
The Infrastructure Problem in HCI
W. Keith Edwards1, Mark W. Newman2, and Erika Shehan Poole1

1GVU Center & School of Interactive Computing
College of Computing

Georgia Institute of Technology
85 5th Street NW

Atlanta, GA 30308 USA
{keith, erika}@cc.gatech.edu

2 School of Information and
Dept of Electrical Engineering/Computer Science

University of Michigan
1075 Beal Avenue

Ann Arbor, MI 48109 USA
mwnewman@umich.edu

ABSTRACT
HCI endeavors to create human-centered computer systems,
but underlying technological infrastructures often stymie
these efforts. We outline three specific classes of user
experience difficulties caused by underlying technical
infrastructures, which we term constrained possibilities,
unmediated interaction, and interjected abstractions. We
explore how prior approaches in HCI have addressed these
issues, and discuss new approaches that will be required for
future progress. We argue that the HCI community must
become more deeply involved with the creation of technical
infrastructures. Doing so, however, requires a substantial
expansion to the methodological toolbox of HCI.

Author Keywords
Infrastructure, human-centered design, toolkits

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
A central goal of HCI is to understand how to design
human-centered computer systems. But even the best-
intentioned user experience designers fight an uphill battle
against layers of underlying technological infrastructure
that may not be designed with the full range of human-
centered concerns in mind. Most user interfaces are not
built in isolation, but sit atop a collection of software
libraries, toolkits, protocols, and standards typically
inaccessible to user-centered design processes.
Traditionally, HCI has had little to say about these layers,
instead focusing on creating compelling user experiences
within the constraints posed by that underlying

infrastructure. Infrastructure presents a fundamental tension
for HCI. For user-centered design to provide realistic,
useful, deployable, and economical solutions, designers rely
heavily on existing technological infrastructures. At the
same time, this dependency may at times restrict their
ability to fully address user needs and capabilities. We
argue that such lower level concerns, while not traditionally
considered within the scope of HCI, significantly affect
user experience, determining what sorts of functionality can
be delivered, the logic by which functions are organized,
and the interdependencies among these functions. In this
paper, we ask what it would mean for HCI to consider the
infrastructures upon which applications are built and
explore possible ways that HCI might have more impact on
discussions surrounding the design of infrastructure.

This paper makes two key contributions to our
understanding of the tension between HCI and
infrastructure. First, we identify three ways infrastructure
can negatively impact user experience, and illustrate them
with case studies. Second, we examine a number of
possible approaches to address the infrastructure problem in
HCI. By organizing these approaches into a framework
organized by the level at which they engage the
infrastructure, we identify new possibilities for how HCI
can engage infrastructure development more effectively.

WHAT IS “INFRASTRUCTURE?”
“Infrastructure” is a broad term that can be applied to any
system, organizational structure, or physical facility that
supports an organization or society in general [54]; this
broad term has been used to describe interconnect systems
that sink into the background of everyday life (e.g., roads,
sewers, or telecommunications networks), conceptual
abstractions (e.g., disease classification schemes), and more
complex relationships between politics, individuals,
organizations, and technical systems [31, 35, 55, 57]. In this
paper, however, we take a constrained view of
infrastructure, focusing solely on the domain of software
systems. By this definition, infrastructure comprises
system-level software providing functions, capabilities, or
services to other software. Operating systems, libraries,
toolkits, frameworks, services, protocols, and interoperation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

standards are common examples of the infrastructure we
take as our focus in this paper. We focus on these software
infrastructures particularly because as software applications
become increasingly complex, distributed, and
interconnected, reliance on infrastructure increases. Despite
the impact of infrastructure on the user experience, there is
little understanding within the HCI community as to how
we may contribute to the development of software
infrastructures leading to positive user experiences.

Infrastructure Design Tensions
Software infrastructures are a necessity; they provide
economic and technical benefits of reuse, separation of
concerns, and interoperability. If many applications require
a particular software capability, it makes economic sense to
build a reusable infrastructural component. For example,
the development of GUI toolkits relieved application
developers of the burden of creating common widgets such
as lists, panels, and resizable windows [40]. Infrastructure
also supports a separation of concerns, enabling specialized
capabilities to be implemented by developers with the most
appropriate skills. For example, security-related functions
typically are provided via pre-existing libraries (e.g., the
secure string functions in C), as it is unlikely that most
application developers would correctly and efficiently
implement these functions on their own. A third benefit of
infrastructure is interoperability. Whenever an application
communicates with software created by another entity,
some kind of infrastructure must exist in order to facilitate
the connection between those parties. For example, for a
web browser to be able to retrieve and display a web page
from a server, the browser and server must conform to
predefined standards specifying, at a minimum, an
application protocol (HTTP), a transport protocol (TCP),
and a data format (HTML or XML), among others.

Although the economic and technical benefits of
infrastructure are considerable, they are removed from the
immediate concerns of users. In and of themselves, for
example, such economic and technical benefits do not
guarantee other desirable properties that we may wish from
an infrastructure, such as maintainability, conceptual
clarity, simplicity, or support for troubleshooting. While
technical and economic considerations certainly can coexist
with such human-motivated considerations, our own
experience, as well as evidence from a growing body of
literature [5, 9, 22, 37], suggests that an exclusive focus on
traditional criteria does not reliably lead to positive user
experience outcomes. In the next section, we discuss
previous work examining the relationship between HCI and
infrastructure, and present examples of user experience
breakdowns occurring as a result of conventional
approaches to infrastructure design.

Previous Reflections on HCI and Infrastructure
A number of studies have examined the uncomfortable
relationship between infrastructure and human experience.
These studies have looked at those disillusioned or

disenfranchised by civic infrastructure [35], home
networking challenges [9, 22], and cognitive difficulties
with security software [60], among others. In addition, a
number of authors have made recommendations about how
particular kinds of infrastructure technologies might be
built to better account for human concerns. These
recommendations have included suggestions for better
infrastructure design processes [17], better abstractions for
exposing infrastructure capabilities [14], appropriate
considerations for evaluating user interface systems
research [44], and architectural patterns for supporting
usability [27]. We extend this prior work by identifying
general problems with infrastructure, providing a
framework for understanding the strengths and weaknesses
of previous approaches to addressing HCI’s infrastructure
problem, and suggesting new approaches that have not been
previously addressed in the literature.

FACETS OF THE INFRASTRUCTURE PROBLEM
In this section we consider three ways in which technical
infrastructures shape user experience. In particular, we
discuss:

• Constrained possibilities: Design choices taken by the
infrastructure may preclude entirely certain desirable
user experience outcomes.

• Interjected abstractions: Technical abstractions in the
interface may appear in the conceptual model exposed
to users.

• Unmediated interaction: Users may have to interact
directly with the infrastructure to accomplish their
goals.

We present a set of case studies to illustrate each of these
manifestations of the infrastructure problem.

Case Study #1: UPnP and Constrained Possibilities
We define constrained possibilities as situations in which
the technical capabilities of an infrastructure preclude the
ability to create certain desirable user experiences. For
example, consider Universal Plug and Play (UPnP), a
technology supporting interoperability among networked
consumer electronics devices, particularly media-oriented
devices [38]. UPnP simplifies device setup by removing
tedious, manual configuration of networked devices; in
theory, when users plug new devices into their networks,
these devices should work immediately. However, UPnP is
limited to supporting a set of pre-defined device types and
is therefore brittle in the face of evolving user needs and
technical capabilities.

To illustrate, consider the case of a user who purchases a
new UPnP device, but also has a number of older UPnP
devices in her home. Upon installation, she discovers that
her existing devices are not interoperable with this new
device’s advanced functionality. Perhaps the new device
supports a UPnP profile not yet defined at the time the
earlier devices shipped. Perhaps the older devices simply
support an earlier version of the profile that the new device

uses. She has three options: return the new device, replace
the old equipment already in the home, or hope that vendors
of all of the existing equipment make a patch that allows
them to work with the new device (which, of course,
necessitates the headache of upgrading the software on all
the existing devices.) This experience represents the kind of
broken expectation noted by Bly et al. that is common when
infrastructures fail to provide capabilities anticipated by a
user [5].

What has gone wrong with UPnP? We argue that UPnP’s
failure to deliver the promised experience is, in fact,
inherent in the infrastructure itself. UPnP, like other
interoperation standards such as USB and Bluetooth, takes
an “ontological” approach to interoperability in which
service profiles describe each type of device. UPnP, for
example, defines profiles for a set of device types,
including media display devices, media storage devices,
HVAC components, and printers. These service profiles are
standardized by committees and specify details of how to
communicate with a given device, including which
operations each class of device can perform.

In the approach taken by UPnP, standardization at this level
of detail is necessary for interoperability (a client
application that encounters a MediaRenderer “knows” that
it will be able to communicate with it using the standard set
of operations). Further, such standardization affords a sort
of polymorphism (MediaRenderers from any vendor can be
simply “plugged in” to the network and used by existing
clients without writing any additional software). Yet this
approach to interoperability comes at a cost.
Standardization at this level means that new types of
devices are unusable by existing applications. New sorts of
devices (say, for example, a MediaUploader associated with
an online photo sharing service), with new functionality and
semantics, require a different profile. Existing software—
including the software on devices already installed on the
network—will not be written against this new profile and
thus will be unable to use the new device type [19]. Even
new versions of existing device types face this problem, as
new revisions of the standards define new features unusable
by devices or applications created before the revision.
Moreover, the evolution of an ontological standard is a slow
process. For UPnP, new device types (or revisions to
existing device types) must be standardized by the UPnP
Forum, then implemented and shipped by device
manufacturers, and then finally acquired and deployed by
consumers.

Fundamentally, then, the design choices in UPnP privilege
interoperability among a handful of existing (and slowly
evolving) categories of devices, but at the cost of
accommodating entirely new types of devices. This design
choice presents an inherent user experience conundrum:
because of UPnP’s approach to interoperability, whenever
users wish to introduce a new type of device into an
existing network, they are faced with incompatibilities or
the need for wholesale upgrades of existing devices. It is

often difficult to anticipate these incompatibilities in
advance, as doing so would require specialized knowledge
of the infrastructure. Thus, UPnP users are left with
difficult choices: do they upgrade everything in their homes
to accommodate new devices? Do they abandon hopes of
having a new device for the time being? Once there are
software patches available, do they bother with the
potentially tedious task of upgrading all of their existing
equipment to support the new device?

Is the implicit prioritization made by UPnP the “correct”
one from a user experience perspective? Are there other
approaches that might have mitigated these downsides? A
different set of infrastructure design decisions in UPnP (and
in other similarly designed infrastructures such as USB and
Bluetooth) may have led to a different set of trade-offs,
enabling more “ad hoc” interoperability while preserving
existing user experience benefits. For example, self-
describing formats such as tuplespaces [26], or mobile
code-based approaches [19] have the potential to enable
easier interoperability among devices with less a priori
knowledge of each other—meaning that the user experience
enabled by these infrastructures could be one of more fluid,
dynamic use of new devices, without the hassles of
continuous software updates or device replacement.

Case Study #2: ACLs and Interjected Abstractions
The second category we explore is interjected abstractions,
or situations in which low-level infrastructural concepts
become part of the conceptual model of the interface. All
technical infrastructures present abstractions to application
developers. These abstractions may be in the form of
software objects (e.g., modules, classes, and functions), or
underlying concepts (e.g., reliable vs. unreliable transport
protocols). Developers use these abstractions to create
applications with user-facing features. In many cases, these
infrastructural abstractions—perhaps designed to further
technological priorities such as extensibility, modularity, or
performance—become exposed to users through the
applications built on top of the infrastructure.

For example, consider access control lists (ACLs), used by
operating systems and middleware to regulate access to
information and system resources. ACLs have a long
history in computing, going back to the early 1970s [30].
They have a number of advantages: ACLs are easily
specified in machine-friendly ways (lists of principals,
along with the privileges accorded to those principals); they
are also a highly efficient means of regulating access
(checking whether a given process has the ability to read a
file, for example, can be done by simply checking whether
the process’s owner has the “read” permission in the file’s
access control list) [51]. Thus, from a technical perspective,
this abstraction is well designed, efficient, and simple.

However, users see this abstraction more or less “as is.”
The typical user interface to an ACL-based system is
simply a textual list of users and their corresponding access
rights, despite the fact that the HCI community has long

identified and discussed many of the problematic aspects of
ACLs. These include ACLs’ relative inflexibility [1], their
requirement for a priori configuration [7], and more general
difficulties mapping access to the negotiated, contingent
way that revelation and identity are managed in social
settings [48]. How can we address these problems? One
avenue is to tackle the redesign of the “classic” ACL
interface [36]; this approach has been shown to yield
substantial usability improvements, and we agree that such
improvements are necessary. However, while it may be
possible to create more usable interfaces on top of ACLs,
such higher level interfaces are still constrained in that they
must, at the end of the day, be expressible in the forms
required by ACLs: lists of human principals with their
access rights for specific objects.

Understanding how such features become visible in the user
experience might have led to a different set of design goals,
had they been known. For example, studies have shown that
users’ sharing preferences and practices are conditioned by
the sharing context, contents of the shared data items, and
sometimes-ephemeral aspects of the relationships with
collaborators [46, 58]. Alternative interfaces to sharing such
as those proposed by [58] would provide a solution, but
would be difficult to make widely available due to the
limitations of underlying abstractions such as the ACL.

The problem of interjected abstractions extends to other
cases where infrastructure abstractions become part of the
application’s conceptual model. For example, Whitten and
Tygar’s analysis of the shortcomings of PGP 5.0 point out a
number of places where the underlying security
infrastructure’s abstractions—such as public and private
keys, and webs of trust—are unlikely to be understood or
properly employed by end users, thus subverting the goal of
enabling secure communication among users [60].

Case Study #3: Networks and Unmediated Interaction
A third way in which infrastructure impacts user experience
is one we term unmediated interaction, in which users must
interact with the infrastructure directly, without the
mediation of some intervening application. While we
typically think of the infrastructure as being a sort of hidden
“plumbing” removed from the user experience by layers of
application code, the infrastructure itself becomes a locus of
interaction in some cases. As noted by Star, for example,
this can happen when the infrastructure “breaks” in such a
way that it is no longer hidden from the user [54].

However, there are a number of computing infrastructures
that are poorly mediated at best, even in those cases where
the infrastructure may not necessarily be “broken,” and
which require that users interact directly with the
infrastructure. Our case study for this section is networking
in the home. The presence of complex home networks is
growing, with some figures showing that 34% of US
households have a home network, and 25% of households
having a wireless network [25]. Notably, the protocols and
architectures used in the home today are essentially the

same protocols and architectures used in the global Internet,
and which were developed during the 1960’s and 1970’s.
Many of the assumptions of the original Internet
architecture no longer hold true, and this creates problems
in a number of contexts, not least of which is the home [4].
The concepts of the Internet Protocols (such as IP
addressing, non-routable addresses, the Domain Name
Service), and network topology (e.g., routers, bridges,
switches, hubs, network address translation (NAT)
facilities) are all present in the home, despite the fact that
these concepts and underlying architectures were originally
created for a world of trained network administrators,
shared responsibility for the network as a whole, and
assumptions of mutual trust. This mismatch between
original goals and present uses is manifest through the
many reported user experience issues with networking in
the home [5, 6, 9, 18, 52].

Home network users today face unmediated exposure to the
network infrastructure at many points. For example,
effectively (and securely) installing a home network means
that users must have some modicum of understanding of the
basics of network topology, including the role that the home
router plays in the network; for example, that it creates the
notion of an “inside” of the home network that is separate
and distinct from the “outside” public Internet.

Unmediated interaction also manifests itself at times when
new devices are added to the home network. The Internet
infrastructure requires that devices be configured with local
state information in order to operate. At a minimum, they
must be configured with a range of link-layer settings (e.g.,
SSID, WEP key) as well as network-layer settings (e.g., IP
address, router, and DNS server). Further, certain
application requirements may force users to interact
directly with the network in order to configure it to support
applications’ needs. For example, running a service (such as
a web server to host a blog) inside the home network cannot
be done on most home networks without fairly extensive
network-layer configuration such as setting up NAT
forwarding, configuring firewall rules, or setting up a
Dynamic DNS service.

Perhaps the most common form of unmediated interaction
with the network comes at troubleshooting time, when the
nature of the network means that no single node may have a
complete picture of where a problem exists. The opacity of
the network infrastructure means that the “interface” to
troubleshooting these problems is typically only the
physical interface provided by the network hardware
itself—blinking LEDs that indicate connectivity status, for
instance, and the connectivity of physical cables.

Our point in enumerating these cases is not to reiterate the
many (and well-known) problems of networking in the
home. Rather, our point is to show how certain features of
the network infrastructure in homes today necessitate that
users be exposed to it. Furthermore, we wish to highlight
that it is difficult, and in some cases impossible, to create

applications that shield users entirely from this exposure.
The degree of unmediated interaction required of users is
inherent in the design decisions made by this infrastructure.

To illustrate how other possibilities could exist for home
networking, we note that other network infrastructures have
taken radically different approaches, yielding radically
different user experiences. The public switched telephony
network (PTSN), for example, limits such unmediated
interaction by embodying a different set of design priorities:
in the PSTN, most of the infrastructure of the network is
removed from the home entirely, end-user devices need not
be configured in order to work (a landline phone, once
plugged in, “knows” its phone number), and there is a
minimum of troubleshooting required by users.

Summarizing the Problem
UPnP, ACLs, and home networks are three examples of
infrastructure technologies that present user experience
challenges. At the same time, we do not aim to discount the
fact that all three enable enormously powerful capabilities
for end-users. The technical skill and insight required to
design each of these infrastructures is impressive and we do
not intend to diminish their significance; rather, our aim is
to highlight that that infrastructure design processes based
largely around technical considerations in isolation are
unlikely to avoid user experience problems such as the ones
highlighted above. We do not propose to replace traditional
considerations based around technical and economic issues
with discussions of user experience, rather we seek to add
to the perspectives already represented in the design of
infrastructure technology.

THE WAY FORWARD
So far we have argued that technical infrastructures deeply
affect the user experience of systems created on top of
them. In this section, we consider various approaches to
addressing the infrastructure problem in HCI. We find it
productive to think of the various approaches in terms of
the depth at which they engage infrastructure; in many
ways, the layers of engagement that we present here echo
Rodden and Benford’s analysis based on Brand [49].

• Surface approaches focus on applying superficial
layers of user-facing software in an attempt to shield
users from unwieldy aspects of infrastructure.

• Interface approaches focus on the interface between the
infrastructure and the applications it supports,
endeavoring to reduce the problems caused by
mismatches between conceptual models and system
functionality.

• Intermediate approaches supply new infrastructure
technologies that are more amenable to delivering a
positive user experience, though they are often
constrained by other, more fundamental infrastructure
layers.

• Deep approaches seek to directly influence the
architecture of infrastructure itself. In contrast to
intermediate approaches, deep approaches require the
engagement of multiple technical disciplines, most
notably the systems specialists who have traditionally
dominated discussions of infrastructure design. These
are the most challenging approaches, and the least
understood by the HCI community at present. They
represent the next frontier in the struggle to overcome
HCI’s infrastructure problem.

Surface Approaches
Surface-layer approaches have been the path of much work
in HCI. Accepting infrastructure as given and attempting to
present a prettier picture to users via application software is
often the most expedient development path, in particular
when infrastructure is immutable due to technical or
practical reasons. Masking underlying infrastructure can
sometimes address unmediated interaction by providing
abstractions that improve the match between user
expectations and system functionality. It may also address
interjected abstractions, though remapping abstractions
often has unintended negative consequences when these
superimposed abstractions break down. This approach,
however, fails to address constrained possibilities, as it
simply accepts the infrastructure as is.

Interface Approaches
Some researchers in HCI have proposed exposure of
infrastructure in novel ways that allow greater transparency
to users as well as flexibility to user experience designers.
These approaches involve modifying the infrastructures to
expose more accurate, or more appropriable, abstractions to
developers or users, potentially in ways unanticipated by
the infrastructure designers.

Seamful design
Bell et al. [2] argue for a “seamful design” approach, in
which designers expose human-salient aspects of
infrastructure rather than masking them. Fundamentally, the
seamful approach is about accepting the notion that users
will be exposed to infrastructure, but ensuring that that
exposure is done in such a way that users can perceive and
appropriate underlying abstractions, and share them with
other users. In contrast to surface-layer approaches,
infrastructure limitations become a resource for user
reasoning and improvisation. This approach prefers the
potential shortcomings of unmediated interaction to the
pitfalls of interjected abstractions. It does not, however,
directly tackle the issue of constrained possibilities, as
seamful design proposes a new way to present existing
infrastructure rather than new approaches to designing
infrastructure itself.

Reflective architectures
A second interface-layer approach allows software
developers to access the internal state of the infrastructure
in new ways, including potentially for uses unforeseen by

the original infrastructure developers. Such reflective
architectures expose mechanisms that allow developers to
not only use the infrastructure, but also reason about its
current state and behavior, and potentially even modify its
behavior in new ways. As an example, Dourish suggests an
approach to reflective system design, called accounts,
which allow applications to introspect infrastructure-layer
abstractions to determine how they are working; such an
approach, while not “fixing” the problems of poor
infrastructure, allows the creation of applications that can
access infrastructure in ways not available using traditional
programming interfaces [15]. In some cases, reflective
approaches go further—allowing application developers to
modify underlying infrastructure implementation and
behaviors. Such capabilities have been explored in domains
ranging from programming languages (Kiczales’ meta-
object protocols [28] and “open implementation”
approaches [34], most notably, but also the more prosaic
mechanisms provided by the reflection APIs in the Java
language) to collaborative toolkits [15] to real-time
operating systems [53], to networks [3].

All of these systems share the ability for developers to
reach into the infrastructure and to query and potentially
even change its internal workings in ways that traditional
approaches do not allow—even in ways that may have been
unforeseen by the infrastructure’s original developers. This
ability can be used by applications to both adapt to the
constraints of the underlying infrastructure, as well as to
adapt underlying infrastructure to user-centered needs. Such
approaches seem particularly suited toward overcoming
challenges of interjected abstractions and unmediated
interaction. While these approaches may offer potential for
overcoming certain constrained possibilities, this potential
is largely determined by how deeply into the infrastructure
the reflective features reach.

Support for intelligibility
Intelligibility, or explaining system configuration and state
to users in an understandable way, is another approach to
overcoming mismatches between users’ mental models and
the system’s model of operation. For example, Dey et al.
describe infrastructural abstractions [13] and end-user
inspection facilities [33] that support end-users’
comprehension of the behavior of context-aware systems.
Support for intelligibility has the ability to overcome the
problem of interjected abstractions by providing users with
a more understandable view of the how the system works. It
can also address unmediated interaction by essentially
providing a new layer of mediation. Taken as an
independent approaches (i.e., separate from the construction
of new infrastructure, which is discussed next),
intelligibility does not address the issue of constrained
possibilities.

Intermediate Approaches
A number of HCI researchers have developed frameworks,
toolkits, and libraries aimed at supporting certain specific

user experiences. For example, platforms for context-aware
computing [23, 50], tangible computing [29], flexible
document management [16], and distributed user interfaces
[42, 45] strive to overcome the limitations of existing
infrastructure and ease the construction of novel
applications. We refer to these as intermediate approaches
because they typically sit atop of a layer of more
fundamental infrastructure (e.g. existing operating systems,
networking protocols, security mechanisms). In addition,
these approaches tend to be focused enough that they can be
developed unilaterally by HCI researchers seeking to
support a particular style of application or a specific
interaction facility, without the need to engage with the
systems, networking, or security communities. This
approach embodies much of the work of the “technical
HCI” community, and has engaged discussions of the
relationship between HCI and infrastructure.

New infrastructure technologies
Frequently, these infrastructure components follow a “top
down” approach, in which applications are created in an ad
hoc manner before the need for a general infrastructure is
identified. For example, if several constructed applications
share common needs, then often this shared functionality
may be abstracted out into an infrastructure to support
better reuse [24, 29]. Alternatively, as necessary features
become apparent at the application layer, this provides a set
of requirements for the next layer in the software stack, and
so on. As an example, consider an application to allow
secure exchange of content among users on an ad hoc
network (along the lines of the Casca system reported in
[20]). At certain points, the application may require that a
dialog box appear that specifies who is requesting what
content. For this dialog to be created, the underlying system
must be capable of providing the user-facing application
with information such as association of a device with its
human owner, human-readable names to describe the
content being requested, and so forth. These requirements,
in turn, may argue for certain security protocols that can
support these technical features. Thus, after identifying
user-facing needs, general capabilities can be pushed down
into infrastructure in a top-down manner. Assuming each
application was built and evaluated to ensure a good fit with
human needs and capabilities (not always a safe
assumption), it is likely that the infrastructure will be
similarly suitable. However, this approach breaks down
when the existing infrastructure cannot support certain
applications. In such cases, changes to the infrastructure
must precede application development, and alternative
measures must be employed to ensure that the infrastructure
does not fall prey to the pitfalls discussed earlier.

New infrastructure processes
In situations where infrastructure needs to be built before it
is possible to build the applications it enables, some have
argued for involving the practice of human-centered design
and evaluation in the creation of infrastructure itself [17].
Incorporating such methods, it is hoped, will ensure that the

underlying concepts of the infrastructure can more directly
support the desired user experiences, whether of
applications built upon the infrastructure, or through
unmediated exposure to the infrastructure itself. This
approach, however, is difficult given the current state of the
art in HCI. Our traditional methods prove most useful when
we have a well-known task, an application that supports
that task, and an understanding of the user who will use that
application. Our methods are less suited to situations where
aspects of the system which we seek to design, or evaluate,
are far removed from the application itself, or when there
may be no specific task for which to design.

Currently, to the degree that human concerns are
systematically brought to bear on technical infrastructure, it
is done in an ad hoc fashion. For example, multiple
lightweight prototypes might be built on an infrastructure;
these prototypes serve as “proxies” for how real
applications built on the final infrastructure might work,
and can provide feedback about certain infrastructure
features, albeit indirectly (e.g. this is the approach in [17]).

This approach could be developed more fully, for example
by more directly aligning underlying abstractions of the
infrastructure with the conceptual model we wish to expose
to users. To the degree that these models can be aligned,
there would be no “gap” between the veneer of user
interface abstractions and the concrete reality of the
system’s underlying behavior. This certainly may not be
possible in many cases; in others, it may not be desirable
(perhaps for technical reasons, such as performance or
security). However, such an arrangement would likely
enhance the ability of users to work with the infrastructure
in an unmediated way, and mitigate the abrupt step change
between application-layer concepts and infrastructure-layer
concepts, leading to infrastructure that is more actionable
and predictable. Such an approach could allow users to
more readily form actionable conceptual models about how
the behavior of their infrastructure, reducing some of the
well-known “gulfs” in user experience [43].

Intermediate approaches have the potential to avoid all
three of the pitfalls we have been discussing with respect to
the user experience of infrastructure, albeit usually limited
to their restricted domain of focus. Even when an
application is built directly atop a well-designed
infrastructure component, it will typically rely on other,
inherited infrastructure components that are out of either the
application developers’ or component developer’s control.
For example, a context-aware application built on top of an
infrastructure like the Context Toolkit [12] will also be
required to interact with common networking protocols,
windowing toolkits, file systems, etc. As such, it will be
susceptible to the user experience limitations of the
infrastructure on which it depends.

Deep Approaches
The deepest and most pervasive aspects of software
infrastructure are the layers that, to this point, HCI has had

the least ability to influence, because they are the purview
of the systems, networking, and security communities.
However, as we have argued throughout this paper,
ignoring these layers imposes significant constraints on our
ability as a community to deliver compelling user
experiences. While there may not be a difference in kind
between the infrastructure technologies created through
what we have termed “intermediate” and “deep”
approaches, there is an important difference in the degree to
which each approach engages stakeholders outside the HCI
community—most importantly those in the computing
disciplines who have traditionally been the most concerned
with issues of software infrastructure.

Thus the final set of approaches we argue for in this paper
focus on influencing those who themselves create the
technical infrastructures we rely upon, to help them to
create substrate technologies that are more usable by and
useful to users. While one way to effect such change may
be through education (teaching software practitioners about
human-centered practices, for example), here we focus on
what we consider to be a key challenge for our discipline in
how we communicate our results to those in other
disciplines, and how we influence their work.

Learn to speak the language of infrastructure
Much technically-oriented research focuses on a handful of
quantitative measures for evaluating the “goodness” of a
system—in networking, for example, throughput, latency,
and scalability are canonical metrics (and entire
infrastructures have emerged just to support evaluation
along these metrics, such as PlanetLab [10]); for security
systems, metrics such as cryptographic security (the
computational cost of the fastest known attack on an
algorithm) may be used to assess the merit of a given
system. In and of themselves, these measures provide useful
input to system designers, allowing them to answer
questions, for example, about whether a given architecture
can support the bandwidth required for video applications,
or whether a given security system is safe enough for
military-grade work. However, when used by themselves,
these metrics paint a skewed picture—they provide a set of
technically-oriented metrics that can be optimized and
traded off against one another, but without counterbalance
from the human side of the equation. In the absence of some
way to represent user-facing concerns in the technical
design process, pure technical capability is the primary
(even sole) driver of technical infrastructure research and
development.

Thus, the current state of the practice of technical
infrastructure development too often focuses on isolated
measures that present a reductionist view of the concerns
that should face creators of such infrastructure. Far from
being a problem that the technical disciplines should be
expected to address in isolation, we argue that this is a
challenge for the HCI community: to foster the creation of
new means for communication across disciplines. One such

means of engagement would be for HCI to more effectively
master the language of metrics that is spoken by the
systems community.

Currently, the only major human-oriented metric that has
been widely adopted outside of the HCI community is
performance-oriented: namely, the human performance
guideline that indicates that 100 millisecond response time
is perceived as “instantaneous” [8, 39] is used as a technical
goal in many systems ([47, 56], among many examples).
Although the 100 millisecond number may itself be debated
[11], there is little doubt that this metric has assumed the
mantle of conventional wisdom, becoming widespread as a
performance upper bound for systems designers from a
range of disciplines.

However, there are far more aspects of the user experience
that may be salient: concerns such as installability,
evolvability, predictability, and intelligibility may all have
great impact on the user experience—taken from a holistic
perspective, perhaps even greater than mere response time.
Distilling down such aspects of the user experience so that
they can be accounted for in the design of technical
infrastructure, however, is not an easy task. Producing
metrics for these aspects—intended to serve as a
counterbalance to existing, technically-oriented metrics—
may be misguided at best, and counter-productive at worst:
many of these aspects of the user experience are nuanced
and multi-faceted, reflecting the complexity of human
behavior and experience. Simplistic translation into some
quantitative measure may do as much harm as good,
obscuring nuances and subtleties that lead to yet more
inappropriate infrastructure design choices.

While voices within HCI have argued for a greater
emphasis on quantitative metrics for comparison of
alternatives since the inception of the field [8, 41], we argue
that there are distinct challenges with providing such
metrics to inform the design of infrastructure. First,
obtaining comparative data or establishing benchmarks for
many aspects of user experience would be difficult: for
infrastructural capabilities that enable new interactions,
there may be no existing systems that form an appropriate
basis for comparison. Further, benchmarks for qualities
such as “match with users’ conceptual model,” “ease of
maintenance,” and “fits well with existing systems and
practices” would be impractical to establish, and in any case
would mean very little when isolated from each other.
Second and most importantly, many of the most important
aspects of the user experience of infrastructure unfold over
long periods of time and are subject to future conditions
that cannot be reliably forecast prior to the implementation
and deployment of the system. Unlike isolated system
metrics such as throughput, scalability, and key strength
that can be computed analytically or modeled in accepted
ways, user experience criteria will likely remain fuzzy and,
to some extent, speculative for the foreseeable future.

Change the conversation
In the absence of easily computable quantitative metrics,
how can we effectively engage with the technical
disciplines on which HCI depends? Other examples of
cross-disciplinary interactions may offer suggestions. In
this section we look to the field of Environmental Planning
as a provocative example. While we do not argue that the
case here is directly transferable to computing, it does
illustrate new approaches for integrating diverse concerns
in design.

Environmental Planning grew out of Urban Planning and
the 1960’s environmental movement as a way to broaden
the discussion about new urban development projects to
include factors of “environmental impact” that were
traditionally left out of mainstream urban planning
discussions. To be specific, environmental planning seeks
to introduce concerns such as land use, air pollution, noise
pollution, effects on wildlife habitats, socio-economic
impacts, and visual impacts of particular projects into
discussions that were dominated by traditional, “functional”
urban planning concerns such as economic development,
transportation, and sanitation [59]. In the United States, the
environmental planning agenda has been greatly facilitated
by the 1969 passage of the National Environmental Policy
Act (NEPA) which mandates the assessment of
environmental impacts for certain types of development
projects [21]—similar laws have been subsequently passed
in other countries as well. The effect of NEPA is that for
the affected development projects, an Environmental
Impact Assessment (EIA) must be performed, and its
results made a matter of public record prior to the granting
of permission to proceed with a new project. For the
purposes of our discussion, the most remarkable aspect of
the EIA process is its breadth of assessment criteria.

The EIA mechanism accommodates a wide range of criteria
that are measured in radically different ways. Indeed, the
completion of an EIA often requires calling upon the skills
of various disparate specializations, including ecologists,
economists, sociologists, and experts in cultural heritage.
The Leopold matrix [32] is commonly used in EIAs to
represent the various activities involved in a project and
their effects on the criteria of interest. The matrix is a
simple table that plots attributes of a proposed project
against the estimates of the impacts that each attribute will
have on the environmental factors of interest. Each cell of
the table contains two numbers: an assessment of the
magnitude of the impact and an assessment of its
importance. What is significant about this representation is
its ability to serve as a boundary object among multiple
disciplines involved in Environmental Planning. Indeed, the
NEPA specifically requires that federal agencies “use ‘a
systematic and interdisciplinary approach’ to ensure that
social, natural, and environmental sciences are used in
planning and decision-making,” and in particular to develop
methods so that “presently unquantified… values may be
given appropriate consideration in decision-making along

with traditional economic and technical considerations”
[21].

One may posit an “Infrastructure Impact Assessment” for
software as a thought experiment. Like the EIA, it could
accommodate the perspectives, methods, and assessment
criteria of multiple disciplines. User experience criteria
could live alongside traditional the criteria of system
performance, cost of implementation, security, and so forth.
HCI specialists would employ a range of techniques in
order to generate assessments, including scenario
generation, prototype building, user testing, ethnographic
studies, user modeling, as well as new techniques that
would likely evolve to address questions specific to
infrastructure evaluation. Note also that such a mechanism
might also support the inclusion of other important
perspectives often missing from infrastructure discussions
in addition to usability, such as environmental
sustainability, access for disabled users, and impacts on
economic competition.

We do not argue that notions like an Infrastructure Impact
Assessment are necessarily the right solution to the
infrastructure problem in HCI, nor even that they are
entirely workable. Nevertheless, mechanisms like the EIA
offer examples of how others have approached the
challenge of involving multiple perspectives, from radically
different disciplines, into the process of designing complex
systems intended to be long-lived and robust. At a
minimum, mechanisms such as the EIA surface and make
visible and explicit concerns that, today, are often invisible
or implicit in the creation of software infrastructures.

CONCLUSION
We have argued that HCI should expand its methodological
toolbox to address the design of system infrastructures
typically considered outside of the realm of “the user
experience.” Technical infrastructures not only influence
user experience but in many cases may preclude entirely
certain desirable possibilities. Certainly, there will always
be constraints to what can be built; we do not argue that
such constraints will somehow disappear when HCI
becomes involved in the lower layers of the software stack.
However, our lack of involvement in the lower layers of
software has led to systems that—while “working” from a
technical perspective—present less-than-ideal abstractions
to users, require tedious and error-prone troubleshooting,
and limit their applicability to new situations.

We have argued for a number of possible ways to mitigate
these effects, but the challenges ahead remain substantial.
Fundamentally, we see the need to involve HCI
practitioners more deeply with the creation of technical
infrastructure, and doing so requires new methodological
approaches to allow us to both understand the user
experience implications of infrastructure design decisions,
as well as to guide the development of infrastructure
features given a desired user experience outcome. Adopting
processes from other fields that have faced analogous

challenges integrating diverse stakeholders may be
informative. To have impact beyond the application layer,
engagement with the technical concerns of infrastructure is
a necessity for the HCI community.

REFERENCES
1. Ackerman, M.S.: The Intellectual Challenge of CSCW: The

Gap Between Social Requirements and Technical Feasibility.
Human-Computer Interaction, 15(2-3):179-203, (2000)

2. Bell, M., et al.: Interweaving Mobile Games with Everyday
Life. ACM CHI 2006 417-426

3. Bhattacharjee, S., Calvert, K.L. and Zegura, E.W.: An
Architecture for Active Networking. Proceedings of the
Seventh IFIP Conference on High Performance Networking,
White Plains, NY, USA (1997) 265-279

4. Blumenthal, M.S. and Clark, D.D.: Rethinking the Design of
the Internet: The End-to-End Arguments vs. the Brave New
World. ACM Trans. on Internet Tech., 1(1):70-109, (2001)

5. Bly, S., et al.: Broken Expectations in the Digital Home. ACM
CHI 2006 568-573

6. Calvert, K.L., Edwards, W.K. and Grinter, R.E.: Moving
Toward the Middle: The Case Against the End-to-End
Argument in Home Networking. ACM HotNets-VI (2007)

7. Cao, X. and Iverson, L.: Intentional Access Management:
Making Access Control Usable for End-Users. ACM SOUPS
2006 20-31

8. Card, S.K., Moran, T.P. and Newell, A.: The Psychology of
Human-Computer Interaction. Erlbaum (1983)

9. Chetty, M., Sung, J.-Y. and Grinter, R.E.: How Smart Homes
Learn: The Evolution of the Networked Home and Household.
Ubicomp 2007 127-144

10. Chun, B., et al.: PlanetLab: an overlay testbed for broad-
coverage services. SIGCOMM Comput. Commun. Rev.,
33(3):3-12, (2003)

11. Dabrowski, J.R. and Munson, E.V.: Is 100 Milliseconds Too
Fast? : CHI 2001 317-318

12. Dey, A.K., Abowd, G.D. and Salber, D.: A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications. Hum.-Comput.
Interact., 16(2):97-166, (2001)

13. Dey, A.K. and Newberger, A.: Support for Context-Aware
Intelligibility and Control. ACM CHI 2009 859-868

14. Dourish, P.: Developing a Reflective Model of Collaborative
Systems. ACM ToCHI, 2(1):40-63, (1995)

15. Dourish, P.: Accounting for System Behaviour. Computers
and Design in Context (1997) 145–170

16. Dourish, P., et al.: Extending Document Management Systems
with User-Specific Active Properties. ACM Trans. Inf. Syst.,
18(2):140-170, (2000)

17. Edwards, W.K., et al.: Stuck in the Middle: The Challenges of
User-Centered Design and Evaluation for Infrastructure. ACM
CHI 2003:297-304, (2003)

18. Edwards, W.K. and Grinter, R.E.: At Home With Ubiquitous
Computing: Seven Challenges. Ubicomp 2001 256-272

19. Edwards, W.K., et al.: Experiences with Recombinant
Computing. ACM ToCHI, 16(1):1-44, (2009)

20. Edwards, W.K., et al.: Using Speakeasy for Ad Hoc Peer to
Peer Collaboration. ACM CSCW 2002 256-265

21. Glasson, J.: Introduction to Environmental Impact
Assessment. Routledge (2005)

22. Grinter, R.E., et al.: The Work to Make a Home Network
Work. ECSCW 2005 469-488

23. Hong, J.I. and Landay, J.A.: An Architecture for Privacy-
Sensitive Ubiquitous Computing. ACM MobiSys 2004 177-
189

24. Hong, J.I. and Landay, J.A.: SATIN: a Toolkit for Informal
Ink-Based Applications. ACM UIST 2000 63-72

25. Horrigan, J.: Home Broadband Adoption 2009. Pew Internet &
American Life, Washington, DC, USA (2009)

26. Johanson, B. and Fox, A.: Extending Tuplespaces for
Coordination in Interactive Workspaces. J. Syst. Softw.,
69(3):243-266, (2004)

27. John, B.E., et al.: Bringing Usability Concerns to the Design
of Software Architecture. Engineering HCI and Interactive
Systems. Springer (2005) 1-19

28. Kiczales, G., des Rivieres, J. and Bobrow, D.: The Art of the
Meta-Object Protocol. MIT Press, Cambridge (1991)

29. Klemmer, S.R., et al.: Papier-Mache: Toolkit Support for
Tangible Input. ACM CHI 2004 399-406

30. Lampson, B.: Protection. ACM SIGOPS Operating Systems
Review, 8(1):18-24, (1974)

31. Lee, C., Dourish, P. and Mark, G.: The Human Infrastructure
of Cyberinfrastructure. ACM CSCW 2006. 483-492

32. Leopold, L.B., et al.: A Procedure for Evaluating
Environmental Impact. U.S. Geological Survey (1971)

33. Lim, B.Y., Dey, A.K. and Avrahami, D.: Why and Why Not
Explanations Improve the Intelligibility of Context-Aware
Intelligent Systems. ACM CHI 2009 2119-2128

34. Maeda, C., et al.: Open Implementation Analysis and Design.
SIGSOFT Softw. Eng. Notes, 22(3):44-52, (1997)

35. Mainwaring, S.D., Chang, M.F. and Anderson, K.:
Infrastructures and Their Discontents: Implications for
Ubicomp. Ubicomp 2004 418-432

36. Maxion, R.A. and Reeder, R.W.: Improving User-Interface
Dependability Through Mitigation of Human Error. Int. J.
Hum.-Comput. Stud., 63(1-2):25-50, (2005)

37. McDonald, D.W., Smith, K.A. and Karlova, N.: Problem
Solving Probes: A Method for Discovering Conceptual
Disconnects with Digital Living Technologies. ACM CSCW
2008 Designing for Families Workshop

38. Miller, B., et al.: Home Networking with Universal Plug and
Play. IEEE Communications, 39(12):104-109, (2001)

39. Miller, R.B.: Response Time in Man-Computer
Conversational Transactions. December 1968 Fall Joint
Computer Conference (1968)

40. Myers, B., Hudson, S.E. and Pausch, R.: Past, Present, and
Future of User Interface Software Tools. ACM ToCHI, 7(1):3-
28, (2000)

41. Newman, W.M.: Better or just different? On the benefits of
designing interactive systems in terms of critical parameters.
ACM DIS 1997 239-245

42. Nichols, J., et al.: Generating Remote Control Interfaces for
Complex Appliances. ACM UIST 2002 161-170

43. Norman, D.A.: The Design of Everyday Things. Basic Books
(2002)

44. Olsen, D.R.: Evaluating User Interface Systems Research.
ACM UIST 2007 251-258

45. Olsen, D.R., et al.: Cross-Modal Interaction Using XWeb.
ACM UIST 2000 191-200

46. Olson, J.S., Grudin, J. and Horvitz, E.: A Study of Preferences
for Sharing and Privacy. ACM CHI 2005 1985-1988

47. Oppenheimer, P.: Top-down network design. Cisco (1998)
48. Palen, L. and Dourish, P.: Unpacking "Privacy" for a

Networked World. ACM CHI 2003 129-136
49. Rodden, T. and Benford, S.: The evolution of buildings and

implications for the design of ubiquitous domestic
environments. ACM CHI 2003

50. Salber, D., Dey, A.K. and Abowd, G.D.: The Context Toolkit:
Aiding the Development of Context-Enabled Applications.
ACM CHI 1999 434-441

51. Sandhu, R. and Samarati, P.: Access control: Principle and
Practice. IEEE Communications, 32(9):40-48, (1994)

52. Shehan, E. and Edwards, W.K.: Home Networking and HCI:
What Hath God Wrought? : CHI 2007 547-556

53. Stankovic, J. and Ramamritham, K.: A Reflective Architecture
for Real-Time Operating Systems. Advances in Real-Time
Systems:23-38, (1995)

54. Star, S.L.: The Ethnography of Infrastructure. The American
Behavior Scientist, 43(3):377-391, (1999)

55. Star, S.L. and Ruhleder, K.: Steps towards an ecology of
infrastructure: complex problems in design and access for
large-scale collaborative systems. ACM CSCW 1994 253-264

56. Tolia, N., Andersen, D.G. and Satyanarayanan, M.:
Quantifying Interactive User Experience on Thin Clients.
Computer, 39(3):46-52, (2006)

57. Tolmie, P., et al.: Unremarkable computing. ACM CHI 2002.
pp. 399-406

58. Voida, S., et al.: Share and Share Alike: Exploring User
Interface Affordances of File Sharing. ACM CHI 2006 221-
230

59. Westman, W.E.: Ecology, Impact Assessment, and
Environmental Planning. Wiley (1985)

60. Whitten, A. and Tygar, J.D.: Why Johnny Can't Encrypt: A
Usability Evaluation of PGP 5.0. USENIX Security
Symposium (1999)

