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Error Correction (in the Exponent)

Sharing Secrets (mod q)
• Random p(·), deg(p) < k,

s.t. p(0) = secret.
• Pi gets share xi = p(i).

(x1, . . . , xn) is Reed-Solomon codewd.
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s.t. p(0) = secret.
• Pi gets share xi = p(i).

(x1, . . . , xn) is Reed-Solomon codewd.

Reconstruction
• Pi announces xi.

Interpolation: p(α) =
∑

xiλi for any α.

Error correction: [BeWe86, GuSu98]

P1

P2

P3

P4

P5

P6

P7

x1

Chris Peikert (MIT) On Error Correction in the Exponent TCC 2006 2 / 9



Error Correction (in the Exponent)

Sharing Secrets (mod q)
• Random p(·), deg(p) < k,

s.t. p(0) = secret.
• Pi gets share xi = p(i).

(x1, . . . , xn) is Reed-Solomon codewd.

Reconstruction
• Pi announces xi.

Interpolation: p(α) =
∑

xiλi for any α.

Error correction: [BeWe86, GuSu98]

P1

P2

P3

P4

P5

P6

P7

x2

Chris Peikert (MIT) On Error Correction in the Exponent TCC 2006 2 / 9



Error Correction (in the Exponent)

Sharing Secrets (mod q)
• Random p(·), deg(p) < k,

s.t. p(0) = secret.
• Pi gets share xi = p(i).

(x1, . . . , xn) is Reed-Solomon codewd.

Reconstruction
• Pi announces xi.

Interpolation: p(α) =
∑

xiλi for any α.

Error correction: [BeWe86, GuSu98]

P1

P2

P3

P4

P5

P6

P7

xi

Chris Peikert (MIT) On Error Correction in the Exponent TCC 2006 2 / 9



Error Correction (in the Exponent)

Sharing Secrets (mod q)
• Random p(·), deg(p) < k,

s.t. p(0) = secret.
• Pi gets share xi = p(i).

(x1, . . . , xn) is Reed-Solomon codewd.

Reconstruction
• Pi announces xi.

Interpolation: p(α) =
∑

xiλi for any α.

Error correction: [BeWe86, GuSu98]

P1

P2

P3

P4

P5

P6

P7

P4

P7

Chris Peikert (MIT) On Error Correction in the Exponent TCC 2006 2 / 9



Error Correction (in the Exponent)

Sharing Secrets (mod q)
• Random p(·), deg(p) < k,

s.t. p(0) = secret.
• Pi gets share xi = p(i).

(x1, . . . , xn) is Reed-Solomon codewd.

Placing Shares “in the Exponent”
[CJKR96, PK96, RG03, NPR99, D03, CD04, CG99, BF99,. . . ]

Cyclic group G = 〈g〉, order q
• Pi announces gxi .

Interpolation: gp(α) =
∏

(gxi)λi

ERROR CORRECTION: ???
• Guess-and-check: n log n

k errors
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Cyclic group G = 〈g〉, order q
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Interpolation: gp(α) =
∏

(gxi)λi

ERROR CORRECTION: ???
• Guess-and-check: n log n

k errors

P1

P2

P3

P4

P5

P6

P7

gx2

Chris Peikert (MIT) On Error Correction in the Exponent TCC 2006 2 / 9



Error Correction (in the Exponent)

Sharing Secrets (mod q)
• Random p(·), deg(p) < k,

s.t. p(0) = secret.
• Pi gets share xi = p(i).

(x1, . . . , xn) is Reed-Solomon codewd.

Placing Shares “in the Exponent”
[CJKR96, PK96, RG03, NPR99, D03, CD04, CG99, BF99,. . . ]

Cyclic group G = 〈g〉, order q
• Pi announces gxi .

Interpolation: gp(α) =
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ERROR CORRECTION: ???
• Guess-and-check: n log n
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Our Contributions

+ The first detailed study of the complexity of ECE.

Unconditional Results

Errors Complexity

Gap
≈ δ · k

n−
√

nk EASY AS DH

link DH to
DLOG?

n− k − k1−ε HARD AS DLOG

Results for Generic Algorithms
• Guess-and-check is optimal — even if DDH is easy.

Evidence for:

DDH ECE DH< ≤

A new approach for:

DDH ECE
DLOG

DH
<

= =

=
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Relation to Discrete Log

Theorem
Decoding (in the exponent) to distance n− k − k1−ε

is as hard as computing discrete logs in G.

Proof Sketch
1 Finding a representation on uniform w ∈ Gn is as hard as dlog.
2 Uniform w is close (in the exponent) to some codeword.
3 Decoding w yields a representation on w.
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Relation to Discrete Log

Theorem
Decoding (in the exponent) to distance n− k − k1−ε

is as hard as computing discrete logs in G.

Proof Sketch
1 Finding a representation on uniform w ∈ Gn is as hard as dlog.
2 Uniform w is close (in the exponent) to some codeword.
3 Decoding w yields a representation on w.

- Representation on w: nonzero a = (a1, . . . , an) ∈ Zn
q s.t.∏

i

wai
i = 1.

- [Bra93] showed hardness.
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Decoding (in the exponent) to distance n− k − k1−ε

is as hard as computing discrete logs in G.

Proof Sketch
1 Finding a representation on uniform w ∈ Gn is as hard as dlog.
2 Uniform w is close (in the exponent) to some codeword.
3 Decoding w yields a representation on w.

We show ∃ ` = k + k1−ε points wi = gxi , with xi on poly of deg < k.
- There are

(n
`

)
distinct events (each very rare).

- These events have limited dependence.
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Relation to Discrete Log

Theorem
Decoding (in the exponent) to distance n− k − k1−ε

is as hard as computing discrete logs in G.

Proof Sketch
1 Finding a representation on uniform w ∈ Gn is as hard as dlog.
2 Uniform w is close (in the exponent) to some codeword.
3 Decoding w yields a representation on w.

- Decode w to (gx1 , . . . , gxn), where xi lie on poly of deg < k.
- There are� k points wi = gxi . wlog: w1, . . . ,wk+1.
- Interpolate in the exponent:

wk+1 =
k∏

i=1

wλi
i ⇒ representation!
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Generic Algorithms [Sho97]

Intuition
Treat group as “black-box” — don’t use element representations

Formalization
• Random encoding σ : G→ {0, 1}∗

• Oracle for group operation [wlog G = (Zq,+)]

· · ·σ(x0) σ(x1)

Alg
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Formalization
• Random encoding σ : G→ {0, 1}∗

• Oracle for group operation [wlog G = (Zq,+)]

· · ·σ(x0) σ(x1)

Alg

σ(x2)

x2 = x0 + x1
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Generic Algorithms [Sho97]

Intuition
Treat group as “black-box” — don’t use element representations

Formalization
• Random encoding σ : G→ {0, 1}∗

• Oracle for group operation [wlog G = (Zq,+)]

· · ·σ(x0) σ(x1)

Alg

σ(x2) σ(x3)

x3 = x0 + x2
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Generic Algorithms [Sho97]

Intuition
Treat group as “black-box” — don’t use element representations

Formalization
• Random encoding σ : G→ {0, 1}∗

• Oracle for group operation [wlog G = (Zq,+)]

· · ·σ(x0) σ(x1)

Alg

σ(x2) σ(x3) σ(x4)
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Generic Algorithms [Sho97]

Intuition
Treat group as “black-box” — don’t use element representations

Formalization
• Random encoding σ : G→ {0, 1}∗

• Oracle for group operation [wlog G = (Zq,+)]

· · ·σ(x0) σ(x1)

Alg

σ(x2) σ(x3) σ(x4) σ(x5)
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Generic Algorithms [Sho97]

Intuition
Treat group as “black-box” — don’t use element representations

Formalization
• Random encoding σ : G→ {0, 1}∗

• Oracle for group operation [wlog G = (Zq,+)]

· · ·σ(x0) σ(x1)

Alg

σ(x2) σ(x3) σ(x4) σ(x5)

0/1,
σ(x),
. . .
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Generic Interpolation with Errors

+ Interpolation w/ Errors: (p(1), . . . ,p(n)) + e 7−→ p(0)

Theorem
Interpolation under� n log n

k errors
is hard for generic algorithms.
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Generic Interpolation with Errors

+ Interpolation w/ Errors: (p(1), . . . ,p(n)) + e 7−→ p(0)

Theorem
Interpolation under� n log n

k errors
is hard for generic algorithms.

Guess-and-check is optimal!
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Generic Interpolation with Errors

+ Interpolation w/ Errors: (p(1), . . . ,p(n)) + e 7−→ p(0)

Theorem
Interpolation under� n log n

k errors
is hard for generic algorithms.

Ideal Game
• Leave p and e as indeterminants; encode polynomials F(p, e)

· · · · · ·σ(F1) σ(Fn)

Alg

• Differs from real game only if ∃ Fi 6≡ Fj, but (Fi − Fj)(p, e) = 0.
Analyze event for “strange” distribution of p, e.
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+ Interpolation w/ Errors: (p(1), . . . ,p(n)) + e 7−→ p(0)

Theorem
Interpolation under� n log n

k errors
is hard for generic algorithms.

Ideal Game
• Leave p and e as indeterminants; encode polynomials F(p, e)

· · · · · ·σ(F1) σ(Fn)

Alg

σ(Fn+1)

Fn+1 = Fi + Fj

• Differs from real game only if ∃ Fi 6≡ Fj, but (Fi − Fj)(p, e) = 0.
Analyze event for “strange” distribution of p, e.

Chris Peikert (MIT) On Error Correction in the Exponent TCC 2006 6 / 9



Generic Interpolation with Errors

+ Interpolation w/ Errors: (p(1), . . . ,p(n)) + e 7−→ p(0)

Theorem
Interpolation under� n log n

k errors
is hard for generic algorithms.

Ideal Game
• Leave p and e as indeterminants; encode polynomials F(p, e)

· · · · · ·σ(F1) σ(Fn)

Alg

σ(Fn+1) σ(Fn+2)

• Differs from real game only if ∃ Fi 6≡ Fj, but (Fi − Fj)(p, e) = 0.
Analyze event for “strange” distribution of p, e.

Chris Peikert (MIT) On Error Correction in the Exponent TCC 2006 6 / 9



Generic Interpolation with Errors

+ Interpolation w/ Errors: (p(1), . . . ,p(n)) + e 7−→ p(0)

Theorem
Interpolation under� n log n

k errors
is hard for generic algorithms.

Ideal Game
• Leave p and e as indeterminants; encode polynomials F(p, e)

· · · · · ·σ(F1) σ(Fn)

Alg

σ(Fn+1) σ(Fn+2) σ(Fn+3)

• Differs from real game only if ∃ Fi 6≡ Fj, but (Fi − Fj)(p, e) = 0.
Analyze event for “strange” distribution of p, e.

Chris Peikert (MIT) On Error Correction in the Exponent TCC 2006 6 / 9



Generic Interpolation with Errors

+ Interpolation w/ Errors: (p(1), . . . ,p(n)) + e 7−→ p(0)

Theorem
Interpolation under� n log n

k errors
is hard for generic algorithms.

Ideal Game
• Leave p and e as indeterminants; encode polynomials F(p, e)

· · · · · ·σ(F1) σ(Fn)

Alg

σ(Fn+1) σ(Fn+2) σ(Fn+3)

6= σ(F0)

• Differs from real game only if ∃ Fi 6≡ Fj, but (Fi − Fj)(p, e) = 0.
Analyze event for “strange” distribution of p, e.

Chris Peikert (MIT) On Error Correction in the Exponent TCC 2006 6 / 9



Generic Interpolation with Errors

+ Interpolation w/ Errors: (p(1), . . . ,p(n)) + e 7−→ p(0)

Theorem
Interpolation under� n log n

k errors
is hard for generic algorithms.

Ideal Game
• Leave p and e as indeterminants; encode polynomials F(p, e)

· · · · · ·σ(F1) σ(Fn)

Alg

σ(Fn+1) σ(Fn+2) σ(Fn+3)

6= σ(F0)

• Differs from real game only if ∃ Fi 6≡ Fj, but (Fi − Fj)(p, e) = 0.
Analyze event for “strange” distribution of p, e.

Chris Peikert (MIT) On Error Correction in the Exponent TCC 2006 6 / 9



Analysis of Ideal Game

To Show
For all F = Fi − Fj 6≡ 0, Pr[F(p, e) = 0] is small.

Sketch
1 F is linear in p, e (because inputs F1, . . . ,Fn are).
2 e variables in e are uniform (others are zero).
3 F depends on some uniform variable (either in p or e).

Suppose F doesn’t depend on any variables in p.

Then F depends on ≥ n− k positions of e.
(Dual of Reed-Solomon code.)

With overwhelming prob, F depends on some uniform ei.
4 By Schwartz’s Lemma, Pr[F(p, e) = 0] small.
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Relation to Decisional DH

Question
• Recall: error correction is easy, given DH oracle.
• What about DDH?

Our Proposal
Augment generic algorithms with a DDH oracle.

Models “gap” groups: DDH is easy, but DH believed hard.

Theorem
For e · k = ω(n log n), there is

no efficient DDH-augmented generic algorithm
for interpolating noisy polynomials.

+ Converse does not appear to hold.
I.e., error correction seems strictly harder than DDH.
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Conclusions and Open Problems

Conclusions
• Characterized hardness of ECE for a spectrum of errors.
• Given evidence for DDH < ECE.
• Suggested a new approach for linking DH and DLOG.

Questions
• Construct crypto schemes based on hardness of ECE?
• Tighten gap between # errors for DLOG and DH reductions?
• Non-generic ECE algorithms (index calculus)?

Thank you!
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