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Abstract 
Hidden Markov models (HMM’s) have been used 

prominently and successfully in speech recognition and, 
more recently, in handwriting recognition. Conse- 
quently, they seem ideal f o r  visual recognition of com- 
plex, structured hand gestures such as are found in sign 
language. We describe a real-time HMM-based system 
for recognizing sentence level American Sign Language 
(ASL) which attains a word accuracy of 99.2% without 
explicitly modeling the fingers. 

1 Introduction 
While there are many interesting domains for ges- 

ture recognition, one of the most structured sets of ges- 
tures are those belonging to  any of the several sign lan- 
guages. In sign language, each gesture already has as- 
signed meaning, and strong rules of context and gram- 
mar may be applied to  make recognition tractable. 

To date, most work on sign language recognition has 
employed expensive wired “datagloves” which the user 
must wear [16]. In addition, these systems have mostly 
concentrated on finger signing, where the user spells 
each word with hand signs corresponding to  the letters 
of the alphabet [3]. However, most signing does not 
involve finger spelling but, instead, gestures which rep- 
resent whole words. This allows signed conversations 
to proceed at about the pace of spoken conversation. 

In this paper we describe an estensible system which 
uses a single color camera to  track hands in real time 
and interprets American Sign Language (ASL) using 
Hidden Markov Models (HMM). The hand tracking 
stage of the system does not attempt to  produce a fine- 
grain description of hand shape; studies have shown 
that such detailed information may not be necessary 
for humans to  interpret sign language [9, 131. Instead, 
the tracking process produces only a coarse descrip- 
tion of hand shape, orientation, and trajectory. While 
a skin color hand tracker has been demonstrated, we 
currently require that the user wear solid colored gloves 
to  facilitate the hand tracking frame rate and stabil- 
ity. The shape, orientation, and trajectory information 
is then input to  a HMM for recognition of the signed 
words. 

Hidden Markov models have intrinsic properties 
which make them very attractive for sign language 
recognition. Explicit segmentation on the word level 
is not necessary for either training or recognition [15]. 

Language and context models can be applied on sev- 
eral different levels, and much related development of 
this technology has already been done by the speech 
recognition community. Consequently, sign language 
recognition seems an ideal machine vision application 
of HMM technology, offering the benefits of problem 
scal>ability, well defined meanings, a pre-determined 
language model, a large base of users, and immediate 
applications for a recognizer. 

American Sign Language (ASL) is the language of 
choice for most deaf people in the United States. ASL’s 
grammar allows more flexibility in word placement 
than English and sometimes uses redundancy for em- 
pha9is. Another variant, English Sign Language has 
more in common with spoken English but is not in 
widespread use in America. ASL consists of approx- 
imately 6000 gestures of common words with finger 
spelling used to  communicate obscure words or proper 
nouins. 

Conversants in ASL may describe a person, place, 
or thing and then point to  a place in space to  tem- 
porarily store that object for later reference [13]. For 
the purposes of this experiment, this aspect of ASL 
will be ignored. Furthermore, in ASL the eyebrows are 
raised for a question, held normal for a statement, and 
furrowed for a directive. While there has been work in 
recognizing facial gestures [4], facial features will not 
be used to aid recognition in the task addressed. 

VVhile the scope of this work is not to  create a person 
independent, full lexicon system for recognizing ASL, 
a desired attribute of the system is extensibility to- 
wards this goal. Another goal is to  allow the creation 
of a real-time system by guaranteeing each separate 
component (tracking, analysis, and recognition) runs 
in real-time. This demonstrates the possibility of a 
commercial product in the future, allows easier experi- 
mentation, and simplifies archiving of test data. “Con- 
tinuous” sign language recognition of full sentences is 
desired to  demonstrate the feasibility of recognizing 
complicated series of gestures. Of course, a low error 
rate is also a high priority. In this recognition system, 
sentences of the form (‘personal pronoun, verb, noun, 
adjective, (the same) personal pronoun” are to  be rec- 
ogniized. This sentence structure emphasizes the need 
for i i  distinct grammar for ASL recognition and allows 
a large variety of meaningful sentences to  be randomly 
generated using words from each class. Table 1 shows 
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p a r t  of  speech  
pronoun 
verb 

noun 

adjective 

the words chosen for each class. Six personal pronouns, 
nine verbs, twenty nouns, and five adjectives are in- 
cluded making the total lexicon number forty words. 
The words were chosen by paging through Humphries 
e t  al. [7] and selecting those which would provide co- 
herent sentences when generating random sentences. 
At first a naive eye was used to avoid ambiguities in 
the selected signs, but this was shortly subsumed by 
the coherency constraint. 

2 Machine Sign Language Recognition 
Attempts at machine sign language recognition have 

begun to appear in the literature over the past five 
years. However, these systems have generally con- 
centrated on isolated signs and small training and 
test sets. Tamura and Kawasaki demonstrated an 
early image processing system which could recognize 
20 Japanese signs based on matching cheremes [17]. 
Charayaphan and Marble [a] demonstrated a feature 
set that could distinguish between the 31 isolated ASL 
signs in their training set (which also acted as the 
test set). Takahashi and Kishino in I161 discuss a 
Dataglove-based system that could recognize 34 of the 
46 Japanese kana alphabet gestures (user dependent) 
using a joint angle and hand orientation coding tech- 
nique. The test user made each of the 46 gestures 
10 times to  provide data for principle component and 
cluster analysis. A separate test set was created from 
five iterations of the alphabet by the user, with each 
gesture well separated in time. 

3 Use of Hidden Markov Models in 
Gesture Recognition 

While the continuous speech recognition community 
adopted HMM’s many years ago, these techniques are 
just now entering the vision community. An early ef- 
fort by Yamato e t  al. [18] uses discrete HMM’s to  
successfully recognize image sequences of six different 
tennis strokes among three subjects. This experiment 
is significant because it used a 25x25 pixel quantized 
subsampled camera image as a feature vector. Even 
with such low-level information, the model could learn 
the set of motions to perform respectable recognition 
rates. Schlenzig et  a1 [12] also use hidden Markov mod- 
els for visual gesture recognition. The gestures are lim- 
ited to  “hello,” “good-bye,” and “rotate.” The authors 
report “intuitively” defining the HMM associated with 
each gesture and imply that the normal Baum-Welch 

vocabulary 
I you he we you(p1) they 
want like lose dontwant dontlike 
love pack hit loan 
box car book table paper pants 
bicycle bottle can wristwatch 
umbrella coat pencil shoes food 
magazine fish mouse pill bowl 
red brown black gray yellow 

re-estimation method was not implemented. However, 
this study shows the continuous gesture recognition ca- 
pabilities of HMM’s by recognizing gesture sequences. 

While a substantial body of literature exists on 
HMM technology [l, 6, 10, 191, this section briefly out- 
lines a traditional discussion of the algorithms. After 
outlining the fundamental theory in training and test- 
ing of a discrete HMM, this result is then generalized 
to the continuous density case used in the experiments. 
For broader discussion of the topic, [6, 141 are recom- 
mended. 

A time domain process demonstrates a Markov 
property if the conditional probability density of the 
current event, given all present and past events, de- 
pends only on the j th  most recent events. If the cur- 
rent event depends solely on the most recent past event, 
then the process is a first order Markov process. While 
the order of words in American Sign Language is not 
truly a first order Markov process, it  is a useful assump- 
tion when considering the positions and orientations of 
the hands of the signer through time. 

The initial topology for an HMM can be determined 
by estimating how many different states are involved 
in specifying a sign. Fine tuning this topology can be 
performed empirically. While different topologies can 
be specified for each sign, a four state HMM with skip 
transitions was determined to be sufficient for this task 
(Figure 1). 

4 Hidden Markov Modeling 

Figure 1: The four state HMM used for recognition. 

There are three key problems in HMM use: evalu- 
ation, estimation, and the decoding. The evaluation 
problem is that given an observation sequence and a 
model, what is the probability that the observed se- 
quence was generated by the model (Pr  OlX)) 
tional style from [6])? If this can be eva r uated Pa- or all 
competing models for an observation sequence, then 
the model with the highest probability can be chosen 
for recognition. 

Pr(0IX) can be calculated several ways. The naive 
way is to  sum the probability over all the possible state 
sequences in a model for the observation sequence: 

T 

However, this method is exponential in time, so the 
more efficient forward-backward algorithm is used in 
practice. The following algorithm defines the forward 
variable Q and uses it to  generate Pr(0IX) ( T  are the 
initial state probabilities, a are the state transition 
probabilities, and b are the output probabilites). 

0 al(i)  = ~ i b i ( O l ) ,  for all states i (if i c S I , ~ i  = 
I;otherwise 121 ~i = 0) 
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0 Calculating a ( )  along the time axis, for t = 
2, ..., T ,  and all states j ,  compute 

0 Final probability is given by 

Pr(0lA)  = aq+) 

The first step initializes the forward variable with 
the initial probability for all states, while the second 
step inductively steps the forward variable through 
time. The final step gives the desired result Pr(OIA), 
and it can be shown by constructing a lattice of states 
and transitions through time that the computation is 
only order O(N2T) .  The backward algorithm, using a 
process similar to  the above, can also be used to  com- 
pute Pr(0lA)  and defines the convenience variable P. 

The estimation problem concerns how to adjust A 
to  maximize Pr( 0 [A)  given an observation sequence 
0. Given an initial model, which can have flat prob- 
abilities, the forward-backward algorithm allows us to  
evaluate this probability. All that remains is to  find a 
method to  improve the initial model. Unfortunately, 
an analytical solution is not known, but an iterative 
technique can be employed. 

Using the actual evidence from the training data, a 
new estimate for the respective output probability can 
be assigned: 

where yt(i) is defined as the posterior probability of 
being in state i at timet given the observation sequence 
and the model. Similarly, the evidence can be used to  
develop a new estimate of the probability of a state 
transition (iiij) and initial state probabilities ( i i i ) .  

Thus all the components of model (A) can be re- 
estimated. Since either the forward or backward al- 
gorithm can be used to  evaluate Pr(0IA) versus the 
previous estimation, the above technique can be used 
iteratively to  converge the model to  some limit. While 
the technique described only handles a single observa- 
tion sequence, it is easy to  extend to  a set of observa- 
tion sequences. A more formal discussion can be found 

in While [l, 6, 19k t e estimation and evaluation processes de- 
scribed above are sufficient for the development of an 
HMM system, the Viterbi algorithm provides a quick 
means of evaluating a set of HMM's in practice as well 
as providing a solution for the decoding problem. In 
decoding, the goal is to  recover the state sequence given 
an observation sequence. The Viterbi algorithm can be 
viewed as a special form of the forward-backward al- 
gorithm where only the maximum path at each time 
step is taken instead of all paths. This optimization re- 
duces computational load and additionally allows the 
recovery of the most likely state sequence. The steps 
to  the Viterbi are 

0 :Initialization. For all states i, Sl(i)  = aibi(O1); 
,$i(i) = 0 

0 Recursion. From t = 2 to  T and for all 
states j ,  & ( j )  = M~zd[St-l(i)usj]bj(Ot); $ t ( j )  = 
1argmuzi [St-l(i)Uij] 

0 Recovering the state sequence. From t = T - 1 to 
1, S t  = $t+l(St+l) 

In many HMM system implementations, the Viterbi 
algorithm is used for evaluation a t  recognition time. 
Note that since Viterbi only guarantees the maximum 
of P r ( 0 ,  SIX) over all state sequences s (as a result of 
the first order Markov assumption) instead of the sum 
over all possible state sequences, the resultant scores 
are only an approximation. However, [lo] shows that 
this is often sufficient. 

So far the discussion has assumed some sort of quan- 
tization of feature vectors into classes. However, in- 
stead of using vector quantization, the actual proba- 
bility densities for the features may be used. Baum- 
Welch, Viterbi, and the forward-backward algorithms 
can be modified to  handle a variety of characteristic 
densities [SI. In this context, however, the densities 
will be assumed to  be Gaussian. Specifically, 

Initial estimations of p and n may be calculated by 
dividing the evidence evenly among the states of the 
model and calculating the mean and variance in the 
normlal way. Whereas flat densities were used for the 
initiallization step before, the evidence is used here. 
Now all that is needed is a way to  provide new esti- 
mates for the output probability. We wish to  weight 
the influence of a particular observation for each state 
based on the likelihood of that observation occurring 
in that state. Adapting the solution from the discrete 
case yields 

and 

For convenience, p j  is used to calculate fj instead of 
the re-estimated &. While this is not strictly proper, 
the values are approximately equal in contiguous itera- 
tions [6] and seem not to  make an empirical difference 
[19]. Since only one stream of data is being used and 
only one mixture (Gaussian density) is being assumed, 
the algorithms above can proceed normally, incorpo- 
rating these changes for the continuous density case. 
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5 Recovering Hands from Video 
Previous systems have shown that, given some con- 

straints, relatively detailed models of the hand can be 
recovered from video images [3, 111. However, many 
of these constraints conflict with recognizing ASL in a 
natural context, either by requiring simple, unchanging 
backgrounds (unlike clothing), not allowing occlusion, 
requiring carefully labelled gloves, or being difficult to 
run in real time. 

Since real-time recognition is a goal in this project, 
several compromises were made. First, the subject 
wears distinctly colored gloves on each hand (a yellow 
glove for the right hand and an orange glove for the left) 
and sits in a chair before the camera. While we have 
demonstrated a hand tracker that  does not require the 
use of gloves, it does not yet run in real time. Figure 
2 shows the view from the camera’s perspective and 
gives an impression of the quality of video that is used. 
Color NTSC composite video is captured and analyzed 
at a constant 5 frames per second at 320 by 243 pixel 
resolution on a Silicon Graphics Indigo 2 with Galileo 
video board. To find each hand initially, the algorithm 
scans the image until i t  finds a pixel of the appropriate 
color. Given this pixel as a seed, the region is grown by 
checking the eight nearest neighbors for the appropri- 
ate color. Each pixel checked is considered to be part 
of the hand. This, in effect, performs a simple morpho- 
logical dilation upon the resultant image that helps to 
prevent edge and lighting aberrations. The centroid is 
calculated as a by-product of the growing step and is 
stored as the seed for the next frame. Given the resul- 
tant bitmap and centroid, second moment analysis is 
performed as described earlier. 

Figure 2: View from the tracking camera. 

6 Feature Extraction 
Previous experience has shown that it is often best 

to start simple and evolve a feature set [15]. Since fin- 
ger spelling is not allowed and there are few ambiguities 
in the test vocabulary based on individual finger mo- 
tion, a relatively coarse tracking system may be used. 
Based on previous work, it was assumed that a system 
could be designed to separate the hands from the rest 
of the scene. Traditional vision algorithms could then 
be applied to the binarized result. Aside from the po- 
sition of the hands, some concept of the shape of the 
hand and the angle of the hand relative to horizontal 
seemed necessary. Thus, an eight element feature vec- 
tor consisting of each hand’s x and y position, angle 

of axis of least inertia, and eccentricity of bounding 
ellipse was chosen. The eccentricity of the bounded el- 
lipse was found by determining the ratio of the square 
roots of the eigenvalues that correspond to  the matrix 

( b72 ‘L2  ) 
where a, b, and c are defined as 

a = J .I, (x’)2dx’dy’ 
I 

b = J ll x’y’dx’dy’ 

b ”  

c = J J, (Y’)2dx’dY’ 
I 

(x’ and y‘ are the x and y coordinates normalized to 
the centroid) 

The axis of least inertia is then determined by the 
major axis of the bounding ellipse, which corresponds 
to  the primary eigenvector of the matrix [5]. Note that 
this leaves a 180 degree ambiguity in the angle of the 
ellipses. To address this problem, the angles were only 
allowed to range from -90 to +90 degrees. 

7 Training an HMM network 
When using HMM’s to recognize strings of data, 

such as continuous speech, cursive handwriting, or 
ASL sentences, several methods can be used to bring 
context to bear in training and recognition. A sim- 
ple context modeling method is embedded training. 
While initial training of the models might rely on 
manual segmentation or, in this case, evenly dividing 
the evidence amoung the models, embedded training 
trains the models in situ and allows boundaries to shift 
through a probabilistic entry into the initial states of 
each model [ 191. 

Generally, a sign can be affected by both the sign 
in front of it and the sign behind it.  In speech, this 
is called “co-articulation.” While this can confuse sys- 
tems trying to recognize isolated signs, the context in- 
formation can be used to aid recognition. For example, 
if two signs are often seen together, recognizing the two 
signs as one group may be beneficial. 

A final use of context is on the word level. Statistical 
grammars relating the probability of the co-occurrence 
of two or more words can be used to weight the recog- 
nition process. Grammars that associate two words are 
called bigrams, whereas grammars that associate three 
words are called trigrams. Rule-based grammars can 
also be used to aid recognition. 

8 Experimentation 
The handtracking system as described earlier 

worked well. Occasionally tracking would be lost (gen- 
erating error values of 0) due to lighting effects, but 
recovery was fast enough (within a frame) so that this 
was not a problem. A 5 frame/sec rate was main- 
tained within a tolerance of a few milliseconds. How- 
ever, frames were deleted where tracking of one or both 
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hands was lost. Thus, a constant data rate was not 
guaranteed. 

Of the 500 sentences collected, six had to be thrown 
out due to subject error or outlier signs. In general, 
each sign ranged from approximately 1 to 3 seconds 
in length. No intentional pauses were placed between 
signs within a sentence, but the sentences themselves 
were distinct. Initial estimates for the means and vari- 

no gram. 

Table 2: Word accuracy 

92.0% (97% corr.) 
(D=9, S=67, (D=l, S=16, 
1 ~ 1 2 1 ,  N=2470) k 2 6 ,  N=495) 

91.3% (97% corr.) 

I on training I on zndep. test set 
grammar I 99.5% I 99.2% 

ances of the output probabilities were provided by it- 
eratively using Viterbi alignment on the training data 
(after initially dividing the evidence equally amoung 
the words in the sentence) and then recomputing the 
means and variances by pooling the vectors in each 
segment. Entropic’s Hidden Markov Model ToolKit 
(HTK) is used as a basis for this step and all other 
HMM modeling and training tasks. The results from 
the initial alignment program are fed into a Baum- 
Welch re-estimator, whose estimates are, in turn, re- 
fined in embedded training which ignores any initial 
segmentation. For recognition, HTK’s Viterbi recog- 
nizer is used both with and without a strong grammar 
based on the known form of the sentences. The actual 
recognition step runs a t  a rate five times faster than 
real time. Contexts are not used, since a similar effect 
could be achieved with the strong grammar given this 
data set. 

Word recognition results are shown in Table 2. 
When testing on training, all 494 sentences were used 
for both the test and train sets. For the fair test, the 
sentences were divided into a set of 395 training sen- 
tences and a set of 99 independent test sentences. The 
99 test sentences were not used for any portion of the 
training. Given the strong grammar (pronoun, verb, 
noun, adjective, pronoun), insertion and deletion er- 
rors were not possible since the number and class of 
words allowed is known. Thus, all errors are substi- 
tutions when the grammar is used (and accuracy is 
equivalent to  percent correct). However, without the 
grammar, the recognizer is allowed to match the obser- 
vation vectors with any number of the 40 vocabulary 
words in any order. Thus, deletion (D), insertion (I), 
and substitution (S) errors are possible. The absolute 
number of errors of each type are listed in Table 2. 
The accuracy measure is calculated by subtracting the 
number of insertion errors from the number of correct 
labels and dividing by the total number of signs. Note 
that, since all errors are accounted against the accu- 
racy rate, it is possible to get large negative accuracies 
(and corresponding error rates of over 100%). Most in- 
sertion errors occurred at signs with repetitive motion. 

9 Analysis and Discussion 
While these results are far from being sufficient to 

claim a “working system” for ASL recognition, they 
do show that this approach is promising. The high 
recogpition rate on the training data indicates that the 
HMM topologies are sound and that the models are 
converging. Even so, the remaining 6.5% error rate on 
the “no grammar” case (error rates will be based on 
accuracy measures) indicates that some fine tuning on 
the feature set and model is in order. The 0.8% error 
rate on the independent test set shows that the models 
are generalizing well. However, a close look at the text 
produced by the recognition process shows some of the 
limitations of the feature set. Since the raw positions of 
the hands were used, the system was trained to expect 
certain gestures in certain locations. When this varied 
due to subject seating position or arm placement, the 
system could become confused. A simple fix to this 
problem would be to use position deltas in the feature 
vector instead. 

Examining the errors made when no grammar was 
used shows the importance of finger position informa- 
tion. Signs like “pack,” “car,” and “gray” have very 
similar motions. In fact, the main difference between 
“paclk” and “car” is that the fingers are pointed down 
for tlhe former and clenched in the latter. Since this 
information was not available in the model, confusion 
could occur. While recovering specific finger positions 
is difficult in the current testing area, simple palm ori- 
entation might be sufficient to resolve these ambigui- 
ties. 

A more interesting problem with the no grammar 
results was that signs with repetitive or long gestures 
were often inserted twice for each actual occurrence. 
In f ad ,  insertions caused more errors than substitu- 
tions. Thus, a sign (‘shoes” might be recognized as 
“shoes shoes,’’ which is a viable hypothesis without a 
language model. However, both problems can be ad- 
dressed using context training or a statistical or rule- 
based grammar. 

Using context modeling as described before may 
improve recognition accuracy. While the rule-based 
gramimar explicitly constrained the word order, statis- 
tical context modeling would have a similar effect while 
leaving open the possibility of different sentence struc- 
tures. In addition, bisine (two sign) and trisine (three 
sign) contexts would help fine-tune the training on the 
phraise level. However, trisine modeling would not sup- 
port the tying of the beginning pronoun to the ending 
pronloun as does the grammar. If task oriented or do- 
main centered sentences were used instead of randomly 
geneirated sentences, context modeling and a statis- 
tical grammar would improve performance consider- 
ably. For example, the random sentence construction 
allowed “they like pill gray they” which would have 
a low probability of occurrence in everyday conversa- 
tion. As such, context modeling would tend to suppress 
this sentence in recognition unless strong evidence was 
given for it. 

While extending this recognition system to the full 
6000 word ASL lexicon would present many problems, 
some basic improvements could be made in order to 
begin adapting the system to the task: 
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Use deltas instead of absolute positions. An alter- 
native is to  determine some feature on the subject 
from which the positions can be measured (for ex- 
ample, the centroid of the subject). 

Add finger and palm tracking information. This 
may be as simple as how many fingers are visible 
along the contour of the hand and whether the 
palm is facing up or down. 

Collect appropriate domain or task oriented data 
and perform context modeling. 

These improvements do not address the subject in- 
dependence issue. Just = in speech, making a system 
which can understand different subjects with their own 
variations of the language involves collecting data from 
many subjects. Until such a system is tried, it is hard 
to  estimate the number of subjects and the amount of 
data that would comprise a suitable training database. 
Independent recognition often places new requirements 
on the feature set as well. While the modifications 
mentioned above may be sufficient initially, the devel- 
opment process is highly empirical. 

So far, finger spelling has been ignored. However, 
incorporating finger spelling into the recognition sys- 
tem is a very interesting problem. Of course, changing 
the feature vector to  address finger information is vital 
to the problem, but adjusting the context modeling is 
also of importance. With finger spelling, a closer par- 
allel can be made to  speech recognition. Here, trisine 
context is at a lower level than grammar modeling and 
will have more of an effect. A point of inquiry would be 
switching between the different modes of communica- 
tion. Can trisine context be used across finger spelling 
and signing? Is it beneficial to  switch to  a separate 
mode for finger spelling recognition? Can natural lan- 
guage techniques be applied, and if so, can they also be 
used to  address the spatial positioning issues in ASL? 
The answers to these questions may be key in creating 
an unconstrained sign language recognition system. 

10 Conclusion 
We have shown an unencumbered way of recogniz- 

ing American Sign Language (ASL) through the use of 
a video camera. Through use of hidden Markov mod- 
els low error rates were achieved on both the training 
set and an independent test set without invoking com- 
plex models of the hands. With a larger training set 
and context modeling, lower error rates are expected 
and generalization to a freer, person-independent ASL 
recognition system should be attainable. 
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