Flexible Conflict Detection and Management
In Collaborative Applications

W. Keith Edwards

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
+1 (415) 812-4405
kedwards@parc.xerox.com

ABSTRACT participate in the definition of consistency and the particulars
This paper presents a comprehensive model for dealing witsf how—and whether—consistency will be maintained and
semantic conflicts in applications, and the implementation ofnanaged.

this quel in a toolkit for coIIa_bor{;ltlve systems. Conflictspyore concretely, this work deals with the issue of
are defined purely through application semantics—the set of

behavi d by th licati g onflicts—violations of the consistency invariants in a given
ehaviors supported by the applications—and yet can be,,jication. Rather than simply taking the approach that
detected and managed by the infrastructure with minim

licat de. Thi K d i b ¢ onflicts must be avoided through consistency controls,
application code. This work describes a number of NoVElagqytion protocols, and the like, this model treats conflicts
techniques for managing conflicts, both in the area o

! - . . ~as a naturally-arising side effect of the collaborative process.
resolution policies and user interfaces for presentingpese conflicts may be resolved in any number of ways, or
standing conflicts in application data.

even tolerated and allowed to stand.

KEYWORDS: CSCW, collaborative infrastructure, conflict Further, since applications have widely-varying notions of

management, Timewarp. what constitutes a conflict, this work accommodates
application-defined (rather than a priori infrastructure-
INTRODUCTION defined) semantics for describing what constitutes a conflict

Most collaborative applications involve the shared use o?nd how conflicts are managed.

some artifact by a number of users. Infrastructures fofhe goal of this work is to address a set of mechanisms that
supporting such applications must implement mechanismsn be usedacross applicationsto manage “high-level”

for dealing withconsistencyin the shared artifact—that is, application-defined conflicts. Put another way, the central
the degree to which the views and data shared by thguestion here is how one builds infrastructure, which by its
participants are the same, and structurally intact. nature must be general, that can detect and manage conflicts

Some systems support a strict consistency model, in whic‘ﬁhICh by their nature arise from application semantics.

all participants have exactly the same views and data at alhis work is described in the context of the Timewarp
times. Examples of mechanisms for supporting strictollaborative toolkit [5]. Timewarp is an infrastructure for

consistency include floor control systems and pessimistibuilding applications that permit divergent views of an

locking protocols. artifact shared among participants. Users of Timewarp

Other systems allow divergence—albeit usuallyappllcatlons have available to them the complete, global

temporary—among replicas. Examples of such mechanisnﬁ%itlmec’f tg?aﬁgllfaﬁitétgﬂgsca; ”,:ﬁge at\l;tri?;cg%h tzndmzﬂ; tr;e
include optimistic locking [7] and “operational . pe, pare . - . 9
- ; divergence. Timewarp provides arplicit representation of

transformation” strategies [6]. : : X

_ the work of multiple users across versions of an artifact. The
In all of these_ qases,_the developers of the Infras_tructuﬂﬁistory of the artifact itself becomes a shared, globally-
make an implicit choice about the form of consistencyavailable artifact that can be used to mediate collaboration.
control that will be used by applications built atop the
infrastructure. This choice represents some point in the spa
of consistency versus performance and scalability.

Xghile the implementation discussed here, and even the
notion of making artifact histories explicit, is particular to
Timewarp, the model of divergence that it makes explicit is
This work presents a new framework for thinking aboutessentially identical to thienplicit divergence that exists in
consistency. In this model, the semantics of the applicatiomany multi-user systems. In such systems, multiple users
work with versions of an artifact that may be divergent, and
. ; ' . often are later reconciled or merged into a single version.
Machinery. Published in Proceedings of the Timewarp presents the problems gf versioning a?wd alternate
Tenth ACM Symposium on User Interface . . L ; s
Software and Technology (UIST'97). Banff, artlfact_h|stor|es in a microcosm—all of these_ applications
Alberta, Canada. October 14-17, 1997. deal with the same problems, but reify their models of

Copyright © 1997, Association for Computing

operations and conflicts in different ways. The strategies and
mechanisms for dealing with conflicts in Timewarp should
be “portable” to other collaborative infrastructures.

Modularity . The mechanics of conflict detection should

be separated from conflict handling policy. Thus,
application writers should be able to “plug in” different

conflict handling policies and have their applications still
work. This modularity should encourage experimentation
with radically new forms of conflict management.

This paper begins by discussing some goals for this work,
based on the perspective of several applications that support
rich conflict semantics. From this perspective, we next
examine a taxonomy of the types of conflicts that may aris&lore specifically, there are a number of concrete issues that
in collaborative applications. This analysis raises severahust be addressed by an infrastructure to provide flexible
issues that must be addressed by a conflict managemenanagement of conflicts. Applications may have widely
system, and motivates our discussion of a particular mod&harying requirements for dealing with conflicts—some
for conflict management, and the requirements for a supplepplications may be able to tolerate certain types of semantic
infrastructure to support conflict management. We discussonflicts; others may not. Some applications in which
the two major features of our model—conflict detection andtonflicts may occur may be able to automatically resolve
management—and describe how these features can beme conflicts without human intervention; others may
applied to a range of application needs. A number of novekquire manual resolution. Thus our conflict infrastructure
approaches to conflict management are explored. We thenust be able to deal with several distinct, specific problems:
examine the particulars of how the Timewarp toolkit,

. . Detecting the presence of runtime inconsistencies within
implements this model.

sets of application-supplied invariants.

Supporting mechanisms for both automatic and manual
resolution of conflicts. “Resolution” means doing away

PERSPECTIVE, MOTIVATION, AND GOALS
When work started on the Timewarp toolkit, it was clear that

the issue of conflict management would be of paramount
importance in determining its usability and power.
Nevertheless, early versions of the system had littlg
infrastructure support to assist in managing conflicts.

The first application, a structured drawing editor, had a

with the situation that caused the conflict to arise in the
first place.

Allowing certain types of unresolved conflicts to be
tolerated, and others to be disallowed, depending on
application semantics and requirements.

relatively simple conflict model. Still, the code to detect,e
resolve, and manage conflicts, as well as provide a user
interface to these functions, quickly grew to several , ,)
thousand lines of code that was difficult to manage and mor@ the next section we examine the types of conflicts that can
difficult to extend. Worse from the perspective of a toolkitarise in multi-user applications. Most multi-user applications
designer, the conflict management code began to “pollute®@n support rich models of conflict; understanding how

the relatively clean application programming model. conflicts arise and interact is essential for developing robust
.) . T . conflict management strategies.
The situation worsened with the next application, an office

furniture layout program. While superficially similar to the o gesTIARY OF CONELICTS
drawing tool, this application supported multigiges of Syntactic versus Semantic Conflicts

conflicts. These conflict types, in addition to having Ve 1tis useful to make a distinction between two broad classes
different semantics, have radically different requirements fo|' : . o . .
rI conflicts. Dourish [3] classifies conflicts as either

detection and resolution, as we shall see later in the pap@. ; : : .
Complicating the matter further was the fact that soméyntaCF'C or semantic Syntactic conflicts represent
operations in the application could simultaneously Caus@cmssten_me_s that occur below the '?Ve' of appllc_atlon
multiple types of conflicts to arise. Dealing with conflicts in cCd€: thatis, in the toolkit and systems infrastructure itself.
complex applications can potentially cause an explosion ﬁ.emf"mt'(.: conflicts are inconsistencies that occur above the
code size and complexity, especially when the combinatori ividing line between application and infrastructure.

nature of most conflicts is considered.

Providing a systematic way of dealing with Ul concerns
about notification and comprehension of conflicts.

A given application may have completely sound, internally-
gonsistent data structures (that is, have no syntactic
conflicts), and yet still expose application-level semantic
conflicts to its users. A common example of such a system is
* Simplicity. The infrastructure should, at all costs, a version control tool. Such a tool expects its revision logs to

minimize the required work for application writers. be accurate and internally-consistent, but can expose

Scope The infrastructure must support not only conflict S€mMantic conflicts when merging disparate file versions to its
detection, but also resolution and user interface issues. US€rs

Flexibility . Despite outward similarities, the drawing and COnversely, although more rare, applications may be built on

layout applications used very different approaches an@" _infrastructure ~ that allows—perhaps temporarily—
user interfaces for dealing with conflicts. The Syntactic inconsistencies; these systems may or may not
; £xpose application-level semantic conflicts. In fact, in some

cases the application itself may not even be “aware” that the
infrastructure is managing internal conflicts as it runs. An

From experiences with these and other later application
several goals arose for this work:

requirements in the arena of conflict management.

example of such an infrastructure is the Bayou system [11],@nsistency. This example showsspatial conflict—an
weakly-consistent distributed data storage system thatpplication constraint on the placement of objects has been
presents a relational data model to application writers. Atiolated.

any given moment, a Bayou server may contain data th oth of these classes of conflicts, temporal and spatial, arise
from the perspective of the application using the data, is n

internally consistent. Applications can choose the level o%) rely through the semantics of the particular application.

consistency they wish the infrastructure to expose to them ther applications may not consider such sequences of
y they P "operations conflicts, or may not even support similar

Although this distinction is a somewhat artificial one—oneoperations at all. Likewise, other applications may have
person’s infrastructure is another person’s application—itompletely new classes of conflicstructural conflicts in a
turns out to be useful when considering problems oflowchart editor that requires that all nodes be reachable
programmatic interfaces and application support fofrom a root, for example.

managing conflicts. These examples by no means represent all types of conflicts

This work addresses facilities for managirsgmantic that can occur in applications. Rather, the represent several
conflicts We shall not deal with mechanisms for supportingspecific types of conflicts that can happen in a given
weak consistency, or epidemic algorithms for obtainingapplication, and point to the complexities and wide
eventual consistency, or locking, or other approaches forariations that arise in defining application-specific
addressing syntactic consistency. Further, we shall naonflicts. Further, they illustrate that any given operation
address the issue @bw conflicts arise—whether through may simultaneously participate imultiple classes of
weak consistency or network partitioning or merging. conflicts. As described above, the move operation, for

Rather. this work assumes that in most Comple)éaxample, participates in both temporal and spatial conflicts.

collaborative systems, conflictgll occur simply because of The next section describes the setting in which application-
the semantics of multi-user applications. The specific focudefined conflicts may occur. This setting provides a basis for
of this work is how to build a systems infrastructure that camlescribing the divergent state of artifacts that are the focus of
support the needs @pplicationsto manage the types of a collaboration.

conflicts that arise purely because of their own particular

semantics. The model here does not necessarily assume th8SUMPTIONS

applications require syntactic consistency. Rather it does n@his work assumes that, for any application, there exists a
address the problems of syntactic consistency at all, angkt of atomic operations that affect the artifacts exposed by
considers them orthogonal to the problems of semantithe application; these operations are cadletions Further,
consistency. Applications using this model may or may nothese actions are thenly way to change the state of the
be built on an infrastructure that tolerates syntactiartifact in a way that is significant to other users of the
inconsistencies. artifact. For example, in a shared drawing tool, the artifact is
the drawing itself. The atomic operations on this drawing

So_mg Classes of Semantic Conflicts . . may include drawing a new figure at specified coordinates,
Within the category of semantic conflicts, there are

: X . moving an existing figure, or cutting, copying, or pasting
potentially any number aflassesof conflicts that can arise. figyres to and from the clipboard. Other operations that do
Consider a shared drawing application as an exampl

. ! ampPi§ot globally change the state of the artifact—such as setting
Suppose that because of the architecture of this applicatiog,; oom factor that only changes the local view—need not be
operations on the shared artifact can become arb'tra”%presented in this set of atomic operations.

interleaved—whether through weak consistency amon

replicas, editable timelinesla Timewarp, or the merging of At runtime, actions are ordered into a directed acyclic graph
two divergent versions of the drawing. called ahistory. Each edge represents an action performed

. bythe user, and each node represents the state of the artifact
Several types of semantic conflicts can arise in this situationer g upstream actions have been applied. The history

First, consider the case where an operation draws a N&Wnresents the complete record of the artifact as it exists
figure on the canvas, and is followed by an operation thal;qq time. For applications that enforce a strict global,

][.noves' that sfame figure. NOW’r:f an operation that deIete; e rial ordering, the history graph may be simply a straight
igure is performed between the draw and move operationgne o actions. For applications that allow mulfiple users,

atfemporallponflictr\]/_/illhresullt—the m_ove_opﬁragon will NOW herhaps at different sites, to see (or “receive”) actions in
refer to a figure which no longer exists in the drawing. arbitrary orders, the history graph will be more divergent.

Temporal conflicts arise because of inconsistencies in th?his history graph is conceptually identical to graphs

up-stream (earlier) and down-stream (later) dependencies |By esenting message broadcasts among a set of machines,
a sequence of ordered operations. or graphs representing multiple versions of an artifact. The
As a second example, imagine an office furniture layout togtame issues of divergence, conflict, and merging arise in any
that does not allow overlapping figures. In this case, even if these cases, and this model for conflict management is
the application does not allow a single user to place an objeapplicable to them as it is to Timewarp.

directly on top of another one, operations may still becomg\ny path through the history is called taneline and

interleaved in such a way that objects overlap one anoth§bnresents a particular ordering of actions—in essence, a
whether through merging or movement toward eventual

plausible alternate history of the artifact based on a serigkt is statically-defined, in the sense that it will not change as
ordering of actions. long as application semantics do not change.

For many applications, each user will have a “current nodeThese sets correspond to the various types of conflicts that
that represents the “location” of that user in the history. Irmay exist in an application. For example, in a drawing
most applications, the current node of a given user will be application, aemporalconflict set may include Cut actions,

a leaf node in the graph, representing the “cutting edge” ais well as any actions that refer to or modify the state of
time: all upstream actions will have been seen by that usesbjects in the drawing, including Move actions. These action
and no new, unprocessed actions will have been received. ¢ttasses are grouped together because the addition of any one
some applications, however, users may have a current nodan interact with other actions in the septentially cause

in the interior of the history. Such applications may allowa conflict to arise, based on the order of the actions. So for
scanning through alternate plausible timelines in the historyexample, if a Cut action is placed in a timeline before some
é)ther action Moves the object which is cut, a temporal
gnflict will exist. Likewise, if a Move is added after a Cut is

n place, a temporal conflict will exist.

A conflict is defined simply as a special state that exist
between any two actions that have been applied, perha
tentatively, to the artifact. Thus, in our model, when a
conflict occurs it is theperationsin a timeline that are in A given action class may simultaneously exist in multiple,
conflict, not states of the artifact. The model itself assigns noverlapping conflict sets. In a flowchart editor, a Move
special meaning to the “state of being in conflict” Anyoperation may also have the potential to violate structural
semantics of the “conflict state,” including how the stateconsistency—perhaps by dislodging an object’s connections
arises, is defined purely by the application. Thus there are ro its neighbors. In this situation, the Move action would
“intrinsic” conflicts in this modelall conflicts are defined as exist in both the temporal and the structural conflict sets.

violations of some application-supplied semantics. In essence, a conflict set is simply a means of grouping

The model here is motivated by other work in the fieldtogether types of atomic operations that can cause conflicts
including Prospero [3], GINA [2], and WeMet [10]. with each other based on the semantics supplied by the
plication. Action classes can exist in multiple conflict sets

In the next section we address mechanisms for detecti
multaneously.

conflicts that occur in this setting of ordered, atomic

operations. Since, by definition, actions can only cause conflicts with
other actions in their same sets, sets allow us to partition the
DETECTION OF CONFLICTS space we must consider when searching for conflicts.

As stated earlier, this work deals with types of conflicts tha _
arise purely from application semantics. An important issue-°"Mict Roles . .

then, is how we can build an infrastructure that can detect/thin a conflict set the comprised action classes are
these conflicts, when only application code “understandsgrouped intoconflict roles indicating the part the actions
that the conflicts exist? How can application semantic®!2Y in the set. So, for example, in the temporal conflict set

inform the infrastructure to detect types of conflicts such a! the drawing application, all actions that remove drawn
those seen earlier (spatial, temporal, and so on)? objects (such as Cut) might be grouped together in a role;
similarly, all actions that modify existing objects (such as

Just as the set of actions provided by an application define ikgove) might play a similar role in the set and would thus be

semantics of behavior, these same actions also define theouped into a single conflict role. Actions in the same role
semantics of determining when a conflict exists. Since thgehave similarly with respect to the set they are in.

notion of whether a conflict exists arises solely through thﬁté | . he f . f . ithi

semantics of what particular actions do, the actions set tHe0'€S partltflodn the functions Od aCtllonS Wl'td in ?] set.I For
conflict detectionsemantics for the applications, since onlyPurPoses ot detection, we need only consider the roles an
they can “know” how their behavior can create the presend%Ct'O” plays in its sets, not the semantics of the action itself.

of conflicts. An Example Conflict Hierarchy from a Layout Application

This section describes our detection model, based on usithggure 1 shows the conflict sets and roles for the layout
application-provided actions to define conflict relationshipsapplication mentioned earlier. These are simply the conflict
After the model is discussed in the abstract, we detail eelationships for a particular application; other applications

particular implementation of it in the Timewarp toolkit. may have different types of conflicts, and hence very

different relationships expressed through their sets and roles.
Conflict Sets

The combination of some types of actions in the history1€ré: the sets and roles are presented as a hierarchy,
graph may potentially cause conflicts to arise; other types Ithough conceptually each could exist independently. (The

actions may be “immune” to conflicts—no matter how theydescription here maiches the implementation used by
are added, or in what order, they will never cause a conflict'Mewarp; see the Implementation section for more deta[ls).
to arise. Types of actions that may potentially cause conflic &" &ction is not a member of any of these sets then it is
among other actions in a limited group are said to define amune” from causing any conflicts, no matter how or in
conflict set A conflict set is simply a group dfpes or what order it is inserted into the history graph.

classef actions that have the potential to generate conflict¥here are two first-level setSemporal and Momentary .

with each other. The presence of an action class in a conflitheTemporal set represents all types of conflicts that cause

inconsistenciesacross a timeline; Momentary conflicts,

which include bottspatial andStructural conflicts, are Action SetRole

only based on the instantaneous state of the artifact and dgeateObject Temporal:dependable

not affect all of a timeline (this distinction, and the Spatial:existsAt

implications of it, will be explained more thoroughly in the MoveObject Temporal:dependsOn

next section). Spatial:existsAt

Within the Temporal set there are three roles that actions Spatial:seversExistsAt

may play. ThedependsOn role indicates that the action CutObject Temporal:dependsOn
depends on some other action being earlier in the timeline. Temporal:seversDependency

Thedependable role indicates that the action may be used
as a target of a dependsOn relation. The bi
seversDependsOn role indicates that the action may break, PastéObject

Spatial:seversExistsAt
Temporal:dependsOn

or sever, any downstreagependsOn references to an Temporal:dependable
upstreanmtependable action. Spatial:existsAt
Within the Spatial ~ subset ofMomentary , the existsAt TABLE 1: Conflict Roles of Actions in the Layout
role indicates that the action it is associated with produces or Application
modifies some figure in the drawing so that it “exists at” &ne detection machinery to identify conflicts automatically
certain spatial location. TheseversExistsAt role when they occur.
indicates that the action associated with it removes an object
created by another action. Gathering Conflict Candidates
At an abstract level, the detection process uses a source
Temporal action and compares it repeatedly against other target actions
dependsOn to see if f[hey are in conflict. The first _phase o_f the_ detection
process is to gather all of the potential conftiahdidates
dependable These are the other actions in the history graph that can, in
seversDependsOn any way, factor into the decision of whether conflicts exist.
Momentary For a given action, its candidates are the other actions from
i some sub-region of the history graph that are members of the
Spatial same sets as itself. Thparticular sub-region that is
existsAt considered depends on the sets in which the source action is
seversExistsAt a member. Consid_er, for. examplg, temporall conflicts. When
a new Cut operation is inserted into the history graph at a
Structural given point, the conflict detection machinery must consider
L all paths that pass through the new action, looking for
violated downstream dependencies, to determine if a conflict
FIGURE 1: Hierarchy of Conflicts for a Layout exists. This_ is bgcausg temporal conflicts, by the.ir very
Application nature, are inconsistencies affecting downstream actions.

Table 1 shows the actions that constitute the Iayoﬁee Figure 2 for an example of such a conflict. It is possible

application. Note that most actions participate in sever at the insertion of the action will cause a conflict in one
different conflict sets. The CreateObject action Path, but not another. For this reason, all actions in all

participates in both th@emporal andSpatial sets. It is timelines passing through the insertion point are considered
dependable because it creates an object that may later bg{:\ndlda‘tes for_temporal conflicts. Because such' cor_1fI|ct§ are
referred to by another action; it alemistsAt since it S|tuated_|n.the timeline |tself, they corrupt the entire t|meI]ne
produces a figure in the layout which has a physical positiof{'€Y €Xist in, from the point of the earliest conflicting action.
and size. ThevMoveObject actiondependsOn a previous N the figure, the entire upper path from the point of insertion
object that it will move. It undoes that object’s old position®f the Cut operation is in an inconsistent state.

(via seversExistsAt) and relocates it (viaxistsAt). Spatial conflicts do not have this unbounded property,
CutObject bothdependsOn the existence of an upstream however. The determination of whether a spatial conflict
object that it will cut, and, viaeversDependsOn , indicates exists depends only on tharrentstate of the artifact, which
that any downstream objects that depends on the deleteshy be represented as the sequence of actions leading up to
object are now in conflict with thiSutObject ~ operation. the insertion point. Downstream actions do not play into the

When an application writer creates a new application, he ¢fecision of whether a conflict exists. So for spatial conflicts,
she defines the set of actions that represent the allowadil actions up to the insertion point are considered to be
operations in the application. At the same time, théandidates for conflict.

application writer defines the conflict relationships betweerFigure 3 shows an example of such a conflict. Action 1
these applications by designing a group of conflict sets anghuses a figure to be drawn at coordinateé Action 2
assigning the actions into it. These relationships are used Iyoves a different figure to the same coordinates. This action

exist, implementations may cache the pair of conflicting

Action 2 causes a conflict actions, along with information about the conflict set.

along this path.

3 p——— This phase only accumulatastual conflicts from the set of
potential conflicts gathered earlier. No action is taken to
——————— Move A resolve or disallow any conflicting actions at this point.

Requirements for the Application Writer

Despite the complexity of the detection process, adapting an
application to work in this model requires fairly little effort.
At a minimum, the application writer must define the types

________ N 4 / of conflicts that can exist in the application, and assign the
N \

various operations supported by the application to conflict
sets and roles. The infrastructure needs to be able to query
actions for a list of the sets they are members of, and their
)] roles in those sets. The particulars of how set and role
FIGURE 2: Temporal Conflicts Invalidate Some information is associated with actions can vary from
Downstream Timelines, But Not Others implementation to implementation. Timewarp implements
causes a conflict to occur, based only on the state of ttiee model by requiring actions to implement Java interfaces
artifact up to the point of the insertion—by examining onlythat represent their conflict roles (see the section on
upstream actions, the system can determine that two objediplementation). Other implementations may use multiple
are in the same position. Further, note that snomentary inheritance, or simply a set of type flags. This definition
conflict exist only for a bounded span of a timeline. Action 3phase is a static (compile-time) process that will not change
moves the second figure to a new, non-conflicting locationas long as the semantics of the application do not change.

Thus, unlike temporal conﬂlcf[s in which an entire tlme!lnr_e ISNext, the application writer must define per-set gathering
corrupted, momentary conflicts are confined to a limitedyng jgentification functions for each conflict set in the
area of a timeline. application. In most cases, one of the two types of gathering

Action 2 causes a momentary conflict descrik_)ed egrlier—whqle-path gathering or current-state

which only exists in the timeline until gathering—will be apphlcable.,. anq thus ga_then_ng fpnctlons

Action 3 is evaluated. can be reused. The identification function is simply a

® ") predicate that is passed two actions in the same set and

returns either true or false indicating whether they are in
conflict. Typically these functions are on the order of a few
dozen lines of code total.

. N
Action 2 causes no conflict N Move B
along this path. ~

—» 1 —» 2 (——»f 3 (—

Draw A Move B Move B The model _partitions the c.ietec_u'on' process both
at X,Y to X.Y to XY’ procedurally—into gathering and identification phases—and

' ' strup'gurally—by grouping actions into sets and roles. This

FIGURE 3: Spatial Conflicts Span a Region of a partitioning greatly reduces the “cross-talk” among types of
Timeline conflicts, and minimizes and simplifies the amount of

. . L _ ?pplication code required.
Since temporal and spatial conflicts involve different sets o) o .) o
actions, we must use different gathering strategies for eadince this process of defining the conflict relationships in an
(and potentially different strategies for all the types ofapplication has been completed, an infrastructure using this
conflicts in an application). Since an action may be a{no_del can automatu_:ally detect conflicts that arise among the
member of multiple conflict sets, gathering is performedactions in an application. Further, as we shall see, our
separately for each set and candidates are then passed toifeastructure will also be able to automatically manage any
identification phase of detection. conflicts that are detected.

Identification. After the set of conflict candidates has beenyANAGEMENT OF CONELICTS
_gathe_l’_ed,_actua| identiﬁcation-of Conﬂi(?ts iS performed. Thq-|and||ng Conﬂicts in an app"cation has two aspects_ First7
identification process for a given set is only *handed” thehe description of what constitutes a conflict is statically-
gathered candidates for that set, even if the action in questigfafined and rooted in the semantics of a particular
is a member of multiple sets. Identification of conflicts isapplication. These semantics are made manifest as actions,
separated by set to make the task of identification ofnd hence actions are statically grouped into conflict sets and
conflicts for a particular set independent of all other sets. rples to denote their relationships to one another. The
The process of identification simply iterates through thePrevious section on detection of conflicts covered this
gathered candidates. For each candidate, a set-speciREOCESS.
predicate function is evaluated to determine if a conflictrhe second aspect of conflict handling, however, is
eXiStS betWeen the source and Candidate. If a COhﬂiCt do%ependent of the particular Semantics Of the set of actions
used by a given application. Unlike detection, this aspect is

dynamic—it indicates what tdo with conflicts once they Conflict Resolution

have been detected. This process is run-time behavior¥When an action is tentatively installed and conflicts are

unlike the compile-time definition of conflict relations—and detected, the system may attempt to resolve them, thereby
can be made largely independent of the semantics-basesimoving any inconsistencies that would be caused.

detection mechanisms. Resolution is accomplished by handing the identified

Our model codifies this distinction by separating conflict.CoanICtS to the policies associated with any sets that

detection from the behavioral aspects of dealing with a set &jentified contlicts. Of course, since actions may be in
detected conflicts. The behavioral aspects are dictated by"au/tiPIe sets, if these sets are mapped to different policies
conflict policy that embodies the semantics of conflict each policy may participate in the resolution process.
management at run-time, separate from detection. There are a number of common resolution strategies that can
e implemented by conflict policies. The simplest strategy is
simply provide the user with the option of not performing
tiae new, conflicting operation. If the operation is undone
%efore being actually inserted into the history, no conflicts
will be caused.

One benefit of making the distinction between action-base
detection and policy-based management is that the confli 9
policies can be made independent of the semantics of
conflicts they are asked to manage. So, for example,
application may come with a set of “pluggable” conflict
policies that can be swapped in and out. Any of thes@olicies may, however, implement other, more complex
policies would be capable of managiagy set of conflicts strategies for resolving conflicts. Some policies may
detected as described above. If they so desire, howevemplement these strategies as automatic resolution
application writers can create policies that have intimat@rocedures, which run without user intervention. Others may
knowledge of the semantics of particular classes of conflictsinteract with the user to “tune” the resolution process.

Conflict management is performed in response to detectefhe Expiosion Strategy. This ~ strategy lets computation

conflicts. When a new action is created but before it iroceed at the cost of history complexity. At any point where
installed in the history, detection is done to determing conflicting action exists in the history, the history is forked
whether the tentatlvely installed action would cause anyhto mu|t|p|e downstream paths_ Each of these paths

conflicts to arise. If conflicts would be caused by this newepresents an alternate in which conflicts are avoided by
action, then the conflict management system is invoked tgelectively removing actions involved in a conflict.

deal with the detected conflicts. . .
Figure 4 shows such an example, where an inserted Cut

Conflict policies are associated with particular conflict setsgperation would conflict with a downstream Move. The
Typically an application will associate a policy with eachhijstory is forked into two branches. The first branch “favors”

conflict set defined by the application. the Cut by letting it stand and removing its conflicting
In our model there are several different aspects of confligg@rtner, the Move. The second branch does the opposite: the

* Resolution If a tentative action causes an inconsistency] e explosion strategy resolves conflicts by providioth

automatic or manual resolution of the inconsistency. ~ When an inconsistency is encountered.

* Tolerance After any optional resolution is performed,
the policy can decide whether the tentative action should
indeed be inserted into the graph. This model allows
conflicts that have not been resolved to still be tolerated»| 1 ——p| 2 —®| 3 |——
in the graph, at the discretion of the application.

Before: A Cutis inserted between a Draw and a Move

* Interface. Once inserted into the graph, actions that Draw A Cut A Move A

cause unresolved-but-tolerated conflicts may influence
the user interface of the application. The infrastructure
provides “hooks” for allowing applications to trigger user
interface changes when conflicting data is presented.

2 />
The conflict management policies can managgdetected /
conflict, regardless of the conflict set it originated from__g. 1 \Cut A

After: The history is split before the first conflict, allowing
both actions to exist but in separate paths

Policies define how—and whether—resolution will be
performed, whether standing conflicts will be tolerated, and Draw A
interface changes that will be associated with conflicting on-

screen objects. Conflict policies have complete access to the Move A
history graph and can make arbitrary changes to it (perhaps .
recursively causing new conflicts). We will now examine FIGURE 4: The Explosion Strategy

these aspects of conflict management in detail. . .
P 9 The Promotion Strategy. This strategy “promotes” actions

that depend on upstream results into actions that can exist
without reference to any upstream information.

Figure 5 shows an example of promotion. Here, a figure hds quantum uncertainty, the accretion of actions in a history
been copied to the clipboard, and then pasted. If the figure is used to posit a likely interpretation of inconsistent data.
removed before being copied, an inconsistency exist§hus, a set of actions that reinforce one interpretation of a
because there is no object to copy to the clipboard, and hencenflict lessens the uncertainty of one of the actions
the paste operation cannot proceed. participating in the conflict, while increasing the uncertainty

In the figure, promotion is used to replace the Past8f the other.

operation, which depends on the existence of upstreafigure 6 shows an example of quantum uncertainty. Here,
actions, into a “stand-alone” Draw operation that has no suacle see our by-now classic Draw-Cut-Move inconsistency.
dependencies. In effect, the dependency is severed and thiter the insertion of the Cut, both the Cut and Move

conflict is undone. operations have uncertainty values of 0.5 indicating that they

Such a strategy may not be effective for all situations. But iﬁreﬁgsggy ;:geg?)ln{elg tgfe tsheem:l? grj\speh dfhgmn,o?)'sei?ugpece
cases where the Paste was performed by the user essentigﬁ P PP y ;

as a “short-cut’ for a Draw, promoting conflicting Pasted ended to the timeline. These actions all “ignore” the

operations to Draw operations preserves the intende terpretation of the con_ﬂict that favors the Cut operation,_ SO
meaning of the user. they Iessgn th_e uncertainty of the Move, and all other actions
that conflict with the Cut, at the expense of the Cut. In effect,
these later operations reinforce the interpretation that the Cut
should be ignored. Other divergent paths may favor the Cut,

in which case the situation would be reversed in those paths.

Before: A Delete action (2) is inserted, which conflicts
with downstream Copy (3) and Paste (4).

—»| 1] 2 —»| 3 > 4 —

Draw A Delete A Copy A Paste > 1] 2 . 3
After: The Paste is “promoted” into a Draw of A’, a new Draw A ij'tb_A M%_/g A

object derived from A.

o 1 e 2 V| 3 | 4 P 5 [

— 1 | 2 | 3 > 4 —

Draw A Cut A Move A Copy A Move A
Draw A Delete A Copy A Draw A’ 0.75 0.25 0.25 0.25

FIGURE 5: The Promotion Strategy FIGURE 6: The Quantum Uncertainty Strategy

The Recursive Acceptance Strategy. One obvious option for ~ Resolution Summary. All of these strategies show the degree
resolving conflicts is, rather than disallowing the insertion oof control the conflict management system has over the
the new action, remove any downstream actions that confligistory of the artifact. New paths can be created in the graph,
with it. Of course, the removal of these actions may itselfnd actions can be removed and rearranged. Because of the
cause new conflicts to be created, which may be resolved. ability to tentatively insert actions and detect resulting

. . conflicts, the conflict manager allows “what if" scenarios
The recursive acceptance strategy uses this approach. Wh&flch as shown by the recursive acceptance strategy) in

a conflict is detected, the user has the option of removinghich the user can iteratively resolve cascading conflicts,

either the source action, or any conflicting targets. When g4 yet still back out without damaging the artifact.
target is “removed,” the system actually creates a new

tentative timeline and recursively executes the conflicConflict Tolerance

detection code to determine what new conflict may haveé\n important trait of the Timewarp conflict model is that it
been created. At this point, the resolution policies for thesallows applications to managdelerated conflicts. That is,
new conflicts is executed. The process continues until theome applications may decide that certain types of conflicts
user has either reconciled the timeline or allowed the&eed not be resolved, but can be allowed to exist in a
conflicts to stand. At any point the user can “back out” tatimeline. A common reason for tolerating conflicts is to ease
undo an earlier conflict decision. users’ burden—if the users of a tool understand the intended

) . . state of the shared artifact and are satisfied with it, there may
The Quantum Uncertainly Strategy. Quantum uncertainty is o 4 reason to force them to go through a series of steps to

not so much a pure resolution strategy as a combination gl a1y resolve any existing inconsistencies. Work can

Foleran_ce and user .|nterface ideas. In quantum uncertainty oo d 4t jts own pace, and users can elect to resolve
inconsistent operations are allowed to exist. All suc onflicts later. if at all

operations are said to be in an “uncertain” state, and have a
numeric “uncertainty” value associated with them. ThisFor example, in the layout application, conflicts often arise
value is recalculated whenever a change is made to tigcause two users working independently merge disparate
history graph, and represents an index of the validity that th&ction paths into one shared state. The merge may cause
action seems to have, based on the other actions around itcertain objects to overlap, violating spatial constraints in the
application. Rather than forcing the users to readjust the

entire layout to do away with the inconsistencies, the systemhen application user interface code is about to draw an on-
allows the inconsistencies to remain, but flags them in thecreen object that is a part of the shared artifact—and, hence,
interface (more on this later). may potentially be the product of actions that are involved in
tanding conflicts—the application may delegate drawing to

Whether or not a class of conflicts will be tolerated depend e drawable conflict policies that affect the object.

solely on the conflict policy in effect for that class of
conflicts. In the Timewarp implementation, determination ofAgain, the particulars of how this delegation is done depends
tolerance occurs after the optional resolution step; the policgn the particular toolkit in use. The current implementation
returns a boolean value indicating whether the tentativelpf Timewarp provides a drawable conflict policy
inserted action should be installed in the history graph, anfrastructure for interacting with the SubArctic GUI toolkit
should be discarded. Tolerated conflicts are cached so th@, but the general concepts are portable to other Ul toolkits,
they can be used to effect interface changes if desired. albeit perhaps with more work for implementors.

Conflict Interfaces The infrastructure provides a mapping from on-screen
Allowing standing conflicts to exist in an application raisesObjects to the actions which have affected them. Once this

questions about how they should be presented to users. GURPPING has been created, applications can inquire to the
infrastructure must be able to allow application code—¢onflict management system about whether a particular on-
especially the application’s user interface code—to colludgcreen object should have its drawing delegated to one or
with the conflict management system to systematicallymore drawable conflict policies. If the conflict management

modify the application interface to reflect conflicts. system indicates that drawing should be delegated, the
application passes the on-screen object into the conflict

Interface Examples. One of the goals of this work is to management system for drawing. The conflict management
explore rich interfaces for presenting conflicts. Severakystem then identifies all of the drawable conflict policies
interfaces for interacting with standing conflicts have beenhat are involved in conflicts for the object. These policies
developed. In the layout application, spatial conflicts areare applied—pipeline fashion—to the drawing process for
handled by a policy that allows the conflicting, overlappingthe object. The final result is that each policy has a chance to
objects to co-exist, but renders them transparently anighpose its own policy-specific drawing modifications to
slightly blurred via a Gaussian blur ([5] contains an image obbjects involved in conflicts.

this effect). This technique provides an immediately obviOUﬁ.hiS mechanism addresses the inteqration of conflict
cue that' the.state of these objects is sqmehow “diffe.remﬁwanagement with a Ul toolkit. and is gextensible to new
E)hna?ot;‘%']f Qr?'eggggiﬁ'e:-gﬁJa;éttgzztg%t%bﬁcfezfSﬁ?gﬁ;ﬁg‘%mes, new applications, and new Ul toolkits—it requires

the perception of the cue as indicative of spatial conflict. . the cooperation of the set of actions used in the
application, and the particular conflict policy used to manage

In the drawing application, temporal conflicts are handled byhe interfaces of conflicts among these actions. No changes
quantum uncertainty. Drawing of conflicting objects isare required to the basic conflict management system, and
modified so that the transparency of an object represents iise conflict management code does not have to understand
degree of uncertainty. Fully certain, unambiguous objectthe particulars of a given Ul toolkit; only the particular
are rendered fully opaque. Other objects, as their uncertaingrawable conflict policies in use are required to be able to
increases, gradually fade out over time. “speak” to a particular Ul toolkit.

Other policies may annotate drawn objects that are involve®ihe next section discusses the particulars of the conflict
in conflicts with controls that allow the user to pop up ainterface implementation provided by Timewarp, along with
panel of information about the conflicts they are involved inother implementation details.

Interface Implementation. The interface of any application is, CONELICT IMPLEMENTATION IN TIMEWARP

by necessity, dictated by the user interface toolkit being usqﬂ Timewarp. the ordered atomic operations model is
as well as the semantics of the particular application. Thi P, b

|
requires that particulaimplementationsof our conflict realized as a set of concrete classes, in the object-oriented

. : . sense. Actions are classes that represent the atoms of
model know about and support a particular Ul toolkit. Still,p oy, o vior in ‘5 given application; particular action classes are

the conflict management infrastructure can provide generi rovided by application writers when they build their

mechanisms for supporting a range of application nee gpplications. When a new operation is performed, a new

given a particular Ul toolkit. action instance is created to represent it, and is installed in a
Our model distinguishes between basic conflict policies antistory graph that provides an explicit representation of the
drawable conflict policiesDrawable conflict policies are parallel timelines of the shared artifact.

B e % imewa uses an open implementaton [5) approscr he
P ' P infrastructure “speaks” in terms of actions, generically.

number of new behaviors over simple conflict policies; these - vions are built by extending these actions through
behaviors are used by application code to allow some of thseiﬁ)

2 . , . bclassing, and then *“pushing” them back into the
application’s drawing behavior to be delegated to the pOIICyi'm‘rastructure, thereby inserting their own semantics into the

Whenever conflicts are detected along a given path, they ateolkit framework.
stored and indexed by the particular sets they represent.

Conflict sets and roles are represented as a hierarchy afea for future work is on declarative specification of
interfaces that can be multiply inherited by the actions. Sdetection protocols. In the current system, detection is
application writers, when creating the actions that constitutanplemented procedurally by the application writer in the
their application, declaratively assign these actions to form of a detection predicate. We are investigating a
number of interfaces representing the roles of a particulateclarative implementation based on constraints, which may
set. The use of interfaces here provides a declaratiyerovide a more natural way to define conflict relationships.
notational convenience and strong compile-time type safety.

- ot . ACKNOWLEDGEMENTS
All of the infrastructure (non-application) code for detecting) .
and managing conflicts is localized in the Thanks to Paul Dourish, Beth Mynatt, and lan Smith for

ConflictManager class. This class uses information their contributions in reviewing and editing this paper.
provided in the types of the actions defined by the

application writer (accessed via reflection), as well afREFERENCES , ,
explicitly-provided application code such as detection[1] Arnold, K., and Gosling, JThe Java Programming

predicates, to implement the conflict model described here. LanguageAddison-Wesley Co., Reading, MA, 1996.
The current implementation provides a number of drawabld?] Beérlage, T, and Genau, A., "A Framework for Shared
conflict policies that interact with the SubArctic GUI toolkit. Applications with a Replicated Architecturefroc.

These policies leverage the “drawing isolation” features of =~ ACM Symposium on User Interface Software and
that toolkit [4] to provide convenient pipelines of drawing Technology (UIST)Atlanta, GA, November, 1993.

operations that represent the effects of multiple drawablg3] Dourish, P.Open Implementation and Flexibility in

conflict policies. Ul-specific code is not present in the Collaboration Toolkits.Ph.D. dissertation, Computer
infrastructure, with the exception of the particular drawable Science Department, University College, London

conflict policies where it is isolated. June, 1996.

The Timewarp system is implemented entirely in the Jav 4] Edwards, W.K., Hudson, S.E., Marianucci, J., Roden-
programming language [1]. Currently, the framework itself stein, R., Rodriguez, T., Smith, |. “Systematic Output
is approximately 15,000 lines of code. The entire conflict Modification in a 2D User Interface ToolkitProc

subsystem, along with the set of “pluggable” policies :

. ; ACM Symposium on User Interface Software and
d bed above, ts 2,000 I f the total. A
escribed avove, reprosents nes ot the o Technology (UIST)Banff, Alberta, Oct. 1997.

number of applications have been created using this system.
The total number of lines devoted to conflict management in[5] Edwards, W.K., and Mynatt, E.D., “Timewarp: Tech-
each of these applications averages only 60 lines of code, niques for Autonomous Collaboration,” Proceed-
almost exclusively in the detection protocols. ings of the ACM Conference on Computer-Human
Interaction (CHI).Atlanta, GA, March, 1997.

SUMMARY AND FUTURE DIRECTIONS [] Ellis, C.A., and Gibbs, S.J, “Concurrency Control in

. : . 6
This paper has described a comprehensive model fo Groupware SystemsProc. ACM SIGMOD Confer-
thinking about the detection and management of semantic
conflicts in applications. These conflicts can arise in any ence on Management of Dafiune 1989.]
number of application genres, from distributed systems td7] Greenberg, S., and Marwood, D. “Real Time Group-
version control to collaboration. The model here supports ware as a Distributed System: Concurrency Control
rich definition of conflicts, including the ability to define and its Effect on the InterfaceProc. ACM Confer-
multiple simultaneous conflict categories. Further, the model ence on Computer-Supported Cooperative Work
provides a framework for the resolution and tolerance of (CSCW) Chapel Hill, NC, October, 1994.

detected conflicts, and can interact with application code to[8] Hudson, S., and Smith, I., “Ultra-Lightweight Con-
produce novel interface effects based on standing conflicts. Straints . Pr.(;c ACM Sy,mb’osium on User Interface

This model has been implemented as a part of the Timewarp Seftware and Technology (UIST)Seattle, WA,
collaborative infrastructure. While this toolkit provides November 1996.

significant capabilities to application writers for defining and : “ .
managing conflicts, the amount of work required by [°] chzale_s, G Beyond the Black Box: Open Imple-
application writers to participate in conflict management is mentation,” IEEE Software, January, 1996.

minimal. Typically only a small amount of code must be [10] Rhyne, J.R., and Wolf, C.G., “Tools for Supporting the
written to interact with the conflict subsystem. Collaborative Process.” IRroc. ACM Symposium on

There are a number of future directions for this work. An User Interface Software and TechnologyIST).
obvious area is the investigation of more forms of conflict ~ Atlanta, GA, November, 1992.

resolution. The forms described here, while novel, do nof11] Terry, D.B., Theimer, M.M., Petersen, K., Demers,
capture the entire space of conflict resolution. A second area A J., Spreitzer, M.J., Hauser, C. “Managing Update

of focus is on conflict interfaces. Our current model only Conflicts in Bayou, a Weakly Connected Replicated
supportsoutput changes in response to standing conflicts. Storage SystemProc. ACM Symposium on Operat-
We would like to also be able to modify tirgput to on- ing Systems Principles (SOSBPgc. 1995.

screen objects based on the conflict policies in effect. A final

