
Handset Development



Introduction
 Quick Survey, are you comfortable with…

 Java
 .NET
 Objective-C / Cocoa
 C
 C++

 Every platform is still relevant today



General Thoughts
 Handset development is awesome!
 Debugging is super painful

 Emulator != device
 There is no console (generally)

 Handsets are more buggy than desktops
 “Bleeding Edge” hurts (and changes a lot)
 Handset experience doesn’t generalize



Summary

Play to your strengths or be
willing to work hard to catch up.



Philosophy of Mobile Development
 NOT just porting a desktop application

 Many new constraints
 Battery life
 Environmental
 User Interface / Form Factor

 Platform often dictates architecture



iPhone
 Language

 Objective-C
 C/C++

 Why?
 Sexy new device
 Easy to deploy your app (to the world)
 Fairly standard and powerful devices
 Hot market, full of early adopters, blah blah blah
 Powerful API / Framework



iPhone
 Why Not?

 New buggy platform
 Restrictive SDK
 Manual memory management
 Fairly small market
 NDA, limited support
 No IMS support



iPhone
 Workflow

 Centers around Xcode, gdb, and Interface Builder
 Initial setup is a headache
 Application distribution is not very timely
 Not bad, could be much better
 A lot to learn for non mac developers



Android
 Language

 Java, tweaked

 Why?
 Big backers (OHA)
 Java based, fairly friendly
 Muti-phone / vendor / open-ish



Android
 Why not?

 No devices until (earliest) mid-September + delays
 Java based—incomplete implementation, some bugs
 Totally inconsistent abilities... maybe
 The SDK is a bit limited
 Custom widgets somewhat difficult
 No IMS support



Android
 Workflow

 Nifty eclipse environment
 Good debugger
 Emulator (as of previous SDK) can get into Weird States

that don't fix themselves on reset
 Emulator lacks some important features (like a mic!)



JavaME
 Language

 JavaME

 Why?
 JME has great docs
 Garbage collection
 Friendly learning curve
 Deploying to test is easier than most others
 Lots of optional APIs you can use (depending on the

phone)



JavaME
 Why Not?

 “Write once, debug everywhere”
 45 VMs, 600 phone variants, 2 QA engineers

 One of the slowest solutions (in part because of the VM,
in part because of the devices)

 Unimpressive default UI toolkit
 No local SQL db by default as in Android/iPhone
 Deploying (to the world) is harder than iPhone / Android



JavaME
 IMS Support

 Ericson has a set of APIs to make SIP & IMS a bit easier
 Ericson also provides sample code
 Probably the best of the lot but we haven't done much

with it, all our previous work was with a toolkit from NSN
which is no longer maintained

 Workflow
 NetBeans and Eclipse both provide great environments to

develop in
 Sun device emulators are pretty good (for emulators)



Windows Mobile
 Language

 .NET (C#)

 Why?
 MSDN docs are generally pretty good
 Fairly mature platform
 Market penetration—WinMo has good coverage in

enterprise environments (in the US)



Windows Mobile
 IMS Support

 NSN libraries
 Reasonable docs and sample code

 Why Not?
 Desktop shoved onto a mobile phone



Other
 Series60

 Low level hackery
 Fast
 Access to pretty much everything
 Large learning curve

 BREW
 OpenMoko / LinMo






