model in the �rst place. For the versionwithout rewiring,
each vertex has degreeat least 2k, for the edgesof the
underlying regular lattice, plus a binomially distributed
number of shortcuts. Hencethe probabilit y pj of having
degreej is

pj =
�

L
j � 2k

� �
2kp
L

� j � 2k �
1 �

2kp
L

� L � j +2 k

(52)

for j � 2k, and pj = 0 for j < 2k. For the rewired
version of the model, the distribution has a lower cuto�
at k rather than 2k, and is rather more complicated. The
full expressionis [40]

pj =
min( j � k ;k )X

n =0

�
k
n

�
(1 � p)n pk � n (pk) j � k � n

(j � k � n)!
e� pk (53)

for j � k, and pj = 0 for j < k.

C. Average path length

By far the most attention has beenfocusedon the av-
eragegeodesicpath length of the small-world model. We
denotethis quantit y `. Wedo not haveany exact solution
for the value of ` yet, but a number of partial exact re-
sults are known, including scaling forms, as well as some
approximate solutions for its behavior as a function of
the model's parameters.

In the limit p ! 0, the model is a \large world"|
the typical path length tends to ` = L=4k, as dis-
cussedabove. Small-world behavior, by contrast, is typ-
ically characterized by logarithmic scaling ` � logL (see
Sec. I I I.A), which we seefor large p, where the model
becomeslike a random graph. In betweenthesetwo lim-
its there is presumably somesort of crossover from large-
to small-world behavior. Barth �el�emy and Amaral [42]
conjectured that ` satis�es a scaling relation of the form

` = � g(L=� ); (54)

where � is a correlation length that depends on p, and
g(x) an unknown but universal scaling function that de-
pends only on system dimension and lattice geometry,

but not on L , � or p. The variation of � de�nes the
crossover from large- to small-world behavior; the known
behavior of ` for small and large L , can be reproduced
by having � divergeas p ! 0 and

g(x) �
�

x for x � 1
logx for x � 1:

(55)

Barth �el�emy and Amaral conjectured that � divergesas
� � p� � for small p, where � is a constant exponent.
These conjectures have all turned out to be correct.
Barth �el�emy and Amaral also conjectured on the basis
of numerical results that � = 2

3 , which turned out not to
be correct [39, 41, 324].

Equation (54) hasbeenshown to be correct by a renor-
malization group treatment of the model [324]. From this
treatment one can derive a scaling form for ` of

` =
L
k

f (Lk p); (56)

which is equivalent to (54), except for a factor of k, if � =
1=kp and g(x) = xf (x). Thus we immediately conclude
that the exponent � de�ned by Barth �el�emy and Amaral
is 1, aswasalsoarguedby Barrat [39] using a mixture of
scaling ideasand numerical simulation.

The scaling form (56) shows that we can go from the
large-world regime to the small-world one either by in-
creasingp or by increasingthe systemsizeL . Indeed, the
crucial scalingvariable Lk p that appearsasthe argument
of the scaling function is simply equal to the mean num-
ber of shortcuts in the model, and hence` as a fraction
of systemsizedependsonly on how many shortcuts there
are, for given k.

Making any further progresshas proved di�cult. We
would like to be able to calculate the scaling func-
tion f (x), but this turns out not to be easy. The cal-
culation is possible, though complicated, for a variant
model in which there are no short cuts but random sites
are connectedto a singlecentral \h ub" vertex [115]. But
for the normal small-world model no exact solution is
known, although some additional exact scaling forms
have been found [19, 253]. Accurate numerical mea-
surements have been carried out for system sizesup to
about L = 107 [39, 42, 109, 306, 324, 325] and quite
good results can be derived using seriesexpansions[325].
A mean-�eld treatment of the model has been given by
Newman et al. [322], which shows that f (x) is approxi-
mately

f (x) =
1

2
p

x2 + 2x
tanh � 1

r
x

x + 2
; (57)

and Barbour and Reinert [38] have further shown that
this result is the leading order term in an expansionfor `
that can be usedto derive more accurateresults for f (x).

The primary use of the small-world model has been
as a substrate for the investigation of various processes
taking place on graphs, such as percolation [294, 325,
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326, 360], coloring [388, 406], coupled oscillators [37,
201, 416], iterated games [1, 135, 231, 416], di�usion
processes[150, 173, 216, 258, 259, 289, 329], epidemic
processes[28, 235, 255, 293, 427, 428], and spin mod-
els [40, 191, 202, 256, 337, 429]. Some of this work is
discussedfurther in Section VI I I.

A few of variations of the small-world model have been
proposed. Several authors have studied the model in di-
mensionhigher than one[109, 306, 324{326]|the results
are qualitativ ely similar to the one-dimensionalcaseand
follow the expected scaling laws. Various authors have
alsostudied models in which shortcuts preferentially join
vertices that are close together on the underlying lat-
tice [215, 238, 239, 307, 365]. Of particular note is
the work by Kleinberg [238, 239], which is discussedin
Sec.VI I I.C.3. Rozenfeld et al. [359] and independently
Warren et al. [408] have studied models in which there
are only shortcuts and no underlying lattice, but the sig-
nature of the lattice still remains, guiding shortcuts to
fall with higher probabilit y betweenmore closely spaced
vertices (seeSec.VI I I.A).

VI I. MODELS OF NETW ORK GROWTH

All of the models discussedso far take observed prop-
erties of real-world networks, such as degreesequences
or transitivit y, and attempt to create networks that in-
corporate those properties. The models do not however
help us to understand how networks cometo have those
properties in the �rst place. In this section we exam-
ine a class of models whose primary goal is to explain
network properties. In these models, the networks typi-
cally grow by the gradual addition of vertices and edges
in somemanner intended to re
ect growth processesthat
might be taking placeon the real networks, and it is these
growth processesthat leadto the characteristic structural
featuresof the network.28 For example,a number of au-
thors [30, 102, 198, 217, 220, 242, 397, 398, 411, 412] have
studied models of network transitivit y that make use of
\triadic closure" processes. In these models, edgesare
addedto the network preferentially betweenpairs of ver-
tices that have another third vertex as a common neigh-
bor. In other words, edgesare added so as to complete
triangles, thereby increasing the denominator in Eq. (3)
and so increasing the amount of transitivit y in the net-
work. (There is someempirical evidencefrom collabora-
tion networks in support of this mechanism [310].)

But the best studied classof network growth models
by far, and the classon which weconcentrate primarily in
this section, is the classof modelsaimedat explaining the
origin of the highly skewed degreedistributions discussed

28 An alternativ e and intriguing idea, which has so far not been in-
vestigated in much depth, is that features such as power-law de-
gree distributions may arise through network optimization. See,
for instance, Refs. 29, 156, 166, 395, 417, 418.

in Sec.I I I.C. Indeed these models are someof the best
studied in the whole of the networks literature, having
been the subject of an extraordinary number of papers
in the last few years. In this section we describe �rst
the archetypal model of Price [344], which was basedin
turn on previous work by Simon [370]. Then we describe
the highly in
uen tial model of Barab�asi and Alb ert [32],
which has beenthe driving force behind much of the re-
cent work in this area. We also describe a number of
variations and generalizationsof these models due to a
variety of authors.

A. Price's model

As discussed in Sec. I I I.C, the physicist-turned-
historian-of-science Derek de Solla Price described in
1965 probably the �rst example of what would now be
called a scale-freenetwork; he studied the network of ci-
tations betweenscienti�c papersand found that both in-
and out-degrees(number of times a paper hasbeencited
and number of other papersa paper cites) havepower-law
distributions [343]. Apparently intrigued by the appear-
anceof thesepower laws, Price published another paper
someyearslater [344] in which he o�ered what is now the
acceptedexplanation for power-law degreedistributions.
Like many after him, his work built on ideasdeveloped in
the 1950sby Herbert Simon [69, 370], who showed that
power laws arise when \the rich get richer," when the
amount you get goes up with the amount you already
have. In sociology this is referred to as the Matthew ef-
fect [282], after the biblical edict, \F or to every one that
hath shall be given.. . " (Matthew 25:29).29 Price called
it cumulative advantage. Today it is usually known un-
der the namepreferential attachment, coinedby Barab�asi
and Alb ert [32].

The important contribution of Price's work wasto take
the ideasof Simonand apply them to the growth of a net-
work. Simon was thinking of wealth distributions in his
early work, and although he later gave other applications
of his ideas, none of them were to networked systems.
Price appearsto have beenthe �rst to discusscumulativ e
advantage speci�cally in the context of networks, and in
particular in the context of the network of citations be-
tweenpapersand its in-degreedistribution. His idea was
that the rate at which a paper gets new citations should
be proportional to the number that it already has. This
is easy to justify in a qualitativ e way. The probabilit y

29 In fact, this is really only a half of the Matthew e�ect, since the
same verse contin ues, \. . . but from him that hath not, that also
which he seemeth to have shall be tak en away." In the processes
studied by Simon and Price nothing is tak en away from anyone.
The full Matthew e�ect, with both the giving and the taking
away, corresponds more closely to the Polya urn processthan to
Price's cumulativ e advantage. Price points out this distinction
in his paper [344].



VI I Models of network growth 31

that one comesacrossa particular paper whilst reading
the literature will presumably increasewith the number
of other papers that cite it, and hence the probabilit y
that you cite it yourself in a paper that you write will
increasesimilarly. The same argument can be applied
to other networks also, such as the Web. It is not clear
that the dependenceof citation probabilit y on previous
citations needbe strictly linear, but certainly this is the
simplest assumption one could make and it is the one
that Price, following Simon, adopts. We now describe in
detail Price's model and his exact solution of it, which
useswhat we would now call a master-equation or rate-
equation method.

Consider a directed graph of n vertices, such as a ci-
tation network. Let pk be the fraction of vertices in the
network with in-degreek, so that

P
k pk = 1. New ver-

tices are continually added to the network, though not
necessarilyat a constant rate. Each added vertex has a
certain out-degree|the number of papers that it cites|
and this out-degreeis �xed permanently at the creation
of the vertex. The out-degreemay vary from one vertex
to another, but the meanout-degree,which is denotedm,
is a constant over time.30 (Certain conditions on the dis-
tribution of m about the meanmust hold; seefor instance
Ref. 134.) The value m is also the mean in-degreeof the
network:

P
k kpk = m. Sincethe out-degreecan vary be-

tweenvertices, m can take non-integer values, including
values lessthan 1.

In the simplest form of cumulativ e advantage process
the probabilit y of attachment of one of our new edgesto
an old vertex|i.e., the probabilit y that a newly appear-
ing paper cites a previous paper|is simply proportional
to the in-degreek of the old vertex. This however imme-
diately givesus a problem, sinceeach vertex starts with
in-degreezero,and hencewould forever have zeroproba-
bilit y of gaining new edges.To circumvent this problem,
Price suggeststhat the probabilit y of attachment to a
vertex should be proportional to k + k0, where k0 is a
constant. Although he discussesthe caseof general k0,
all his mathematical developments are for k0 = 1, which
he justi�es for the citation network by saying that one
can consider the initial publication of a paper to be its
�rst citation (of itself by itself ). Thus the probabilit y of
a new citation is proportional to k + 1.

The probabilit y that a new edgeattachesto any of the
vertices with degreek is thus

(k + 1)pkP
k (k + 1)pk

=
(k + 1)pk

m + 1
: (58)

30 Elsewhere in this review we have used the letter z to denote mean
degree. While it would make sensein many ways to use the same
notation here, we have opted instead to change notation and
use m because this is the notation used in most of the recent
papers on growing networks. The reader should bear in mind
therefore that m is not, as previously , the total number of edges
in the graph.

The mean number of new citations per vertex added is
simply m, and hencethe meannumber of newcitations to
vertices with current in-degreek is (k + 1)pk m=(m + 1).
The number npk of vertices with in-degree k decreases
by this amount, sincethe vertices that get new citations
becomevertices of degreek + 1. However, the number
of verticesof in-degreek increasesbecauseof in
ux from
the verticespreviously of degreek � 1 that have also just
acquireda newcitation, exceptfor verticesof degreezero,
which have an in
ux of exactly 1. If we denote by pk ;n
the value of pk when the graph has n vertices, then the
net changein npk per vertex added is

(n + 1)pk ;n +1 � npk ;n =
�
kpk � 1;n � (k + 1)pk ;n

� m
m + 1

;

(59)
for k � 1, or

(n + 1)p0;n +1 � np0;n = 1 � p0;n
m

m + 1
; (60)

for k = 0. Looking for stationary solutions pk ;n +1 =
pk ;n = pk , we then �nd

pk =
� �

kpk � 1 � (k + 1)pk
�
m=(m + 1) for k � 1,

1 � p0m=(m + 1) for k = 0.
(61)

Rearranging, we �nd p0 = (m + 1)=(2m + 1) and pk =
pk � 1k=(k + 2 + 1=m) or

pk =
k(k � 1) : : : 1

(k + 2 + 1=m) : : : (3 + 1=m)
p0

= (1 + 1=m)B( k + 1; 2 + 1=m); (62)

where B(a;b) = �( a)�( b)=�( a + b) is Legendre's beta-
function, which goes asymptotically as a� b for large a
and �xed b, and hence

pk � k � (2+1 =m ) : (63)

In other words, in the limit of large n, the degreedistri-
bution has a power-law tail with exponent � = 2 + 1=m.
This will typically give exponents in the interval between
2 and 3, which is in agreement with the values seenin
real-world networks|see Table I I. (Bear in mind that
the mean degreem need not take an integer value, and
can be lessthan 1.) Price givesa comparisonbetweenhis
model and citation network data from the ScienceCita-
tion Index, making a plausible casethat the parameter m
hasabout the right value to give the observed power-law
citation distribution.

Note that Price's assumptionthat the o�set parameter
k0 = 1 can be justi�ed a posteriori becausethe value of
the exponent doesnot dependon k0. (This contrasts with
the behavior of the model of Barab�asi and Alb ert [32],
which is discussedin Sec.VI I.C.) The argument above
is easily generalizedto the casek0 6= 1, and we �nd that

pk =
m + 1

m(k0 + 1) + 1
B(k + k0; 2 + 1=m)

B(k0; 2 + 1=m)
; (64)
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and hence� = 2 + 1=m again for large k and �xed k0.
See Sec. VI I.C and Refs. 123 and 245 for further dis-
cussionof the e�ects of o�set parameters. Thorough re-
views of master-equationmethods for grown graph mod-
els have been given by Dorogovtsev and Mendes [120]
and Krapivsky and Redner [248].

The analytic solution above was the extent of the
progress Price was able to make in understanding his
model network. Unlike present-day authors, for instance,
he did not have computational resourcesavailable to sim-
ulate the model, and so could give no numerical results.
In recent years,a great dealmoreprogresshasbeenmade
in understandingcumulativ eadvantageprocessesand the
growth of networks. Most of this work has beencarried
out using a slightly di�eren t model, however, the model
of Barab�asi and Alb ert, which we now describe.

B. The model of Barab�asi and Albert

The mechanism of cumulativ e advantage proposedby
Price [344] is now widely accepted as the probable ex-
planation for the power-law degreedistribution observed
not only in citation networks but in a wide variety of
other networks also, including the World Wide Web, col-
laboration networks, and possibly the Internet and other
technological networks also. The work of Price himself,
however, is largely unknown in the scienti�c communit y,
and cumulativ e advantage did not achieve currency as
a model of network growth until its rediscovery some
decadeslater by Barab�asi and Alb ert [32], who gave it
the new name of preferential attachment. In a highly
in
uen tial paper published|lik e Price's �rst paper on
citation networks|in the journal Science, they proposed
a network growth model of the Web that is very similar
to Price's, but with one important di�erence.

The model of Barab�asi and Alb ert [32, 33] is the same
as Price's in having vertices that are added to the net-
work with degreem, which is never changed thereafter,
the other end of each edgebeing attached to (\citing")
another vertex with probabilit y proportional to the de-
greeof that vertex. The di�erence betweenthe two mod-
els is that in the model of Barab�asi and Alb ert edgesare
undirected, sothere is no distinction betweenin- and out-
degree. This has pros and cons. On the one hand, both
citation networks and the Web are in reality directed
graphs, so any undirected graph model is missing a cru-
cial feature of these networks. On the other hand, by
ignoring the directed nature of the network, the model of
Barab�asiand Alb ert getsaround Price's problem of how a
paper getsits �rst citation or a Website getsits �rst link.
Each vertex in the graph appears with initial degreem,
and henceautomatically hasa non-zeroprobabilit y of re-
ceiving new links. (Note that for the model to besolvable
using the master-equationapproach asdemonstratedbe-
low, the number of edgesadded with each vertex must
be exactly m|it cannot vary around the mean value as
in the model of Price. Hence it must also be an integer

and must always have a value m � 1.)
Another way of looking at the model of Barab�asi and

Alb ert is to say the network is directed, with edgesgo-
ing from the vertex just added to the vertex that it is
citing or linking to, but that the probabilit y of attach-
ment of a new edgeis proportional to the sum of the in-
and out-degreesof the vertex. This however is perhaps
a lesssatisfactory viewpoint, since it is di�cult to con-
jure up a mechanism, either for citation networks or the
Web, which would give rise to such an attachment pro-
cess.Overall, perhapsthe best way to look at the model
of Barab�asi and Alb ert is asa model that sacri�ces some
of the realism of Price's model in favor of simplicit y. As
we will see, the main result of this sacri�ce is that the
model produces only a single value � = 3 for the ex-
ponent governing the degreedistribution, although this
has beenremedied in later generalizationsof the model,
which we discussin Sec.VI I.C.

The model of Barab�asi and Alb ert can be solved ex-
actly in the limit of large graph size31 using the master-
equation method and such a solution has beengiven by
Krapivsky et al. [249] and independently by Dorogovt-
sevet al. [123]. (Barab�asi and Alb ert themselvesgave an
approximate solution based on the assumption that all
vertices of the sameage have the samedegree[32, 33].
The method of Krapivsky et al. and Dorogovtsev et al.
doesnot make this assumption.)

The probabilit y that a new edgeattaches to a vertex
of degreek|the equivalent of Eq. (58)|is

kpkP
k kpk

=
kpk

2m
: (65)

The sum in the denominator is equal to the meandegree
of the network, which is 2m, sincethere are m edgesfor
each vertex added,and each edge,being now undirected,
contributes two ends to the degreesof network vertices.
Now the mean number of vertices of degreek that gain
an edgewhen a single new vertex with m edgesis added
is m � kpk =2m = 1

2 kpk , independent of m. The num-
ber npk of vertices with degreek thus decreasesby this
sameamount, since the vertices that get new edgesbe-
come vertices of degreek + 1. The number of vertices
of degreek also increasesbecauseof in
ux from vertices
previously of degreek � 1 that have also just acquired
a new edge,except for vertices of degreem, which have
an in
ux of exactly 1. If we denote by pk ;n the value of
pk when the graph hasn vertices, then the net changein
npk per vertex added is

(n + 1)pk ;n +1 � npk ;n = 1
2 (k � 1)pk � 1;n � 1

2 kpk ;n ; (66)

for k > m, or

(n + 1)pm;n +1 � npm;n = 1 � 1
2 mpm;n ; (67)

31 The behavior of the model at �nite system sizes has been inves-
tigated by Krapivsky and Redner [246].
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for k = m, and there are no vertices with k < m.
Looking for stationary solutions pk ;n +1 = pk ;n = pk as

before,the equationsequivalent to Eq. (61) for the model
are

pk =
�

1
2 (k � 1)pk � 1 � 1

2 kpk for k > m,
1 � 1

2 mpm for k = m.
(68)

Rearranging for pk once again, we �nd pm = 2=(m + 2)
and pk = pk � 1(k � 1)=(k + 2), or [123, 249]

pk =
(k � 1)(k � 2) : : : m

(k + 2)(k + 1) : : : (m + 3)
pm =

2m(m + 1)
(k + 2)(k + 1)k

:

(69)
In the limit of large k this gives a power law degree
distribution pk � k � 3, with only the single �xed expo-
nent � = 3. A more rigorous derivation of this result has
beengiven by Bollob�as et al. [65].

In addition to the basic solution of the model for its
degreedistribution, many other results are now known
about the model of Barab�asi and Alb ert. Krapivsky and
Redner [245] have conducted a thorough analytic study
of the model, showing amongother things that the model
has two important typesof correlations. First, there is a
correlation betweenthe ageof verticesand their degrees,
with older vertices having higher mean degree. For the
casem = 1, for instance, they �nd that the probabil-
it y distribution of the degreeof a vertex i with age a,
measuredas the number of vertices added after vertex i ,
is

pk (a) =

r

1 �
a
n

�
1 �

r

1 �
a
n

� k

: (70)

Thus for speci�ed age a the distribution is exponen-
tial, with a characteristic degreescale that divergesas
(1 � a=n) � 1=2 as a ! n; the earliest vertices added have
substantially higher expected degree than those added
later, and the overall power-law degree distribution of
the whole graph is a result primarily of the in
uence of
theseearliest vertices.

This correlation betweendegreeand agehasbeenused
by Adamic and Huberman [4] to argueagainst the model
asa model of the World Wide Web|they show using ac-
tual Web data that there is no such correlation in the real
Web. This does not mean that preferential attachment
is not the explanation for power-law degreedistributions
in the Web, only that the dynamics of the Web must be
more complicated than this simple model to account also
for the observedagedistribution [35]. An extensionof the
model that may explain why ageand degreeare not cor-
related hasbeengiven by Bianconi and Barab�asi [52, 53]
and is discussedin Sec.VI I.C.

Second,Krapivsky and Redner [245] show that there
are correlations betweenthe degreesof adjacent vertices
in the model, of the type discussedin Sec.I I I.F. Looking
again at the special case m = 1, they show that the
quantit y ej k de�ned in Sec.IV.B.5, which is the number

of edgesthat connect vertex pairs with (excess)degrees
j and k, is

ej k =
4j

(k + 1)(k + 2)(j + k + 2)(j + k + 3)(j + k + 4)

+
12j

(k + 1)(j + k + 1)(j + k + 2)(j + k + 3)(j + k + 4)
:

(71)

Note that this quantit y is asymmetric. This is because
Krapivsky and Redner regard the network as being di-
rected, with edgesleading from the vertex just added
to the pre-existing vertex to which they attach. In the
expressionabove, however, j and k are total degreesof
vertices, not in- and out-degree.

Although (71) shows that the vertices of the model
havenon-trivial correlations, the correlation coe�cien t of
the degreesof adjacent vertices in the network is asymp-
totically zero as n ! 1 [314]. This is becausethe corre-
lation coe�cien t measurescorrelations relative to a linear
model, and no such correlations are present in this case.

One of the main advantages that we have today over
early workers such as Price is the widespreadavailabil-
it y of powerful computer resources. Quite a number of
numerical studies have been performed of the model of
Barab�asi and Alb ert, which would have beenentirely im-
possiblethirt y yearsearlier. It is worth mentioning here
how simulations of thesetypesof models are conducted.
We considerthe Barab�asi{Alb ert model. The exact same
ideascan be applied to Price's model also.

A naive simulation of the preferential attachment pro-
cessis quite ine�cien t. In order to attach to a vertex in
proportion to its degreewe normally needto examinethe
degreesof all vertices in turn, a processthat takesO(n)
time for each step of the algorithm. Thus the generation
of a graph of size n would take O(n2) steps overall. A
much better procedure, which works in O(1) time per
step and O(n) time overall, is the following. We main-
tain a list, in an integer array for instance, that includes
ki entries of value i for each vertex i . Thus, for exam-
ple, a network of four vertices labeled 1, 2, 3, and 4 with
degrees2, 1, 1, and 3, respectively could be represented
by the array (1; 1; 2; 3; 4; 4; 4). Then in order to choose
a target vertex for a new edgewith the correct preferen-
tial attachment, onesimply choosesa number at random
from this list. Of course, the list must be updated as
new verticesand edgesare added,but this is simple. No-
tice that there is no requirement that the items in the
list be in any particular order. If we add a new vertex 5
to our network above, for example, with degree1 and
one edgethat connectsit to vertex 2, the list can be up-
dated by adding new items to the end, so that it reads
(1; 1; 1; 2; 3; 4; 4; 4; 5; 2). And so forth. Models such as
Price's, in which there is an o�set k0 in the probabilit y
of selectinga vertex (so that the total probabilit y goesas
k + k0), can be treated with the samemethod|the o�-
set merely meansthat with someprobabilit y onechooses
a vertex with preferential attachment and otherwise one
choosesit uniformly from the set of all vertices.
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An alternativ e method for simulating the model of
Barab�asi and Alb ert has been described by Krapivsky
and Redner [245]. Their method usesthe network struc-
ture itself in place of the list of vertices above and works
as follows. The model is regardedas a directed network
in which there are exactly m edgesrunning out of each
vertex, pointing to others. We �rst pick a vertex at
random from the graph and then with some probabil-
it y we either keep that vertex or we \redirect" to one
of its neighbors, meaning that we pick at random one of
the vertices it points to. Since each vertex has exactly
m outgoing edges,the latter operation is equivalent to
choosingan edgeat random from the graph and following
it, and hencealights on a target vertex with probabilit y
proportional to the in-degree j of that target (because
there are j ways to arrive at a vertex of in-degreej |see
Sec.IV.B.1). Thus the total probabilit y of selectingany
given vertex is proportional to j + c, where c is some
constant. However, sincethe out-degreeof all vertices is
simply m, the total degreeis k = j + m and the selection
probabilit y is therefore also proportional to k + c � m.
By choosing the probabilit y of redirection appropriately,
we can arrange for the constant c to be equal to m, and
hencefor the probabilit y of selectinga vertex to be sim-
ply proportional to k. Sinceit doesnot require an extra
array for the vertex list, this method of simulation is more
memory e�cien t than the previous method, although it
is slightly more complicated to implement.

In their original paper on their model, Barab�asi and
Alb ert [32] gave simulations showing the power-law dis-
tribution of degrees. A number of authors have sub-
sequently published more extensive simulation results.
Of particular note is the work by Dorogovtsev and
Mendes[114, 116] and by Krapivsky and Redner [246].

A crucial element of both the models of Price and of
Barab�asi and Alb ert is the assumptionof linear preferen-
tial attachment. It is worth asking whether there is any
empirical evidencein support of this assumption. (We
discuss in the next section some work on models that
relax the linearit y assumption.) Two studies indicate
that it may be a reasonableapproximation to the truth.
Jeonget al. [213] looked at the time evolution of citation
networks, the Internet, and actor and scientist collabo-
ration networks, and measuredthe number of new edges
a vertex acquires in a single year as a function of the
number of previously existing edges. They found that
the one quantit y was roughly proportional to the other,
and henceconcludedthat linear preferential attachment
wasat work in thesenetworks. Newman [310] performed
a similar study for scienti�c collaboration networks, but
with �ner time resolution, measuredby the publication
of individual papers, and cameto similar conclusions.

C. Generalizations of the Barab�asi{Alb ert model

The model of Barab�asi and Alb ert [32] has attracted
an exceptional amount of attention in the literature. In

addition to analytic and numerical studies of the model
itself, many authors have suggestedextensionsor modi-
�cations of the model that alter its behavior or make it a
more realistic representation of processestaking place in
real-world networks. We discussa few of these here. A
more extensive review of developments in this area has
beengiven by Alb ert and Barab�asi [13] (seeparticularly
Table I I I in that paper).

Dorogovtsev et al. [123] and Krapivsky and Red-
ner [245] have examined the model in which the prob-
abilit y of attachment to a vertex of degreek is propor-
tional to k + k0, where the o�set k0 is a constant. Note
that k0 is allowed to be negative|it can fall anywhere in
the range � m < k0 < 1 and the probabilit y of attach-
ment will be positive. The equations for the stationary
state of the degreedistribution of this model, analogous
to Eq. (68), are

pk =
� �

(k � 1)pk � 1 � kpk
�
m=(2m + k0) for k > m,

1 � pm m2=(2m + k0) for k = m,
(72)

which givespm = (2m + k0)=(m2 + 2m + k0) and

pk =
(k � 1) : : : m

(k + 2 + k0=m) : : : (m + 3 + k0=m)
pm

=
B(k; 3 + k0=m)
B(m; 2 + k0=m)

; (73)

where B(a;b) = �( a)�( b)=�( a + b) is again the Legendre
beta-function. This gives a power law for large k once
more, with exponent � = 3 + k0=m. It is proposedthat
negative values of k0 could be the explanation for the
values � < 3 seen in real-world networks.32 A longer
discussionof the e�ects of o�set parameters is given in
Ref. 245.

Krapivsky et al. [245, 249] also consider another im-
portant generalization of the model, to the casewhere
the probabilit y of attachment to a vertex is not linear
in the degreek of the vertex, but goes instead as some
generalpower of degreek 
 . Again this model is solvable
using methods similar to those above, and the authors
�nd three generalclassesof behavior. For 
 = 1 exactly,
we recover the normal linear preferential attachment and
power-law degreesequences.For 
 < 1, the degreedistri-
bution is a power law multiplied by a stretched exponen-
tial, whoseexponent is a complicated function of 
 . (In
fact, in most casesthere is no known analytic solution
for the equations governing the exponent; they must be
solved numerically.) For 
 > 1 there is a \condensation"
phenomenon,in which a single vertex gets a �nite frac-
tion of all the connectionsin the network, and for 
 > 2
there is a non-zero probabilit y that this \gel node" will

32 Price's result � = 2 + 1=m [344] corresponds to k0 = � (m � 1)
so that the \attractiv eness" of a new vertex is 1. The model of
Barab�asi and Alb ert corresponds to k0 = 0, so that � = 3.
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be connected to every other vertex on the graph. The
remainder of the verticeshave an exponentially decaying
degreedistribution.

Another variation on the basicgrowing network theme
is to make the mean degreechange over time. There is
evidenceto suggestthat in the World Wide Webthe aver-
agedegreeof a vertex is increasingwith time, i.e., the pa-
rameter m appearing in the models is increasing. Doro-
govtsev and Mendes [118, 121] have studied a variation
of the Barab�asi{Alb ert model that incorporates this pro-
cess. They assumethat the number m of new edges
added per new vertex increaseswith network size n as
na for someconstant a, and that the probabilit y of at-
taching to a given vertex goesask + B na for constant B .
They show that the resulting degreedistribution follows
a power law with exponent � = 2 + B (1 + a)=(1 � B a).
(Note that when a = 0, this model reducesto the model
studied previously by Dorogovtsev et al. [123], but the ex-
pressionfor � given here is not valid in this limit.) Thus
this processo�ers another possiblemechanism by which
the exponent of the degreedistribution can be tuned to
match that observed in real-world networks.

In Price's model of citation networks, no newout-going
edgesare addedto a vertex after its �rst appearance,and
edgesonce added to the graph remain where they are
forever. This makessensefor citation networks. But the
model of Barab�asiand Alb ert is intendedto bea model of
the World Wide Web, in which new links are often added
to pre-existing Web sites, and old links are frequently
moved or removed. A number of authors have proposed
models that incorporate processeslike these. In par-
ticular, Dorogovtsev and Mendes [116] have proposeda
model that adds to the standard Barab�asi{Alb ert model
an extra mechanism whereby edgesappear and disappear
betweenpre-existing verticeswith stochastically constant
but possibly di�eren t rates. They �nd that over a wide
range of values of the rates the power-law degreedistri-
bution is maintained, although again the exponent varies
from the value � 3 seenin the original model. Krapivsky
and Redner [247] have alsoproposeda model that allows
edgesto be added after vertices are created, which we
discussin the next section. Alb ert and Barab�asi [12] and
Tadi�c [391, 392] have studied models in which edgescan
move around the network after they are added. These
modelscan show both power-law and exponential degree
distributions depending on the model parameters.

As discussedin Sec.VI I.B, Adamic and Huberman [4]
have shown that the real World Wide Web doesnot have
the correlations betweenageand degreeof vertices that
are found in the model of Barab�asi and Alb ert. Adamic
and Huberman suggestthat this is becausethe degreeof
vertices is also a function of their intrinsic worth; some
Web sites are useful to more people than others and so
gain links at a higher rate. Bianconi and Barab�asi [52, 53]
haveproposedan extensionof the Barab�asi{Alb ert model
that mimics this process.In their model each newly ap-
pearing vertex i is given a \�tness" � i that represents
its attractiv enessand henceits propensity to accruenew

links. Fitnessesare chosenfrom somedistribution � (� )
and links attach to verticeswith probabilit y proportional
now not just to the degreeki of vertex i but to the prod-
uct � i ki .

Depending on the form of the distribution � (� ) this
model shows two regimes of behavior [52, 247]. If
the distribution has �nite support, then the network
shows a power-law degreedistribution, as in the origi-
nal Barab�asi{Alb ert model. However, if the distribution
has in�nite support, then the one vertex with the high-
est �tness accruesa �nite fraction of all the edgesin the
network|a sort of \winner takesall" phenomenon,which
Bianconi and Barab�asi liken to monopoly dominance of
a market.

A number of variations on the �tness theme have been
studied by Erg•un and Rodgers [145], who looked at a
directed version of the Bianconi{Barab�asi model and
at models where instead of multiplying the attachment
probabilit y, the �tness � i contributes additiv ely to the
probabilit y of attaching a new edgeto vertex i . Treat-
ing the models analytically, they found in each casethat
for suitable parameter values the power-law degreedis-
tribution is preserved, although again the exponent may
be a�ected by the distribution of �tnesses, and in some
casesthere are also logarithmic corrections to the degree
distribution. A model with vertex �tness but no preferen-
tial attachment hasbeenstudied by Caldarelli et al. [78],
and alsogivespower-law degreedistributions under some
circumstances.

D. Other growth models

The model of Barab�asi and Alb ert [32] is elegant and
simple, but lacks a number of features that are present
in the real World Wide Web:

� The model is a model of an undirected network,
where the real Web is directed.

� As mentioned previously onecan regard the model
as a model of a directed network, but in that
caseattachment is in proportion to the sum of in-
and out-degreesof a vertex, which is unrealistic|
presumably attachment should be in proportion to
in-degreeonly, as in the model of Price.

� If we regard the model as producing a directed
network, then it generates acyclic graphs (see
Sec. I.A), which are a poor representation of the
Web.

� All vertices in the model belong to a single con-
nectedcomponent (a weakly connectedcomponent
if the graph is regardedas directed|the graph has
no strongly connected components becauseit is
acyclic). In the real Web there are many separate
components (and strongly connectedcomponents).
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� The out-degree distribution of the Web follows a
power law, whereasout-degreeis a constant in the
model.33

Many of these criticisms are also true of Price's model,
but Price's model is intended to be a model of a citation
network and citation networks really aredirected, acyclic,
and to a good approximation all verticesbelong to a sin-
gle component, unlessthey cite and are cited by no one
else at all. Thus Price's model is, within its own lim-
ited sphere,a reasonableone. For the World Wide Web
a number of authors have suggestednew growth models
that addressoneor more of the concernsabove. Here we
describe a number of these models, starting with some
very simple onesand working up to the more complex.

Consider �rst the issueof the component structure of
the network. In the models of Price and of Barab�asi
and Alb ert each vertex joins to at least one other when
it �rst appears. It follows trivially then that, so long
as no edgesare ever removed, all vertices belong to a
single (weakly-connected)component. This is not true
in the real Web. How can we get around it? To address
this question Callaway et al. [80] proposedthe following
extremely simple model of a growing network. Vertices
are added to the network one by one as before, and a
meannumber m of undirected edgesare addedwith each
vertex. As with Price's model, the value of m is only an
average|the actual number of edgesadded per step can
vary|and so m is not restricted to integer values, and
indeed we will seethat the interesting behavior of the
model takesplace at valuesm < 1.

The important di�erence between this model and the
previous models is that edgesare not, in general, at-
tached to the vertex that has just beenadded. Instead,
both ends of each edge are attached to vertices chosen
uniformly at random from the wholegraph, without pref-
erential attachment. Vertices therefore normally have
degreezero when they are �rst added to the graph. Be-
causeof the lack of preferential attachment this model
does not show power-law degree distributions|in fact
the degreedistribution can be show to be exponential|
but it does have an interesting component structure. A
related model has beenstudied, albeit to somewhatdif-
ferent purpose,by Aldous and Pittel [17]. Their model
is equivalent to the model of Callaway et al. in the case
m = 1. Also Bauer and collaborators [44, 100] have in-

33 What's more, although it is rarely pointed out, it is clearly the
casethat a di�eren t mechanism must be responsible for the out-
degree distribution from the one responsible for the in-degree
distribution. We can justify preferential attac hment for in-degree
by saying that Web sites are easier to �nd if they have more links
to them, and hence they get more new links becausepeople �nd
them. No such argument applies for out-degree. It is usually
assumed that out-degree is subject to preferential attac hment
nonetheless. One can certainly argue that sites with many out-
going links are more lik ely to add new ones in the future than
sites with few, but it's far from clear that this must be the case.

vestigated a directed-graph version of the model.
Initially , one might imagine that the model of Calla-

way et al. generatedan ordinary Poissonrandom graph
of the Erd•os{R�enyi type. Further re
ection revealshow-
ever that this is not the case;older verticesin the network
will tend to be connectedto oneanother, so the network
has a cliquish core of old-timers surrounded by a seaof
younger vertices. Nonetheless,like the Poissonrandom
graph, the model doeshave many separatecomponents,
with a phasetransition at a �nite value of m at which a
giant component appears that occupiesa �xed fraction
of the volume of the network asn ! 1 . To demonstrate
this, Callaway et al. used a master-equation approach
similar to that used for degreedistributions in the pre-
ceding sections. One de�nes ps to be the probabilit y
that a randomly chosenvertex belongsto a component
of s vertices,and writes di�erence equationsthat give the
changein ps when a singlevertex and m edgesare added
to the graph. Looking for stationary solutions, one then
�nds in the limit of large graph sizethat

ps =
�

ms
P s� 1

j =1 pj ps� j � 2msps for s > 1

1 � 2mp1 for s = 1.
(74)

Being nonlinear in ps, these equations are harder to
solve than those for the degree distributions in previ-
ous sections, and indeed no exact solution has been
found. Nonetheless, we can see that a giant compo-
nent must form by de�ning a generating function for the
component size distribution similar to that of Eq. (25):
H (x) =

P 1
s=0 psxs. Then (74) implies that

dH
dx

=
1

2m

�
1 � H (x)=x
1 � H (x)

�
: (75)

If there is no giant component, then H (1) = 1 and the
averagecomponent size is hsi = H 0(1). Taking the limit
x ! 1 in Eq. (75), we �nd that hsi is a solution of the
quadratic equation 2mhsi 2 � hsi + 1 = 0, or

hsi =
1 �

p
1 � 8m

4m
: (76)

(The other solution to the quadratic givesa non-physical
value.) This solution exists only up to m = 1

8 however,
and henceabove this point there must be a giant compo-
nent. This doesn't tell uswherein the interval 0 � m � 1

8
the giant component appears,but a proof that the tran-
sition in fact falls precisely at m = 1

8 was later given by
Durrett [134].

The model of Callaway et al. has been general-
ized to include preferential attachment by Dorogovt-
sev et al. [124]. In their version of the model both ends
of each edgeare attached in proportion to the degreesof
vertices plus a constant o�set to ensurethat vertices of
degreezero have a chance of receiving an edge. Again
they �nd many components and a phase transition at
nonzerom, and in addition the power-law degreedistri-
bution is now restored.
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Taking the processa step further, Krapivsky and Red-
ner [247] studied a full directed-graph model in which
both vertices and directed edgesare added at stochasti-
cally constant rates and the out-going end of each edge
is attached to vertices in proportion to their out-degree
and the in-going end in proportion to in-degree,plus ap-
propriate constant o�sets. This appears to be quite a
reasonablemodel for the growth of the Web. It produces
a directed graph, it allows edgesto be added after the
creation of a vertex, it allows for separate components
in the graph, and, as Krapivsky and Redner showed, it
gives power laws in both the in- and out-degree distri-
butions, just as observed in the real Web. By varying
the o�set parameters for the in- and out-degreeattach-
ment mechanisms, one can even tune the exponents of
the two distributions to agreewith thoseobserved in the
wild. (Krapivsky and Redner's model is a development
of an earlier model that they proposed[250] that had all
the samefeatures, but gave rise to only a single weakly
connected component becauseeach added vertex came
with oneedgethat attached it to the rest of the network
from the outset. In their later paper, they abandoned
this feature. A similar model has also been studied by
Rodgers and Darby-Dowman [355].) A slight variation
on the model of Krapivsky and Redner has been pro-
posedindependently by Aiello et al. [9], who give rigorous
proofs of someof its properties.

E. Vertex copying models

There are somenetworks that appear to have power-
law degreedistributions, but for which preferential at-
tachment is clearly not an appropriate model. Good ex-
amples are biochemical interaction networks of various
kinds [153, 212, 214, 376, 383, 405]. A number of stud-
ies have beenperformed, for instance, of the interaction
networks of proteins (seeSec.I I.D) in which the vertices
are proteins and the edgesrepresent reactions. These
networks do change on very long time-scalesbecauseof
biological evolution, but there is no reason to suppose
that protein networks grow according to a simple cu-
mulativ e advantage or preferential attachment process.
Nonetheless,it appears that the degreedistribution of
thesenetworks obeys a power law, at least roughly.

A possible explanation for this observation has been
suggestedby Kleinberg et al. [241, 254], who proposed
that thesenetworks grow, at least in part, by the copying
of vertices. Kleinberg et al. were interested in the growth
of the Web, for which their model is asfollows. The graph
grows by stochastically constant addition of vertices and
addition of directed edgeseither randomly or by copying
them from another vertex. Speci�cally , one choosesan
existing vertex and a number m of edgesto add to it, and
one then decidesthe targets of those edges,by choosing
at random another vertex and copying targets from m
of its edges,randomly chosen. If the chosenvertex has
lessthan m outgoing edges,then its m edgesare copied

and onemoveson to another vertex and copiesits edges,
and so forth until m edgesin total have beencopied. In
its most general form, the model of Kleinberg et al. also
incorporates mechanisms for the removal of edgesand
vertices, which we do not describe here.

It is straightforward to see that the copying mecha-
nism will give rise to power-law distributions. The mean
probabilit y that an edgefrom a randomly chosenvertex
will lead to a particular other vertex with in-degreek is
proportional to k (seeSec. IV.B.1), and hencethe rate
of increaseof a vertex's degreeis proportional to its cur-
rent degree. As with the model of Price, this mecha-
nism will never add new edgesto vertices that currently
have degreezero, so Kleinberg et al. also include a �nite
probabilit y that the target of a newly addededgewill be
chosenat random, so that vertices with degreezerohave
a chance to gain edges. In their original paper, Klein-
berg et al. present only numerical evidence that their
model results in a power law degreedistribution, but in
a later paper a subset of the sameauthors [254] proved
that the degreedistribution is a power law with exponent
� = (2 � a)=(1 � a), where a is the ratio of the number
of edgesadded whose targets are chosen at random to
the number whosetargets are copiedfrom other vertices.
For small values of a, between 0 and 1

2 , i.e., for models
in which most target selection is by copying, this pro-
ducesexponents 2 � � � 3, which is the range observed
in most real-world networks|see Table I I. Somefurther
analytic results for copying models have been given by
Chung et al. [90].

It is not clear whether the copying mechanism really
is at work in the growth of the World Wide Web, but
there has beenconsiderableinterest in its application as
a model of the evolution of protein interaction networks
of one sort or another. The argument here is that the
genesthat code for proteins can and do, in the courseof
their evolutionary development, duplicate. That is, upon
reproduction of an organism, two copiesof a geneare er-
roneouslymadewhereonly oneexisted before. Sincethe
proteins coded for by each copy are the same, their in-
teractions are also the same,i.e., the new genecopiesits
edgesin the interaction network from the old. Subse-
quently , the two genesmay develop di�erences because
of evolutionary drift or selection[404]. Modelsof protein
networks that makeuseof copying mechanismshavebeen
proposedby a number of authors [49, 233, 377, 399].

A variation on the idea of vertex copying appears
in the autocatalytic network models of Jain and Kr-
ishna [209, 210], in which a network of interacting chemi-
cal speciesevolvesby reproduction and mutation, giving
rise ultimately to self-sustainingautocatalytic loopsrem-
iniscent of the \h ypercycles"of Eigen and Schuster [140],
which havebeenproposedasa possibleexplanation of the
origin of life.
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VI II. PROCESSES TAKING PLACE ON NETW ORKS

As discussedin the intro duction, the ultimate goal of
the study of the structure of networks is to understand
and explain the workings of systemsbuilt upon thosenet-
works. We would like, for instance, to understand how
the topology of the World Wide Web a�ects Web sur�ng
and search engines,how the structure of social networks
a�ects the spread of information, how the structure of
a food web a�ects population dynamics, and so forth.
Thus, the next logical stepafter developingmodelsof net-
work structure, such as those described in the previous
sectionsof this review, is to look at the behavior of mod-
elsof physical (or biological or social) processesgoing on
on thosenetworks. Progresson this front hasbeenslower
than progresson understanding network structure, per-
hapsbecausewithout a thorough understanding of struc-
ture an understanding of the e�ects of that structure is
hard to comeby. However, there have beensomeimpor-
tant advancesmade,particularly in the study of network
failure, epidemic processeson networks, and constraint
satisfaction problems. In this section we review what
has beenlearned so far.

A. Percolation theory and network resilience

One of the �rst examplesto be studied thoroughly of
a processtaking placeon a network hasbeenpercolation
processes,mostly simple site and bond percolation|see
Fig. 13|although a number of variants have beenstud-
ied also. A percolation processis onein which verticesor
edgeson a graph are randomly designatedeither \o ccu-
pied" or \uno ccupied" and one asksabout various prop-
erties of the resulting patterns of vertices. One of the
main motivations for the percolation model when it was
�rst proposedin the 1950swasthe modeling of the spread
of disease[73, 187], and it is in this context also that it
was �rst studied in the current wave of interest in real-
world networks [325]. We considerepidemiologicalappli-
cations of percolation theory in Sec.VI I I.B. Here how-
ever, we depart from the order of historical developments
to discuss�rst a simpler application to the question of
network resilience.

As discussedin Sec. I I I.D, real-world networks are
found often to be highly resilient to the random deletion
of their vertices. Resiliencecan be measuredin di�er-
ent ways, but perhapsthe simplest indicator of resilience
in a network is the variation (or lack of variation) in
the fraction of vertices in the largest component of the
network, which we equate with the giant component in
our models (seeSec.IV.A). If one is thinking of a com-
munication network, for example, in which the existence
of a connecting path between two vertices means that
those two can communicate with one another, then the
vertices in the giant component can communicate with
an extensive fraction of the entire network, while those
in the small components can communicate with only a

bond percolationsite percolation

FIG. 13 Site and bond percolation on a network. In site per-
colation, vertices (\sites" in the physics parlance) are either
occupied (solid circles) or unoccupied (open circles) and stud-
ies focus on the shape and size of the contiguous clusters of
occupied sites, of which there are three in this small exam-
ple. In bond percolation, it is the edges(\b onds" in physics)
that are occupied or not (black or gray lines) and the vertices
that are connected together by occupied edgesthat form the
clusters of interest.

few others at most. Following the numerical studies of
Broder et al. [74] and Alb ert et al. [15] on subsetsof the
Web graph, it wasquickly realized[81, 93] that the prob-
lem of resilienceto random failure of verticesin a network
is equivalent to a site percolation processon the network.
Vertices are randomly occupied (working) or unoccupied
(failed), and the number of vertices remaining that can
successfullycommunicate is precisely the giant compo-
nent of the corresponding percolation model.

A number of analytic results have beenderived for per-
colation on networks with the structure of the con�gu-
ration model of Sec.IV.B.1, i.e., a random graph with a
given degreesequence.Cohenet al. [93] madethe follow-
ing simple argument. Supposewe have a con�guration
model with degreedistribution pk . That is, a randomly
chosenvertex hasdegreek with probabilit y pk in the limit
of large number n of vertices. Now supposethat only a
fraction q of the vertices are \o ccupied," or functional,
that fraction chosen uniformly at random from the en-
tire graph. For a vertex with degreek, the number k0 of
occupied vertices to which it is connectedis distributed
binomially so that the probabilit y of having a particular
value of k0 is

� k
k 0

�
qk 0

(1� q)k � k 0
, and hencethe total prob-

abilit y that a randomly chosenvertex is connectedto k0

other occupied vertices is

pk 0 =
1X

k= k 0

pk

�
k
k0

�
qk 0

(1 � q)k � k 0
: (77)

Sincevertex failure is random and uncorrelated, the sub-
setof all verticesthat areoccupiedforms another another
con�guration model with this degreedistribution. Co-
hen et al. then applied the criterion of Molloy and Reed,
Eq. (28), to determine whether this network has a giant
component. (One could also apply Eqs. (29) and (30)
to determine the sizeof the giant and non-giant compo-
nents, although this is not done in Ref. 93.)

One of the most interesting conclusionsof the work of
Cohenet al. is for the caseof networks with power-law de-
greedistributions pk � k � � for someconstant � . When
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� � 3, they �nd that the critical value qc of q where the
transition takesplace at which a giant component forms
is zero or negative, indicating that the network always
has a giant component, or in the language of physics,
the network always percolates. This echos the numerical
results of Alb ert et al. [15], who found that the connec-
tivit y of power-law networks was highly robust to the
random removal of vertices. In general, the method of
Cohen et al. indicates that qc � 0 for any degreedistri-
bution with a diverging secondmoment.

An alternativ e and more generalapproach to the per-
colation problem on the con�guration model has been
put forward by Callaway et al. [81], using a generaliza-
tion of the generating function formalism discussedin
Sec. IV.B.1. In their method, the probabilit y of occu-
pation of a vertex can be any function of the degreek
of that vertex. Thus the constant q of the approach of
Cohen et al. is generalizedto qk , the probabilit y that a
vertex having degreek is occupied. One de�nes generat-
ing functions

F0(x) =
1X

k=0

pk qk xk ; F1(x) =
P

k kpk qk xk � 1
P

k kpk
; (78)

and it canthen beshown that the probabilit y distribution
of the sizeof the component of occupiedverticesto which
a randomly chosenvertex belongsis generatedby H 0(x)
where

H0(x) = 1 � F0(1) + xF0(H1(x)) ; (79a)

H1(x) = 1 � F1(1) + xF1(H1(x)) : (79b)

(Note that F0 is not a properly normalized generating
function in the sensethat F0(1) 6= 1.) From this one can
derive an expressionfor the mean component size:

hsi = F0(1) +
F 0

0(1)F1(1)
1 � F 0

1(1)
; (80)

which immediately tells us that the phasetransition at
which a giant component forms takesplaceat F 0

1(1) = 1.
The sizeof the giant component is given by

S = F0(1) � F0(u); u = 1 � F1(1) + F1(u): (81)

For instance, in the casestudied by Cohen et al. [93]
of uniform occupation probabilit y qk = q, this gives a
critical occupation probabilit y of qc = 1=G0

1(1), where
G1(x) is the generating function for the degreedistribu-
tion itself, as de�ned in Eq. (23). Taking the exampleof
a power-law degreedistribution pk = k � � =� (� ), Eq. (32),
we �nd

qc =
� (� � 1)

� (� � 2) � � (� � 1)
: (82)

This is negative (and henceunphysical) for � < 3, con-
�rming the �nding that the system always percolatesin
this regime. Note that qc > 1 for su�cien tly large � ,
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FIG. 14 The fraction of vertices that must be removed from
a network to destroy the giant component, if the network has
the form of a con�guration model with a power-law degree
distribution of exponent � , and vertices are removed in de-
creasing order of their degrees.

which is also unphysical. One �nds that the system
never percolates for � > � c, where � c is the solution
of � (� � 2) = 2� (� � 1), which gives� c = 3:4788: : : This
corresponds to the point at which the underlying net-
work itself ceasesto have a giant component, as shown
by Aiello et al. [8] and discussedin Sec.IV.B.1.

The main advantage of the approach of Callaway et al.
is that it allows us to remove vertices from the network
in an order that dependson their degree.If, for instance,
we set qk = � (k � kmax ), where � (x) is the Heaviside step
function, then we remove all verticeswith degreesgreater
than kmax . This corresponds precisely to the experiment
of Broder et al. [74] who looked at the behavior of the
World Wide Webgraph asverticeswereremoved in order
of decreasingdegree. (Similar but not identical calcula-
tions werealsoperformedby Alb ert et al. [15].) In agree-
ment with the numerical calculations (see Sec. I I I.D),
Callaway et al. �nd that networks with power-law de-
gree distributions are highly susceptible to this type of
targeted attack; one need only remove a small percent-
age of vertices to destroy the giant component entirely .
Similar results were also found independently by Co-
hen et al. [94], using a closely similar method, and in
a later paper [362] some of the same authors extended
their calculations to directed networks also, which show
a considerably richer component structure, as described
in Sec.IV.B.3.

As an example,considerFig. 14, which shows the frac-
tion of the highest degreevertices that must be removed
from a network with a power-law degreedistribution to
destroy the giant component, as a function of the expo-
nent � of the power law [117, 319]. As the �gure shows,
the maximum fraction is lessthan three percent, and for
most valuesof � the fraction is signi�cantly lessthan this.
This appears to imply that networks like the Internet
and the Web that have power-law degreedistributions
are highly susceptibleto such attacks [15, 74, 94].
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These results are for the con�guration model. Other
models o�er somefurther insights. The �nding by Co-
hen et al. [93] that the threshold value qc at which per-
colation sets in for the con�guration model is zero for
degreedistributions with a divergent secondmoment has
attracted particular interest. Vazquezand Moreno [400],
for example,have shown that the threshold may be zero
even for �nite second moment if the degreesof adja-
cent vertices in the network are positively correlated
(see Secs. I I I.F and IV.B.5). Conversely, if the sec-
ond moment does diverge there may still be a non-zero
threshold if there are negative degreecorrelations. War-
ren et al. [408] have shown that there can also be a non-
zero threshold for a network incorporating geographical
e�ects, in which each vertex occupiesa position in a low-
dimensional space(t ypically two-dimensional) and prob-
abilit y of connection is higher for vertex pairs that are
closetogether in that space.A similar spatial model has
beenstudied by Rozenfeldet al. [359], and both models
are closely related to continuum percolation [278].

An issuerelated to resilienceto vertex deletion, is the
issue of cascading failures. In some networks, such as
electrical power networks, that carry load or distribute
a resource,the operation of the network is such that the
failure of one vertex or edgeresults in the redistribution
of the load on that vertex or edgeto other nearby ver-
tices or edges. If vertices or edgesfail when the load on
them exceedssomemaximum capacity, then this mech-
anism can result in a cascadingfailure or avalanche in
which the redistribution of load pushesa vertex or edge
over its threshold and causesit to fail, leading to fur-
ther redistribution. Such a cascadingfailure in the west-
ern United States in August 1996resulted in the spread
of what was initially a small power outage in El Paso,
Texas through six states as far as Oregon and Califor-
nia, leaving several million electricity customerswithout
power. Watts [413] has given a simple model of this pro-
cessthat canbemappedonto a typeof percolation model
and hencecan be solved using generating function meth-
ods similar to those for simple vertex removal processes
above.

In Watts's model, a vertex i fails if a given fraction
� i of its neighbors have failed, where the quantities f � i g
are iid variables drawn from a distribution f (� ). The
model is seededby the initial failure of some non-zero
density � 0 of vertices, chosenuniformly at random. It is
assumedthat � 0 � 1, so that the initial seedconsists,
to leading order, of single isolated vertices. Watts con-
siders networks with the topology of the con�guration
model (Sec. IV.B.1), for which, becauseof the vanishing
density of short loops making the networks tree-like at
small length-scales,each vertex will have at most only
a single failed neighboring vertex in the initial stagesof
the cascade,and hence will fail itself if and only if its
threshold for failure satis�es � < 1=k, where k is its de-
gree. Watts calls vertices satisfying this criterion vul-
nerable. The probabilit y of a vertex being vulnerable is
qk =

R1=k
0 f (� ) d� , and the cascadewill spread only if

such vertices connect to form a percolating (i.e., exten-
sive) cluster on the network. Thus the problem maps
directly onto the generalizedpercolation processstudied
by Callaway et al. [81] above, allowing us to �nd a condi-
tion for the spreadof the initial seedto give a large-scale
cascade.The percolation model applies only to the vul-
nerableverticeshowever, so to calculate the �nal sizesof
cascadesWatts performs numerical simulations.

Models of cascadingfailure have also beenstudied by
Holme and Kim [195, 199], by Moreno et al. [297, 298]
and by Motter and Lai [305]. In the model of Holme
and Kim, for instance, load on a vertex is quanti�ed by
the betweennesscentralit y of the vertex (seeSec.I I I.I),
and vertices fail when the betweennessexceedsa given
threshold. Holme and Kim give simulation results for the
avalanche sizedistribution in their model.

B. Epidemiological processes

One of the original, and still primary, reasons for
studying networks is to understand the mechanisms by
which diseasesand other things (information, computer
viruses, rumors) spread over them. For instance, the
main reason for the study of networks of sexual con-
tact [45, 154, 186, 218, 243, 265, 266, 303, 358] (Sec.I I.A)
is to help us understand and perhapscontrol the spread
of sexually transmitted diseases. Similarly one studies
networks of email contact [136, 321] to learn how com-
puter viruses spread.34

1. The SIR model

The simplest model of the spread of a diseaseover a
network is the SIR model of epidemic disease[23, 26,
192].35 This model, �rst formulated, though never pub-
lished, by Lowell Reed and Wade Hampton Frost in the
1920s,divides the population into three classes:suscep-
tible (S), meaning they don't have the diseaseof interest
but can catch it if exposedto someonewho does, infec-
tiv e36 (I) meaning they have the diseaseand can pass
it on, and recovered (R), meaning they have recovered
from the diseaseand have permanent immunit y, so that
they can never get it again or passit on. (Someauthors

34 Computer viruses are an interesting case in that the networks
over which they spread are normally directed, unlik e the contact
networks for most human diseases[229].

35 One distinguishes between an epidemic diseasesuch as in
uenza,
which sweepsthrough the population rapidly and infects a signif-
icant fraction of individuals in a short outbreak, and an endemic
diseasesuch as measles,which persists within the population at
a level roughly constant over time. The SIR model is a model of
the former. The SIS model discussed in Sec. VI I I.B.2 is a model
of the latter.

36 In everyday parlance the more common word is \infectious," but
infectiv e is the standard term among epidemiologists.
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consider the R to stand for \removed," a general term
that encompassesalsothe possibility that peoplemay die
of the diseaseand remove themselves from the infective
pool in that fashion. Others considerthe R to mean \re-
fractory," which is the common term among those who
study the closely related area of reaction di�usion pro-
cesses[386, 424].)

In traditional mathematical epidemiology[23, 26, 192],
one then assumesthat any susceptible individual has a
uniform probabilit y � per unit time of catching the dis-
easefrom any infective oneand that infective individuals
recover and becomeimmune at somestochastically con-
stant rate 
 . The fractions s, i and r of individuals in
the statesS, I and R are then governedby the di�eren tial
equations

ds
dt

= � � is;
di
dt

= � is � 
 i;
dr
dt

= 
 i: (83)

Models of this type are called ful ly mixed, and although
they have taught us much about the basic dynamics of
diseases,they are obviously unrealistic in their assump-
tions. In reality diseasescan only spread between those
individuals who have actual physical contact of one sort
or another, and the structure of the contact network is
important to the pattern of development of the disease.

The SIR model can be generalized in a straightfor-
ward manner to an epidemic taking place on a network,
although the resulting dynamical systemis substantially
more complicated than its fully mixed counterpart. The
important observation that allows us to make progress,
�rst made by Grassberger [179], is that the model can
be mapped exactly onto bond percolation on the same
network. Indeed, as pointed out by Sander et al. [360],
signi�cantly more generalmodels can also be mapped to
percolation, in which transmission probabilit y between
pairs of individuals and the times for which individuals
remain infective both vary, but are chosenin iid fashion
from someappropriate distributions. Let ussupposethat
the distribution of infection rates � , de�ned as the prob-
abilit y per unit time that an infective individual will pass
the diseaseonto a particular susceptiblenetwork neigh-
bor, is drawn from a distribution Pi (� ). And suppose
that the recovery rate 
 is drawn from another distribu-
tion Pr (
 ). Then the resulting model can be shown [315]
to be equivalent to uniform bond percolation on the same
network with edgeoccupation probabilit y

T = 1 �
Z 1

0
Pi (� )Pr (
 ) e� � =
 d� d
 : (84)

The extraction of predictions about epidemics from
the percolation model is simple: the distribution of per-
colation clusters (i.e., components connected by occu-
pied edges)corresponds to the distribution of the sizes
of diseaseoutbreaks that start with a randomly chosen
initial carrier, the percolation transition corresponds to
the \epidemic threshold" of epidemiology, above which
an epidemic outbreak is possible(i.e., one that infects a
non-zero fraction of the population in the limit of large

system size), and the sizeof the giant component above
this transition corresponds to the size of the epidemic.
What the mapping cannot tell us, but standard epidemi-
ological models can, is the time progressionof a disease
outbreak. The mapping gives us results only for the ul-
timate outcome of the diseasein the limit of long times,
in which all individuals are in either the S or R states,
and no new casesof the diseaseare occurring. Nonethe-
less, there is much to be learned by studying even the
non-time-varying properties of the model.

The solution of bond percolation for the con�guration
model was given by Callaway et al. [81], who showed
that, for uniform edgeoccupation probabilit y T, the dis-
tribution of the sizesof clusters (i.e., diseaseoutbreaks
in epidemiologicallanguage)is generatedby the function
H0(x) where

H0(x) = xG0(H1(x)) ; (85a)

H1(x) = 1 � T + TxG1(H1(x)) ; (85b)

where G0(x) and G1(x) are de�ned in Eqs. (23). This
gives an epidemic transition that takes place at Tc =
1=G0

1(1), a mean outbreak sizehsi given by

hsi = H 0
0(1) = T

�
1 +

TG0
0(1)

1 � TG0
1(1)

�
; (86)

and an epidemicoutbreak that a�ects a fraction S of the
network, where

S = 1 � G0(u); u = 1 � T + TG1(u): (87)

Similar solutions can be found for a wide variety of other
model networks, including networks with correlations of
various kinds betweenthe rates of infection or the infec-
tivit y times [315], networks with correlations betweenthe
degreesof vertices[301], and networks with morecomplex
structure, such as di�eren t typesof vertices [21, 315].

One of the most important conclusionsof this work
is for the caseof networks with power-law degreedis-
tributions, for which, as in the caseof site percolation
(Sec. VI I I.A), there is no non-zero epidemic threshold
so long as the exponent of the power law is lessthan 3.
Sincemost power-law networks satisfy this condition, we
expect diseasesalways to propagate in these networks,
regardlessof transmission probabilit y between individu-
als, a point that was �rst made, in the context of models
of computer virus epidemiology, by Pastor-Satorras and
Vespignani[333, 336], although, as pointed out by Lloyd
and May [267, 277], precursorsof the sameresult can be
seenin earlier work of May and Anderson [276]. May
and Anderson studied traditional (fully mixed) di�eren-
tial equation modelsof epidemics,without network struc-
ture, but they divided the population into activit y classes
with di�eren t valuesof the infection rate � . They showed
that the variation of the number of infective individuals
over time depends on the variance of this rate over the
classes,and in particular that the diseasealways multi-
plies exponentially if the variancediverges|precisely the
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situation in a network with a power-law degreedistribu-
tion and exponent lessthan 3.

The conclusion that diseasesalways spread on scale-
free networks has been revised somewhat in the light
of later discoveries. In particular, there may be a non-
zero percolation threshold for certain types of correla-
tions between vertices [56{59, 301, 400], if the network
is embedded in a low-dimensional (rather than in�nite-
dimensional) space[359, 408], or if the network has high
transitivit y [139] (seeSec.I I I.B).

An interesting combination of the ideas of epidemiol-
ogy with those of network resilienceexplored in the pre-
ceding section arises when one considersvaccination of
a population against the spread of a disease. Vaccina-
tion can be regarded as the removal from a network of
someparticular set of vertices, and this in turn can be
modeled as a site percolation process.Thus one is led to
considerationof joint site/b ond percolation on networks,
which has also been solved, in the simplest uniformly
random case, by Callaway et al. [81]. If the site per-
colation is correlated with vertex degree(as in Eq. (78)
and following), for example removing the vertices with
highest degree,then one has a model for targeted vacci-
nation strategiesalso. A good discussionhas beengiven
by Pastor-Satorras and Vespignani [335]. As with the
modelsof Sec.VI I I.A, one�nds that networks tend to be
particularly vulnerable to removal of their highest degree
vertices, so this kind of targeted vaccination is expected
to be particularly e�ectiv e. (This of course is not news
to the public health communit y, who have long followed
a policy of focusing their most aggressive diseasepre-
vention e�orts on the \core communities" of high-degree
vertices in a network.)

Unfortunately, it is not always easyto �nd the highest
degreevertices in a social network. The number of sex-
ual contacts a personhashad cannormally only be found
by asking them, and perhaps not even then. An inter-
esting method that circumvents this problem has been
suggestedby Cohen et al. [92]. They observe that since
the probabilit y of reaching a particular vertex by follow-
ing a randomly chosenedgein a graph is proportional to
the vertex's degree(Sec.IV.B), one is more likely to �nd
high-degreevertices by following edgesthan by choosing
verticesat random. They proposethus that a population
can be immunized by choosing a random person from
that population and vaccinating a friend of that person,
and then repeating the process.They show both by an-
alytic calculations and by computer simulation that this
strategy is substantially more e�ectiv e than random vac-
cination. In a sense,in fact, this strategy is already in
use. The \contact tracing" methods [251] usedto control
sexually transmitted diseases,and the \ring vaccination"
method [181, 308] usedto control smallpox and foot-and-
mouth diseaseare both examplesof roughly this type of
acquaintance vaccination.

2. The SIS model

Not all diseasesconfer immunit y on their survivors.
Diseasesthat, for instance, are not self-limiting but can
be cured by medicine,can usually be caught again imme-
diately by an unlucky patient. Tuberculosisand gonor-
rhea are two much-studied examples. Computer viruses
also fall into this category; they can be \cured" by anti-
virus software, but without a permanent virus-checking
program the computer hasno way to fend o� subsequent
attacks by the samevirus.

With diseasesof this kind carriers that are cured move
from the infective pool not to a recovered pool, but back
into the susceptibleone. A model with this type of dy-
namics is called an SIS model, for obvious reasons. In
the simplest, fully mixed, single-population case,its dy-
namics are described by the di�eren tial equations

ds
dt

= � � is + 
 i;
di
dt

= � is � 
 i; (88)

where � and 
 are, as before, the infection and recovery
rates.

The SIS model is a model of endemic disease. Since
carriers can be infected many times, it is possible, and
doeshappen in someparameter regimes,that the disease
will persist inde�nitely , circulating around the population
and never dying out. The equivalent of the SIR epidemic
transition is the phaseboundary betweenthe parameter
regimesin which the diseasepersistsand those in which
it doesnot.

The SIS model cannot be solved exactly on a net-
work as the SIR model can, but a detailed mean-�eld
treatment hasbeengiven by Pastor-Satorrasand Vespig-
nani [332, 333] for SIS epidemics on the con�guration
model. Their approach is basedon the di�eren tial equa-
tions, Eq. (88), but they allow the rate of infection �
to vary betweenmembers of the population, rather than
holding it constant. (This is similar to the approach of
May and Anderson [276] for the SIR model, discussed
in Sec.VI I I.B.1, but is more general, since it does not
involve the division of the population into a binned set
of activit y classes,asthe May{Anderson approach does.)
The calculation proceedsas follows.

The quantit y � i appearing in (88) represents the av-
erage rate at which susceptible individuals become in-
fected by their neighbors. For a vertex of degree k,
Pastor-Satorras and Vespignani make the replacement
� i ! k� �( � ), where � is the rate of infection via con-
tact with a single infective individual and �( � ) is the
probabilit y that the neighbor at the other end of an edge
will in fact be infective. Note that � is a function of �
since presumably the probabilit y of being infective will
increaseas the probabilit y of passingon the diseasein-
creases.The remaining occurrencesof the variabless and
i Pastor-Satorras and Vespignani replace by sk and i k ,
which are degree-dependent generalizationsrepresenting
the fraction of verticesof degreek that are susceptibleor
infective. Then, noticing that i k and sk obey i k + sk = 1,
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we can rewrite (88) as the single di�eren tial equation

di k

dt
= k� �( � )(1 � i k ) � i k ; (89)

wherewehave, without lossof generality, set the recovery
rate 
 equal to 1. There is an approximation inherent
in this formulation, since we have assumedthat �( � )
is the same for all vertices, when in general it too will
be dependent on vertex degree. This is in the nature
of a mean-�eld approximation, and can be expected to
give a reasonableguide to the qualitativ e behavior of the
system,although certain properties (particularly closeto
the phasetransition) may bequantitativ ely mispredicted.

Looking for stationary solutions, we �nd

i k =
k� �( � )

1 + k� �( � )
: (90)

To calculate the value of �( � ), one averagesthe proba-
bilit y i k of being infected over all vertices. Since �( � )
is de�ned as the probabilit y that the vertex at the end
of an edge is infective, i k should be averaged over the
distribution kpk =z of the degreesof such vertices (see
Sec. IV.B.1), where z =

P
k kpk is, as usual, the mean

degree.Thus

�( � ) =
1
z

X

k

kpk i k : (91)

Eliminating i k from Eqs. (89) and (91) we then obtain
an implicit expressionfor �( � ):

�
z

X

k

k2pk

1 + k� �( � )
= 1: (92)

For particular choicesof pk this equation can be solved
for �( � ) either exactly or approximately. For instance,
for a power-law degree distribution of the form (32),
Pastor-Satorrasand Vespignanisolve it by making an in-
tegral approximation, and hence show that there is no
non-zero epidemic threshold for the SIS model in the
power-law case|the diseasewill always persist, regard-
lessof the value of the infection rate parameter � [333].
They have also generalizedthe solution to a number of
other cases,including other degree distributions [332],
�nite-sized networks [334], and models that include vac-
cination of some fraction of individuals [335, 336]. In
the latter case,they tackle both random vaccination and
vaccination targeted at the vertices with highest degree
using a method similar to that of Cohen et al. [93] in
which they calculate the e�ectiv e degreedistribution of
the network after the removal of a given set of vertices
and then apply their mean-�eld method to the resulting
network. As we would expect from the results of Co-
hen et al., propagation of the diseaseturns out to be rela-
tiv ely robust against random vaccination, at least in net-
works with right-skewed degreedistributions, but highly
susceptibleto vaccination of the highest-degreeindivid-
uals. The mean-�eld method has also been applied to

networks with degreecorrelations of the type discussed
in Sec.I I I.F, by Bogu~n�a et al. [58]. Of particular note is
their �nding that for the caseof power-law degreedistri-
butions neither assortative nor disassortative mixing by
degreecan produce a non-zeroepidemic threshold in the
SIS model, at least within the mean-�eld approximation.
This contrasts with the casefor the SIR model, where
it was found that disassortative mixing can produce a
non-zerothreshold [400].

The mean-�eld method can also be applied to the SIR
model [24, 299]. Although we have an exact solution for
the SIR model as described in Sec.VI I I.B.1, that solu-
tion can only tell us about the long-time behavior of an
outbreak|its expected�nal sizeand soforth. The mean-
�eld method, although approximate, can tell us about
the time evolution of an outbreak, so the two methods
are complementary. The mean-�eld method for the SIR
model can alsobe usedto treat approximately the e�ects
of network transitivit y [24, 154, 228, 235].

C. Search on networks

Another example of a processtaking place on a net-
work that hasimportant practical applications is network
search. Supposesomeresourceof interest is stored at the
verticesof a network, such as information on Web pages,
or computer �les on a distributed databaseor �le-sharing
network. One would like to determine rapidly where on
the network a particular item of interest can be found
(or determine that it is not on the network at all). One
way of doing this, which is usedby Web search engines,
is simply to catalog exhaustively (or \crawl") the en-
tire network, creating a distilled local map of the data
found. Such a strategy is favored in caseswhere there
is a heavy communication cost to searching the network
in real time, so that it makes senseto create a local in-
dex. While performing a network crawl is, in principle,
straightforward (although in practice it may be techni-
cally very challenging [72]), there are nonethelesssome
interesting theoretical questionsarising.

1. Exhaustivenetwork search

One of the triumphs of recent work on networks has
been the development of e�ectiv e algorithms for mining
network crawl data for information of interest, particu-
larly in the context of the World Wide Web. The im-
portant tric k here turns out to be to usethe information
contained in the edgesof the network as well as in the
vertices. Since the edges,or hyperlinks, in the World
Wide Web are created by people in order to highlight
connectionsbetweenthe contents of pairs of pages,their
structure contains information about page content and
relevance which can help us to improve search perfor-
mance. The good search enginestherefore make a local
catalog not only of the contents of web pages,but also
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of which oneslink to which others. Then when a query
is made of the database, usually in the form of a tex-
tual string of interest, the typical strategy would be to
select a subset of pagesfrom the databaseby searching
for that string, and then to rank the results using the
edge information. The classic algorithm, due to Brin
and Page[72, 328], is essentially identical in its simplest
form to the eigenvector centralit y long usedin social net-
work analysis[66, 67, 363, 409]. Each vertex i is assigned
a weight x i > 0, which is de�ned to be proportional to
the sum of the weights of all vertices that point to i :
x i = � � 1 P

j A ij x j for some� > 0, or in matrix form

Ax = � x; (93)

where A is the (asymmetric) adjacency matrix of the
graph, whoseelements are A ij , and x is the vector whose
elements are the x i . This of course means that the
weights we want are an eigenvector of the adjacencyma-
trix with eigenvalue � and, provided the network is con-
nected (there are no separatecomponents), the Perron{
Frobenius theorem then tells us that there is only one
eigenvector with all weights non-negative, which is the
unique eigenvector corresponding to the largest eigen-
value. This eigenvector can be found trivially by re-
peated multiplication of the adjacency matrix into any
initial non-zerovector which is not itself an eigenvector.

This algorithm, which is implemented (along with
many additional tric ks) in the widely usedsearch engine
Google, appears to be highly e�ectiv e. In essencethe al-
gorithm makes the assumption that a page is important
if it is pointed to by other important pages. A more so-
phisticated versionof the sameidea hasbeenput forward
by Kleinberg [236, 237], who notes that, since the Web
is a directed network, one can ask not only about which
verticespoint to a vertex of interest, but alsoabout which
vertices are pointed to by that vertex. This then leads
to two di�eren t weights x i and yi for each vertex. Klein-
berg refersto a vertex that is pointed to by highly ranked
vertices as an authorit y|it is likely to contain relevant
information. Such a vertex getsa weight x i that is large.
A vertex that points to highly ranked vertices is referred
to as a hub; while it may not contain directly relevant
information, it can tell you where to �nd such informa-
tion. It gets a weight yi that is large. (Certainly it is
possiblefor a vertex to have both weights large; there is
no reasonwhy the samepagecannot be both a hub and
an authorit y.) The appropriate generalizationof Eq. (93)
for the two weights is then

Ay = � x; A T x = � y ; (94)

where A T is the transposeof A . Most often we are in-
terested in the authorit y weights which, eliminating y ,
obey AA T x = �� x , so that the primary di�erence be-
tweenthe method of Brin and Page[72] and the method
of Kleinberg is the replacement of the adjacencymatrix
with the symmetric product AA T . More general forms
than (94) are also possible. One could for exampleallow

the authorit y weight of a vertex to depend on the author-
it y weights of the vertices that point to it (and not just
their hub weights, as in Eq. (94)). This leadsto a model
that interpolates smoothly between the Brin{P age and
Kleinberg methods. As far aswe are aware however, this
hasnot beentried. Neither hasKleinberg's method been
implemented yet in a commercial web search engine, to
the best of our knowledge.

The methodsdescribedherecanalsobeusedfor search
on other directed information networks. Kleinberg's
method is be particularly suitable for ranking publica-
tions in citation networks, for example. The Citeseer lit-
erature search engineimplements a form of article rank-
ing of this type.

2. Guidednetwork search

An alternativ e approach to searching a network is to
perform a guided search. Guided search strategies may
be appropriate for certain kinds of Web search, particu-
larly searchesfor specializedcontent that could bemissed
by generic search engines(whose coverage tends to be
quite poor), and also for searching on other typesof net-
works such as distributed databases. Exhaustive search
of the type discussedin the preceding section crawls a
network onceto createan index of the data found, which
is then stored and searched locally. Guided searchesper-
form small special-purposecrawls for every search query,
crawling only a small fraction of the network, but doing
soin an intelligent fashion that deliberately seeksout the
network vertices most likely to contain relevant informa-
tion.

Onepractical exampleof a guidedsearch is the special-
ized Web crawler or \spider" of Menczeret al. [280, 281].
This is a program that performs a Web crawl to �nd re-
sults for a particular query. The method used is a type
of genetic algorithm [285] or enrichment method [180]
that in its simplest form has a number of \agents" that
start crawling the Web at random, looking for pagesthat
contain, for example, particular words or sets of words
given by the user. Agents are ranked according to their
successat �nding matches to the words of interest and
those that are least successfulare killed o�. Those that
are most successfulare duplicated so that the density
of agents will be high in regions of the Web graph that
contain many pages that look promising. After some
speci�ed amount of time has passed,the search is halted
and a list of the most promising pagesfound so far is
presented to the user. The method relies for its success
on the assumption that pagesthat contain information
on a particular topic tend to be clustered together in lo-
cal regions of the graph. Other than this however, the
algorithm makes little useof statistical properties of the
structure of the graph.

Adamic et al. [5, 6] have given a completely di�eren t
algorithm that directly exploits network structure and
is designedfor useon peer-to-peer networks. Their algo-
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rithm makesuseof the skeweddegreedistribution of most
networks to �nd the desired results quickly. It works as
follows.

Simple breadth-�rst search can be thought of as a
query that starts from a single source vertex on a net-
work. The query goesout to all neighbors of the source
vertex and says, \Ha ve you got the information I am
looking for?" Each neighbor either replies \Y es, I have
it," in which casethe search is over, or \No, I don't, but
I have forwarded your request to all of my neighbors."
Each of their neighbors, when they receive the request,
either recognizesit asonethey have seenbefore,in which
casethey discard it, or they repeat the processas above.
A query of this kind takes aggregatee�ort O(n) in the
network size. Adamic et al. proposeto modify this algo-
rithm as follows. The initial sourcevertex again queries
each of its neighbors for the desired information. But
now the reply is either \Y es, I have it" or \No, I don't,
and I have k neighbors," wherek is the degreeof the ver-
tex in question. Upon receiving replies of the latter type
from each of its neighbors, the sourcevertex �nds which
of its neighbors has the highest value of k and passes
the responsibilit y for the query like a runner's baton to
that neighbor, who then repeats the entire processwith
their neighbors. (If the highest-degreevertex hasalready
handled the query in the past, then the secondhighest
is chosen,and so forth; complete recursive back-tracking
is usedto make sure the algorithm never gets stuck in a
dead end.)

The upshot of this strategy is that the baton gets
passed rapidly up a chain of increasing vertex degree
until it reaches the highest degreevertices in the net-
work. On networks with highly skewed degreedistribu-
tions, particularly scale-free(i.e., power-law) networks,
the neighbors of the high-degreevertices account for a
signi�cant fraction of all the vertices in the network. On
average therefore, we need only go a few steps along
the chain before we �nd a vertex with a neighbor that
has the information we are looking for. The maximum
degreeon a scale-freenetwork scaleswith network size
as n1=( � � 1) (see Sec. I I I.C.2), and hence the number
of steps required to search O(n) vertices is of order
n=n1=( � � 1) = n( � � 2)=( � � 1) , which lies between O(n1=2)
and O(log n) for 2 � � � 3, which is the range gener-
ally observed in power-law networks (seeTable I I). This
is a signi�cant improvement over the O(n) of the sim-
ple breadth-�rst search, especially for the smaller values
of � .

This result di�ers from that given by Adamic et al. [5,
6], who adopted the more conservative assumption that
the maximum degreegoesasn1=� [8], which givessigni�-
cantly poorer search times betweenO(n2=3) and O(n1=2).
They point out however that if each vertex to which the
baton passesis allowed to query not only its immediate
network neighbors but alsoits secondneighbors, then the
performanceimprovesmarkedly to O(n2(1 � 2=� ) ).

The algorithm of Adamic et al. hasbeentested numer-
ically on graphs with the structure of the con�guration

model [5] (Sec. IV.B.1) and the Barab�asi{Alb ert prefer-
ential attachment model [5, 232] (Sec.VI I.B), and shows
behavior in reasonableagreement with the expectedscal-
ing forms.

The reader might be forgiven for feeling that theseal-
gorithms are cheating a little, since the running time of
the algorithm is measuredby the number of hands the
baton passesthrough. If one measuresit in terms of the
number of queriesthat must be respondedto by network
vertices, then the algorithm is still O(n), just as the sim-
ple breadth-�rst search is. Adamic et al. suggest that
each vertex therefore keep a local directory or index of
the information (such asdata �les) stored at neighboring
vertices, so that queriesconcerningthose vertices can be
resolved locally. For distributed databasesand �le shar-
ing networks, where bandwidth, in terms of communi-
cation overhead betweenvertices, is the costly resource,
this strategy really does improve scaling with network
size,reducing overheadper query to O(log n) in the best
case.

3. Network navigation

The work of Adamic et al. [5, 6] discussedin the pre-
ceding section considershow one can design a network
search algorithm to exploit statistical featuresof network
structure to improve performance. A complementary
question has been considered by Kleinberg [238, 239]:
Can one design network structures to make a particu-
lar search algorithm perform well? Kleinberg's work is
motivated by the observation, discussedin Sec. I I I.H,
that people are able to navigate social networks e�-
ciently with only local information about network struc-
ture. Furthermore, this abilit y does not appear to de-
pend on any particularly sophisticated behavior on the
part of the people. When performing the letter-passing
task of Milgram [283, 393], for instance, in which partic-
ipants are asked to communicate a letter or messageto a
designatedtarget personby passingit through their ac-
quaintance network (Sec.I I.A), the search for the target
is performed, roughly speaking, using a simple \greedy
algorithm." That is, at each step along the way the letter
is passedto the person that the current holder believes
to be closestto the target. (This in fact is preciselyhow
participants were instructed to act in Milgram's experi-
ments.) The fact that the letter often reachesthe target
in only a short time then indicates that the network it-
self must have somespecial properties, since the search
algorithm clearly doesn't.

Kleinberg suggesteda simple model that illustrates
this behavior. His model is a variant of the small-world
model of Watts and Strogatz [412, 416] (Sec. VI) in
which shortcuts are added between pairs of sites on a
regular lattice (a square lattice in Kleinberg's studies).
Rather than adding theseshortcuts uniformly at random
as Watts and Strogatz proposed, Kleinberg adds them
in a biasedfashion, with shortcuts more likely to fall be-
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tweenlattice sitesthat areclosetogether in the Euclidean
spacede�ned by the lattice. The probabilit y of a short-
cut falling betweentwo sites goesas r � � , where r is the
distancebetweenthe sitesand � is a constant. Kleinberg
provesa lower bound on the meantime t (i.e., number of
steps) taken by the greedyalgorithm to �nd a randomly
chosentarget on such a network. His bound is t � cn�

where c is independent of n and

� =
�

(2 � � )=3 for 0 � � < 2
(� � 2)=(� � 1) for � > 2.

(95)

Thus the best performanceof the algorithm is when � is
closeto 2, and precisely at � = 2 the greedy algorithm
should be capableof �nding the target in O(log n) steps.
Kleinberg alsogave computer simulation results con�rm-
ing this result. More generally, for networks built on an
underlying lattice in d dimensions, the optimal perfor-
manceof the greedyalgorithm occursat � = d [238, 239].
(Seealso Ref. 193 for somerigorous results on the per-
formance of greedy algorithms on Watts{Strogatz type
networks.)

Kleinberg's work shows that many networks do not al-
low fast search using a simple algorithm such asa greedy
algorithm, but that it is possibleto designnetworks that
do allow such fast search. The particular model he stud-
ieshowever is quite specialized,and certainly not a good
representation of the real social networks that inspired his
investigations. An alternativ e model that shows similar
behavior to Kleinberg's, but which may shedmore light
on the true structure of social networks, has been pro-
posedby Watts et al. [415] and independently by Klein-
berg [240]. The \index" experiments of Killw orth and
Bernard [50, 230] indicate that people in fact navigate
social networks by looking for common featuresbetween
their acquaintances and the target, such as geograph-
ical location or occupation. This suggestsa model in
which individuals are grouped (at least in the partici-
pants minds) into categoriesaccording, for instance, to
their jobs. These categories may then themselves be
grouped in to supercategories,and so forth, creating a
tree-like hierarchy of organization that de�nes a \social
distance" betweenany two people: the social distancebe-
tweentwo individuals is measuredby the height of lowest
level in tree at which the two are connected|see Fig. 15.

The tree however is not the network, it is merely a
mental construct that a�ects the way the network grows.
It is assumedthat the probabilit y of their being an edge
betweentwo vertices is greater the shorter the social dis-
tance betweenthosevertices, and both Watts et al. [415]
and Kleinberg [240] assumedthat this probabilit y falls o�
exponentially with social distance. The greedyalgorithm
for communicating a messageto a target person then
speci�es that the messageshould at each step be passed
to that network neighbor of the current holder who has
the shortest social distance to the target. Watts et al.
showed by computer simulation that such an algorithm
performs well over a broad range of parameters of the

groups of individuals

FIG. 15 The hierarchical \social distance" tree proposed by
Watts et al. [415] and by Klein berg [240]. Individuals are
grouped together by occupation, location, interest, etc., and
then those groups are grouped together into bigger groups
and so forth. The social distance between two individuals
is measured by how far one must go up the tree to �nd the
lowest \common ancestor" of the pair.

model, and Kleinberg showed that for appropriate pa-
rameter choices the search can be completed in time
again O(log n).

While this model is primarily a model of search on so-
cial networks (or possibly the Web [240]), Watts et al.
also suggestedthat it could be used as a model for de-
signednetworks. If one could arrange for items in a dis-
tributed databaseto be grouped hierarchically according
to someidenti�able characteristics, then a greedy algo-
rithm that is aware of those characteristics should be
able to �nd a desired element in the database quickly,
possibly in time only logarithmic in the size of the
database. This idea has been studied in more detail by
Iamnitchi et al. [205] and Arenas et al. [25].

One disadvantage of the hierarchical organizational
model is that in reality the categoriesinto which network
verticesfall almost certainly overlap, whereasin the hier-
archical model they are disjoint. Kleinberg hasproposed
a generalization of the model that allows for overlapping
categoriesand shows search behavior qualitativ ely simi-
lar to the hierarchical model [240].

D. Phase transitions on networks

Another group of papers has dealt with the behavior
on networks of traditional statistical mechanical models
that show phase transitions. For example, several au-
thors have studied spin models such as the Ising model
on networks of variouskinds. Barrat and Weigt [40] stud-
ied the Ising model on networks with the topology of the
small-world model [416] (seeSec.VI) using replica meth-
ods. They found, unsurprisingly, that in the limit n ! 1
the model has a �nite-temp erature transition for all val-
ues of the shortcut density p > 0. Further results for
Ising models on small-world networks can be found in
Refs. 191, 202, 256, 337, 429, and the model has also
been studied on random graphs [112, 264] and on net-
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works with the topology of the Barab�asi{Alb ert growing
network model [18, 51] (SecVI I.B).

The motivation behind studies of spin models on
networks is usually either that they can be regarded
as simple models of opinion formation in social net-
works [426] or that they provide general insight into
the e�ects of network topology on phasetransition pro-
cesses.There are however other more direct approaches
to both of these issues. Opinion formation can be stud-
ied more directly using actual opinion formation mod-
els [84, 108, 163, 381, 390, 403]. And Goltsev et al. [178]
have examined phase transition behavior on networks
using the general framework known as Landau theory.
They �nd that the critical behavior of models on a net-
work depends in generalon the degreedistribution, and
is in particular strongly a�ected by power-law degreedis-
tributions.

One classof networked systemsshowing a phasetran-
sition that is of real interest is the classof NP-hard com-
putational problemssuch assatis�abilit y and colorabilit y
that show solvabilit y transitions. The simplest example
of such a system is the colorabilit y problem, which is re-
lated to problems in operations research such asschedul-
ing problems and also to the Potts model of statistical
mechanics. In this problem a number of items (vertices)
are divided into a number of groups (colors). Somepairs
of vertices cannot be in the same group. Such a con-
straint is represented by placing an edgebetween those
vertices, so that the set of all constraints forms a graph.
A solution to the problem of satisfying all constraints si-
multaneously (if a solution exists) is then equivalent to
�nding a coloring of the graph such that no two adja-
cent vertices have the samecolor. Problems of this type
are found to show a phasetransition betweena region of
low graph density (low ratio of edgesto vertices) in which
most graphsare colorable,to oneof high density in which
most are not. A considerableamount of work has been
carried out on this and similar problems in the computer
sciencecommunit y [131]. However, this work hasprimar-
ily beenrestricted to Poissonrandom graphs; it is largely
an open question how the results will change when we
look at more realistic network topologies. Walsh [406]
has looked at colorabilit y in the Watts{Strogatz small-
world model (Sec. VI), and found that these networks
are easily colorable for both small and large valuesof the
shortcut density parameter p, but harder to color in in-
termediate regimes. V�azquezand Weigt [402] examined
the related problem of vertex covers and found that on
generalizedrandom graphs solutions are harder to �nd
for networks with strong degreecorrelations of the type
discussedin Sec.I I I.F.

E. Other processeson networks

Preliminary investigations, primarily numerical in na-
ture, have been carried out of the behavior of various
other processeson networks. A number of authors have

looked at di�usion processes.Random walks, for exam-
ple, have been examined by Jespersenet al. [216], Pan-
dit and Amritk ar [329] and Lahtinen et al. [258, 259].
Solutions of the di�usion equation can be expressedas
linear combinations of eigenvectors of the graph Lapla-
cian, which hasled a number of authors to investigatethe
Laplacian and its eigenvalue spectrum [150, 173, 289].
Discrete dynamical processeshave also attracted some
attention. One of the earliest examplesof a statistical
model of a networked system falls in this category, the
random Boolean net of Kau�man [11, 16, 97, 98, 159,
224{226, 373], which is a model of a genetic regulatory
network (seeSec.I I.D). Cellular automata on networks
have beeninvestigatedby Watts and Strogatz [412, 416],
and voter models and models of opinion formation can
also be regarded as cellular automata [84, 256, 403].
Iterated gameson networks have been investigated by
several authors [1, 135, 231, 416], and some interesting
di�erences are seenbetween behavior on networks and
on regular lattices. Other topics of investigation have
included weakly coupled oscillators [37, 201, 416], neu-
ral networks [257, 382], and self-organizedcritical mod-
els [106, 252, 300]. A useful discussionof the behavior of
dynamical systemson networks has beengiven by Stro-
gatz [387].

IX. SUMMARY AND DIRECTIONS FOR FUTURE
RESEARCH

In this article we have reviewed somerecent work on
the structure and function of networked systems. Work
in this area has beenmotivated to a high degreeby em-
pirical studies of real-world networks such as the Inter-
net, the World Wide Web, social networks, collaboration
networks, citation networks, and a variety of biological
networks. We have reviewed these empirical studies in
Secs.I I and I I I, focusingon a number of statistical prop-
erties of networks that have receivedparticular attention,
including path lengths, degreedistributions, clustering,
and resilience. Quantitativ e measurements for a vari-
ety of networks are summarized in Table I I. The most
important observation to come out of studies such as
these is that networks are generally very far from ran-
dom. They have highly distinctiv e statistical signatures,
some of which, such as high clustering coe�cien ts and
highly skewed degreedistributions, are common to net-
works of a wide variety of types.

Inspired by these observations many researchers have
proposed models of networks that typically seek to ex-
plain either how networks come to have the observed
structure, or what the expected e�ects of that struc-
ture will be. The largest portion of this review has been
taken up with discussionof these models, covering ran-
dom graph models and their generalizations (Sec. IV),
Markov graphs(Sec.V), the small-world model (Sec.VI),
and modelsof network growth, particularly the preferen-
tial attachment models (Sec.VI I).
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In the last part of this review (Sec.VI I I) we have dis-
cussedwork on the behavior of processesthat take place
on networks. The notable successesin this area so far
have beenstudiesof the spreadof infection over networks
such as social networks or computer networks, and stud-
ies of the e�ect of the failure of network nodes on per-
formance of communications networks. Some progress
has also be made on phasetransitions on networks and
on dynamical systemson networks, particularly discrete
dynamical systems.

In looking forward to future developments in this area
it is clear that there is much to be done. The study of
complex networks is still in its infancy. Several general
areasstand out as promising for future research. First,
while we are beginning to understand someof the pat-
terns and statistical regularities in the structure of real-
world networks, our techniques for analyzing networks
are at present no more than a grab-bag of miscellaneous
and largely unrelated tools. We do not yet, as we do in
someother �elds, have a systematic program for charac-
terizing network structure. We count triangles on net-
works or measuredegreesequences,but we have no idea
if theseare the only important quantities to measure(al-
most certainly they are not) or even if they are the most
important. We have as yet no theoretical framework to
tell us if we are even looking in the right place. Per-
haps there are other measures,so far un-thought-of, that
are more important than those we have at present. A
true understanding of which properties of networks are

the important onesto focus on will almost certainly re-
quire us to state �rst what questions we are interested
in answering about a particular network. And knowing
how to tie the answers to these questions to structural
properties of the network is therefore also an important
goal.

Second,there is much to be done in developing more
sophisticated models of networks, both to help us un-
derstand network topology and to act as a substrate for
the study of processestaking place on networks. While
some network properties, such as degree distributions,
have been thoroughly modeled and their causesand ef-
fects well understood, others such as correlations, tran-
sitivit y, and communit y structure have not. It seems
certain that these properties will a�ect the behavior of
networked systemssubstantially , so our current lack of
suitable techniques to handle them leavesa large gap in
our understanding.

Which leads us to our third and perhaps most im-
portant direction for future study, the behavior of pro-
cessestaking place on networks. The work described in
Sec.VI I I represents only a few �rst attempts at answer-
ing questions about such processes,and yet this, in a
sense,is our ultimate goal in this �eld: to understand
the behavior and function of the networked systemswe
see around us. If we can gain such understanding, it
will give us new insight into a vast array of complex and
previously poorly understood phenomena.
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