
Flexible Conflict Detection and Management
In Collaborative Applications

W. Keith Edwards
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304
+1 (415) 812-4405

kedwards@parc.xerox.com

participate in the definition of consistency and the particulars
of how—and whether—consistency will be maintained and
managed.

More concretely, this work deals with the issue of
conflicts—violations of the consistency invariants in a given
application. Rather than simply taking the approach that
conflicts must be avoided through consistency controls,
resolution protocols, and the like, this model treats conflicts
as a naturally-arising side effect of the collaborative process.
These conflicts may be resolved in any number of ways, or
even tolerated and allowed to stand.

Further, since applications have widely-varying notions of
what constitutes a conflict, this work accommodates
application-defined (rather than a priori infrastructure-
defined) semantics for describing what constitutes a conflict
and how conflicts are managed.

The goal of this work is to address a set of mechanisms that
can be usedacross applications to manage “high-level”
application-defined conflicts. Put another way, the central
question here is how one builds infrastructure, which by its
nature must be general, that can detect and manage conflicts
which by their nature arise from application semantics.

This work is described in the context of the Timewarp
collaborative toolkit [5]. Timewarp is an infrastructure for
building applications that permit divergent views of an
artifact shared among participants. Users of Timewarp
applications have available to them the complete, global
history of the artifact, and can move through and edit the
multiple, parallel histories of the artifact to manage
divergence. Timewarp provides anexplicit representation of
the work of multiple users across versions of an artifact. The
history of the artifact itself becomes a shared, globally-
available artifact that can be used to mediate collaboration.

While the implementation discussed here, and even the
notion of making artifact histories explicit, is particular to
Timewarp, the model of divergence that it makes explicit is
essentially identical to theimplicit divergence that exists in
many multi-user systems. In such systems, multiple users
work with versions of an artifact that may be divergent, and
often are later reconciled or merged into a single version.
Timewarp presents the problems of versioning and alternate
artifact histories in a microcosm—all of these applications
deal with the same problems, but reify their models of

ABSTRACT
This paper presents a comprehensive model for dealing with
semantic conflicts in applications, and the implementation of
this model in a toolkit for collaborative systems. Conflicts
are defined purely through application semantics—the set of
behaviors supported by the applications—and yet can be
detected and managed by the infrastructure with minimal
application code. This work describes a number of novel
techniques for managing conflicts, both in the area of
resolution policies and user interfaces for presenting
standing conflicts in application data.

KEYWORDS: CSCW, collaborative infrastructure, conflict
management, Timewarp.

INTRODUCTION
Most collaborative applications involve the shared use of
some artifact by a number of users. Infrastructures for
supporting such applications must implement mechanisms
for dealing withconsistency in the shared artifact—that is,
the degree to which the views and data shared by the
participants are the same, and structurally intact.

Some systems support a strict consistency model, in which
all participants have exactly the same views and data at all
times. Examples of mechanisms for supporting strict
consistency include floor control systems and pessimistic
locking protocols.

Other systems allow divergence—albeit usually
temporary—among replicas. Examples of such mechanisms
include optimistic locking [7] and “operational
transformation” strategies [6].

In all of these cases, the developers of the infrastructure
make an implicit choice about the form of consistency
control that will be used by applications built atop the
infrastructure. This choice represents some point in the space
of consistency versus performance and scalability.

This work presents a new framework for thinking about
consistency. In this model, the semantics of the application

Copyright © 1997, Association for Computing
Machinery. Published in Proceedings of the
Tenth ACM Symposium on User Interface
Software and Technology  (UIST’97). Banff,
Alberta, Canada. October 14-17, 1997.



operations and conflicts in different ways. The strategies and
mechanisms for dealing with conflicts in Timewarp should
be “portable” to other collaborative infrastructures.

This paper begins by discussing some goals for this work,
based on the perspective of several applications that support
rich conflict semantics. From this perspective, we next
examine a taxonomy of the types of conflicts that may arise
in collaborative applications. This analysis raises several
issues that must be addressed by a conflict management
system, and motivates our discussion of a particular model
for conflict management, and the requirements for a supple
infrastructure to support conflict management. We discuss
the two major features of our model—conflict detection and
management—and describe how these features can be
applied to a range of application needs. A number of novel
approaches to conflict management are explored. We then
examine the particulars of how the Timewarp toolkit
implements this model.

PERSPECTIVE, MOTIVATION, AND GOALS
When work started on the Timewarp toolkit, it was clear that
the issue of conflict management would be of paramount
importance in determining its usability and power.
Nevertheless, early versions of the system had little
infrastructure support to assist in managing conflicts.

The first application, a structured drawing editor, had a
relatively simple conflict model. Still, the code to detect,
resolve, and manage conflicts, as well as provide a user
interface to these functions, quickly grew to several
thousand lines of code that was difficult to manage and more
difficult to extend. Worse from the perspective of a toolkit
designer, the conflict management code began to “pollute”
the relatively clean application programming model.

The situation worsened with the next application, an office
furniture layout program. While superficially similar to the
drawing tool, this application supported multipletypesof
conflicts. These conflict types, in addition to having very
different semantics, have radically different requirements for
detection and resolution, as we shall see later in the paper.
Complicating the matter further was the fact that some
operations in the application could simultaneously cause
multiple types of conflicts to arise. Dealing with conflicts in
complex applications can potentially cause an explosion in
code size and complexity, especially when the combinatorial
nature of most conflicts is considered.

From experiences with these and other later applications,
several goals arose for this work:

• Simplicity. The infrastructure should, at all costs,
minimize the required work for application writers.

• Scope. The infrastructure must support not only conflict
detection, but also resolution and user interface issues.

• Flexibility . Despite outward similarities, the drawing and
layout applications used very different approaches and
user interfaces for dealing with conflicts. The
infrastructure must support a wide range of application
requirements in the arena of conflict management.

• Modularity . The mechanics of conflict detection should
be separated from conflict handling policy. Thus,
application writers should be able to “plug in” different
conflict handling policies and have their applications still
work. This modularity should encourage experimentation
with radically new forms of conflict management.

More specifically, there are a number of concrete issues that
must be addressed by an infrastructure to provide flexible
management of conflicts. Applications may have widely
varying requirements for dealing with conflicts—some
applications may be able to tolerate certain types of semantic
conflicts; others may not. Some applications in which
conflicts may occur may be able to automatically resolve
some conflicts without human intervention; others may
require manual resolution. Thus our conflict infrastructure
must be able to deal with several distinct, specific problems:

• Detecting the presence of runtime inconsistencies within
sets of application-supplied invariants.

• Supporting mechanisms for both automatic and manual
resolution of conflicts. “Resolution” means doing away
with the situation that caused the conflict to arise in the
first place.

• Allowing certain types of unresolved conflicts to be
tolerated, and others to be disallowed, depending on
application semantics and requirements.

• Providing a systematic way of dealing with UI concerns
about notification and comprehension of conflicts.

In the next section we examine the types of conflicts that can
arise in multi-user applications. Most multi-user applications
can support rich models of conflict; understanding how
conflicts arise and interact is essential for developing robust
conflict management strategies.

A BESTIARY OF CONFLICTS
Syntactic versus Semantic Conflicts
It is useful to make a distinction between two broad classes
of conflicts. Dourish [3] classifies conflicts as either
syntactic or semantic. Syntactic conflicts represent
inconsistencies that occur below the level of application
code; that is, in the toolkit and systems infrastructure itself.
Semantic conflicts are inconsistencies that occur above the
dividing line between application and infrastructure.

A given application may have completely sound, internally-
consistent data structures (that is, have no syntactic
conflicts), and yet still expose application-level semantic
conflicts to its users. A common example of such a system is
a version control tool. Such a tool expects its revision logs to
be accurate and internally-consistent, but can expose
semantic conflicts when merging disparate file versions to its
users.

Conversely, although more rare, applications may be built on
an infrastructure that allows—perhaps temporarily—
syntactic inconsistencies; these systems may or may not
expose application-level semantic conflicts. In fact, in some
cases the application itself may not even be “aware” that the
infrastructure is managing internal conflicts as it runs. An



example of such an infrastructure is the Bayou system [11], a
weakly-consistent distributed data storage system that
presents a relational data model to application writers. At
any given moment, a Bayou server may contain data that,
from the perspective of the application using the data, is not
internally consistent. Applications can choose the level of
consistency they wish the infrastructure to expose to them.

Although this distinction is a somewhat artificial one—one
person’s infrastructure is another person’s application—it
turns out to be useful when considering problems of
programmatic interfaces and application support for
managing conflicts.

This work addresses facilities for managingsemantic
conflicts. We shall not deal with mechanisms for supporting
weak consistency, or epidemic algorithms for obtaining
eventual consistency, or locking, or other approaches for
addressing syntactic consistency. Further, we shall not
address the issue ofhow conflicts arise—whether through
weak consistency or network partitioning or merging.

Rather, this work assumes that in most complex
collaborative systems, conflictswill  occur simply because of
the semantics of multi-user applications. The specific focus
of this work is how to build a systems infrastructure that can
support the needs ofapplications to manage the types of
conflicts that arise purely because of their own particular
semantics. The model here does not necessarily assume that
applications require syntactic consistency. Rather it does not
address the problems of syntactic consistency at all, and
considers them orthogonal to the problems of semantic
consistency. Applications using this model may or may not
be built on an infrastructure that tolerates syntactic
inconsistencies.

Some Classes of Semantic Conflicts
Within the category of semantic conflicts, there are
potentially any number ofclasses of conflicts that can arise.
Consider a shared drawing application as an example.
Suppose that because of the architecture of this application,
operations on the shared artifact can become arbitrarily
interleaved—whether through weak consistency among
replicas, editable timelinesa la Timewarp, or the merging of
two divergent versions of the drawing.

Several types of semantic conflicts can arise in this situation.
First, consider the case where an operation draws a new
figure on the canvas, and is followed by an operation that
moves that same figure. Now, if an operation that deletes the
figure is performed between the draw and move operations,
a temporal conflict will result—the move operation will now
refer to a figure which no longer exists in the drawing.

Temporal conflicts arise because of inconsistencies in the
up-stream (earlier) and down-stream (later) dependencies in
a sequence of ordered operations.

As a second example, imagine an office furniture layout tool
that does not allow overlapping figures. In this case, even if
the application does not allow a single user to place an object
directly on top of another one, operations may still become
interleaved in such a way that objects overlap one another,
whether through merging or movement toward eventual

consistency. This example shows aspatial conflict—an
application constraint on the placement of objects has been
violated.

Both of these classes of conflicts, temporal and spatial, arise
purely through the semantics of the particular application.
Other applications may not consider such sequences of
operations conflicts, or may not even support similar
operations at all. Likewise, other applications may have
completely new classes of conflicts:structural conflicts in a
flowchart editor that requires that all nodes be reachable
from a root, for example.

These examples by no means represent all types of conflicts
that can occur in applications. Rather, the represent several
specific types of conflicts that can happen in a given
application, and point to the complexities and wide
variations that arise in defining application-specific
conflicts. Further, they illustrate that any given operation
may simultaneously participate inmultiple classes of
conflicts. As described above, the move operation, for
example, participates in both temporal and spatial conflicts.

The next section describes the setting in which application-
defined conflicts may occur. This setting provides a basis for
describing the divergent state of artifacts that are the focus of
a collaboration.

ASSUMPTIONS
This work assumes that, for any application, there exists a
set of atomic operations that affect the artifacts exposed by
the application; these operations are calledactions. Further,
these actions are theonly way to change the state of the
artifact in a way that is significant to other users of the
artifact. For example, in a shared drawing tool, the artifact is
the drawing itself. The atomic operations on this drawing
may include drawing a new figure at specified coordinates,
moving an existing figure, or cutting, copying, or pasting
figures to and from the clipboard. Other operations that do
not globally change the state of the artifact—such as setting
a zoom factor that only changes the local view—need not be
represented in this set of atomic operations.

At runtime, actions are ordered into a directed acyclic graph
called ahistory. Each edge represents an action performed
by the user, and each node represents the state of the artifact
after all upstream actions have been applied. The history
represents the complete record of the artifact as it exists
across time. For applications that enforce a strict global,
serial ordering, the history graph may be simply a straight
line of actions. For applications that allow multiple users,
perhaps at different sites, to see (or “receive”) actions in
arbitrary orders, the history graph will be more divergent.

This history graph is conceptually identical to graphs
representing message broadcasts among a set of machines,
or graphs representing multiple versions of an artifact. The
same issues of divergence, conflict, and merging arise in any
of these cases, and this model for conflict management is
applicable to them as it is to Timewarp.

Any path through the history is called atimeline and
represents a particular ordering of actions—in essence, a



plausible alternate history of the artifact based on a serial
ordering of actions.

For many applications, each user will have a “current node”
that represents the “location” of that user in the history. In
most applications, the current node of a given user will be at
a leaf node in the graph, representing the “cutting edge” of
time: all upstream actions will have been seen by that user,
and no new, unprocessed actions will have been received. In
some applications, however, users may have a current node
in the interior of the history. Such applications may allow
scanning through alternate plausible timelines in the history.

A conflict is defined simply as a special state that exists
between any two actions that have been applied, perhaps
tentatively, to the artifact. Thus, in our model, when a
conflict occurs it is theoperations in a timeline that are in
conflict, not states of the artifact. The model itself assigns no
special meaning to the “state of being in conflict” Any
semantics of the “conflict state,” including how the state
arises, is defined purely by the application. Thus there are no
“intrinsic” conflicts in this model;all conflicts are defined as
violations of some application-supplied semantics.

The model here is motivated by other work in the field,
including Prospero [3], GINA [2], and WeMet [10].

In the next section we address mechanisms for detecting
conflicts that occur in this setting of ordered, atomic
operations.

DETECTION OF CONFLICTS
As stated earlier, this work deals with types of conflicts that
arise purely from application semantics. An important issue,
then, is how we can build an infrastructure that can detect
these conflicts, when only application code “understands”
that the conflicts exist? How can application semantics
inform the infrastructure to detect types of conflicts such as
those seen earlier (spatial, temporal, and so on)?

Just as the set of actions provided by an application define its
semantics of behavior, these same actions also define the
semantics of determining when a conflict exists. Since the
notion of whether a conflict exists arises solely through the
semantics of what particular actions do, the actions set the
conflict detection semantics for the applications, since only
they can “know” how their behavior can create the presence
of conflicts.

This section describes our detection model, based on using
application-provided actions to define conflict relationships.
After the model is discussed in the abstract, we detail a
particular implementation of it in the Timewarp toolkit.

Conflict Sets
The combination of some types of actions in the history
graph may potentially cause conflicts to arise; other types of
actions may be “immune” to conflicts—no matter how they
are added, or in what order, they will never cause a conflict
to arise. Types of actions that may potentially cause conflicts
among other actions in a limited group are said to define a
conflict set. A conflict set is simply a group oftypes or
classesof actions that have the potential to generate conflicts
with each other. The presence of an action class in a conflict

set is statically-defined, in the sense that it will not change as
long as application semantics do not change.

These sets correspond to the various types of conflicts that
may exist in an application. For example, in a drawing
application, atemporal conflict set may include Cut actions,
as well as any actions that refer to or modify the state of
objects in the drawing, including Move actions. These action
classes are grouped together because the addition of any one
can interact with other actions in the set topotentially cause
a conflict to arise, based on the order of the actions. So for
example, if a Cut action is placed in a timeline before some
other action Moves the object which is cut, a temporal
conflict will exist. Likewise, if a Move is added after a Cut is
in place, a temporal conflict will exist.

A given action class may simultaneously exist in multiple,
overlapping conflict sets. In a flowchart editor, a Move
operation may also have the potential to violate structural
consistency—perhaps by dislodging an object’s connections
to its neighbors. In this situation, the Move action would
exist in both the temporal and the structural conflict sets.

In essence, a conflict set is simply a means of grouping
together types of atomic operations that can cause conflicts
with each other based on the semantics supplied by the
application. Action classes can exist in multiple conflict sets
simultaneously.

Since, by definition, actions can only cause conflicts with
other actions in their same sets, sets allow us to partition the
space we must consider when searching for conflicts.

Conflict Roles
Within a conflict set the comprised action classes are
grouped intoconflict roles, indicating the part the actions
play in the set. So, for example, in the temporal conflict set
in the drawing application, all actions that remove drawn
objects (such as Cut) might be grouped together in a role;
similarly, all actions that modify existing objects (such as
Move) might play a similar role in the set and would thus be
grouped into a single conflict role. Actions in the same role
behave similarly with respect to the set they are in.

Roles partition the functions of actions within a set. For
purposes of detection, we need only consider the roles an
action plays in its sets, not the semantics of the action itself.

An Example Conflict Hierarchy from a Layout Application
Figure 1 shows the conflict sets and roles for the layout
application mentioned earlier. These are simply the conflict
relationships for a particular application; other applications
may have different types of conflicts, and hence very
different relationships expressed through their sets and roles.

Here, the sets and roles are presented as a hierarchy,
although conceptually each could exist independently. (The
description here matches the implementation used by
Timewarp; see the Implementation section for more details).
If an action is not a member of any of these sets then it is
“immune” from causing any conflicts, no matter how or in
what order it is inserted into the history graph.

There are two first-level sets:Temporal  and Momentary .
TheTemporal  set represents all types of conflicts that cause



inconsistenciesacross a timeline; Momentary  conflicts,
which include bothSpatial  andStructural  conflicts, are
only based on the instantaneous state of the artifact and do
not affect all of a timeline (this distinction, and the
implications of it, will be explained more thoroughly in the
next section).

Within the Temporal  set there are three roles that actions
may play. ThedependsOn role indicates that the action
depends on some other action being earlier in the timeline.
Thedependable  role indicates that the action may be used
as a target of a dependsOn  relation. The
seversDependsOn  role indicates that the action may break,
or sever, any downstreamdependsOn references to an
upstreamdependable  action.

Within the Spatial  subset ofMomentary , the existsAt
role indicates that the action it is associated with produces or
modifies some figure in the drawing so that it “exists at” a
certain spatial location. TheseversExistsAt  role
indicates that the action associated with it removes an object
created by another action.

Table 1 shows the actions that constitute the layout
application. Note that most actions participate in several
different conflict sets. The CreateObject  action
participates in both theTemporal  andSpatial  sets. It is
dependable  because it creates an object that may later be
referred to by another action; it alsoexistsAt  since it
produces a figure in the layout which has a physical position
and size. TheMoveObject  action dependsOn  a previous
object that it will move. It undoes that object’s old position
(via seversExistsAt ) and relocates it (viaexistsAt ).
CutObject  both dependsOn  the existence of an upstream
object that it will cut, and, viaseversDependsOn , indicates
that any downstream objects that depends on the deleted
object are now in conflict with thisCutObject  operation.

When an application writer creates a new application, he or
she defines the set of actions that represent the allowable
operations in the application. At the same time, the
application writer defines the conflict relationships between
these applications by designing a group of conflict sets and
assigning the actions into it. These relationships are used by

the detection machinery to identify conflicts automatically
when they occur.

Gathering Conflict Candidates
At an abstract level, the detection process uses a source
action and compares it repeatedly against other target actions
to see if they are in conflict. The first phase of the detection
process is to gather all of the potential conflictcandidates.
These are the other actions in the history graph that can, in
any way, factor into the decision of whether conflicts exist.

For a given action, its candidates are the other actions from
some sub-region of the history graph that are members of the
same sets as itself. Theparticular sub-region that is
considered depends on the sets in which the source action is
a member. Consider, for example, temporal conflicts. When
a new Cut operation is inserted into the history graph at a
given point, the conflict detection machinery must consider
all paths that pass through the new action, looking for
violated downstream dependencies, to determine if a conflict
exists. This is because temporal conflicts, by their very
nature, are inconsistencies affecting downstream actions.

See Figure 2 for an example of such a conflict. It is possible
that the insertion of the action will cause a conflict in one
path, but not another. For this reason, all actions in all
timelines passing through the insertion point are considered
candidates for temporal conflicts. Because such conflicts are
situated in the timeline itself, they corrupt the entire timeline
they exist in, from the point of the earliest conflicting action.
In the figure, the entire upper path from the point of insertion
of the Cut operation is in an inconsistent state.

Spatial conflicts do not have this unbounded property,
however. The determination of whether a spatial conflict
exists depends only on thecurrent state of the artifact, which
may be represented as the sequence of actions leading up to
the insertion point. Downstream actions do not play into the
decision of whether a conflict exists. So for spatial conflicts,
all actions up to the insertion point are considered to be
candidates for conflict.

Figure 3 shows an example of such a conflict. Action 1
causes a figure to be drawn at coordinatesX,Y. Action 2
moves a different figure to the same coordinates. This action

FIGURE 1: Hierarchy of Conflicts for a Layout
Application

Temporal

dependsOn

dependable

seversDependsOn

Momentary

Spatial

existsAt

seversExistsAt

Structural

...

Action Set:Role
CreateObject Temporal:dependable

Spatial:existsAt

MoveObject Temporal:dependsOn
Spatial:existsAt
Spatial:seversExistsAt

CutObject Temporal:dependsOn
Temporal:seversDependency
Spatial:seversExistsAt

PasteObject Temporal:dependsOn
Temporal:dependable
Spatial:existsAt

TABLE 1: Conflict Roles of Actions in the Layout
Application



causes a conflict to occur, based only on the state of the
artifact up to the point of the insertion—by examining only
upstream actions, the system can determine that two objects
are in the same position. Further, note that suchmomentary
conflict exist only for a bounded span of a timeline. Action 3
moves the second figure to a new, non-conflicting location.
Thus, unlike temporal conflicts in which an entire timeline is
corrupted, momentary conflicts are confined to a limited
area of a timeline.

Since temporal and spatial conflicts involve different sets of
actions, we must use different gathering strategies for each
(and potentially different strategies for all the types of
conflicts in an application). Since an action may be a
member of multiple conflict sets, gathering is performed
separately for each set and candidates are then passed to the
identification phase of detection.

Identification. After the set of conflict candidates has been
gathered, actual identification of conflicts is performed. The
identification process for a given set is only “handed” the
gathered candidates for that set, even if the action in question
is a member of multiple sets. Identification of conflicts is
separated by set to make the task of identification of
conflicts for a particular set independent of all other sets.

The process of identification simply iterates through the
gathered candidates. For each candidate, a set-specific
predicate function is evaluated to determine if a conflict
exists between the source and candidate. If a conflict does

exist, implementations may cache the pair of conflicting
actions, along with information about the conflict set.

This phase only accumulatesactual conflicts from the set of
potential conflicts gathered earlier. No action is taken to
resolve or disallow any conflicting actions at this point.

Requirements for the Application Writer
Despite the complexity of the detection process, adapting an
application to work in this model requires fairly little effort.
At a minimum, the application writer must define the types
of conflicts that can exist in the application, and assign the
various operations supported by the application to conflict
sets and roles. The infrastructure needs to be able to query
actions for a list of the sets they are members of, and their
roles in those sets. The particulars of how set and role
information is associated with actions can vary from
implementation to implementation. Timewarp implements
the model by requiring actions to implement Java interfaces
that represent their conflict roles (see the section on
Implementation). Other implementations may use multiple
inheritance, or simply a set of type flags. This definition
phase is a static (compile-time) process that will not change
as long as the semantics of the application do not change.

Next, the application writer must define per-set gathering
and identification functions for each conflict set in the
application. In most cases, one of the two types of gathering
described earlier—whole-path gathering or current-state
gathering—will be applicable, and thus gathering functions
can be reused. The identification function is simply a
predicate that is passed two actions in the same set and
returns either true or false indicating whether they are in
conflict. Typically these functions are on the order of a few
dozen lines of code total.

The model partitions the detection process both
procedurally—into gathering and identification phases—and
structurally—by grouping actions into sets and roles. This
partitioning greatly reduces the “cross-talk” among types of
conflicts, and minimizes and simplifies the amount of
application code required.

Once this process of defining the conflict relationships in an
application has been completed, an infrastructure using this
model can automatically detect conflicts that arise among the
actions in an application. Further, as we shall see, our
infrastructure will also be able to automatically manage any
conflicts that are detected.

MANAGEMENT OF CONFLICTS
Handling conflicts in an application has two aspects. First,
the description of what constitutes a conflict is statically-
defined and rooted in the semantics of a particular
application. These semantics are made manifest as actions,
and hence actions are statically grouped into conflict sets and
roles to denote their relationships to one another. The
previous section on detection of conflicts covered this
process.

The second aspect of conflict handling, however, is
independent of the particular semantics of the set of actions
used by a given application. Unlike detection, this aspect is

FIGURE 2: Temporal Conflicts Invalidate Some
Downstream Timelines, But Not Others

FIGURE 3: Spatial Conflicts Span a Region of a
Timeline

1 2

3

4

Draw A Cut A

Move A

Move B

Action 2 causes a conflict
along this path.

Action 2 causes no conflict
along this path.

1 2 3

Draw A Move B
at X,Y to X,Y

Move B
to X’,Y’

Action 2 causes a momentary conflict
which only exists in the timeline until
Action 3 is evaluated.



dynamic—it indicates what todo with conflicts once they
have been detected. This process is run-time behavior—
unlike the compile-time definition of conflict relations—and
can be made largely independent of the semantics-based
detection mechanisms.

Our model codifies this distinction by separating conflict
detection from the behavioral aspects of dealing with a set of
detected conflicts. The behavioral aspects are dictated by a
conflict policy that embodies the semantics of conflict
management at run-time, separate from detection.

One benefit of making the distinction between action-based
detection and policy-based management is that the conflict
policies can be made independent of the semantics of the
conflicts they are asked to manage. So, for example, an
application may come with a set of “pluggable” conflict
policies that can be swapped in and out. Any of these
policies would be capable of managingany set of conflicts
detected as described above. If they so desire, however,
application writers can create policies that have intimate
knowledge of the semantics of particular classes of conflicts.

Conflict management is performed in response to detected
conflicts. When a new action is created but before it is
installed in the history, detection is done to determine
whether the tentatively installed action would cause any
conflicts to arise. If conflicts would be caused by this new
action, then the conflict management system is invoked to
deal with the detected conflicts.

Conflict policies are associated with particular conflict sets.
Typically an application will associate a policy with each
conflict set defined by the application.

In our model there are several different aspects of conflict
management that policies provide:

• Resolution. If a tentative action causes an inconsistency,
the infrastructure can provide support for either
automatic or manual resolution of the inconsistency.

• Tolerance. After any optional resolution is performed,
the policy can decide whether the tentative action should
indeed be inserted into the graph. This model allows
conflicts that have not been resolved to still be tolerated
in the graph, at the discretion of the application.

• Interface. Once inserted into the graph, actions that
cause unresolved-but-tolerated conflicts may influence
the user interface of the application. The infrastructure
provides “hooks” for allowing applications to trigger user
interface changes when conflicting data is presented.

The conflict management policies can manageany detected
conflict, regardless of the conflict set it originated from.
Policies define how—and whether—resolution will be
performed, whether standing conflicts will be tolerated, and
interface changes that will be associated with conflicting on-
screen objects. Conflict policies have complete access to the
history graph and can make arbitrary changes to it (perhaps
recursively causing new conflicts). We will now examine
these aspects of conflict management in detail.

Conflict Resolution
When an action is tentatively installed and conflicts are
detected, the system may attempt to resolve them, thereby
removing any inconsistencies that would be caused.
Resolution is accomplished by handing the identified
conflicts to the policies associated with any sets that
identified conflicts. Of course, since actions may be in
multiple sets, if these sets are mapped to different policies
each policy may participate in the resolution process.

There are a number of common resolution strategies that can
be implemented by conflict policies. The simplest strategy is
to simply provide the user with the option of not performing
the new, conflicting operation. If the operation is undone
before being actually inserted into the history, no conflicts
will be caused.

Policies may, however, implement other, more complex
strategies for resolving conflicts. Some policies may
implement these strategies as automatic resolution
procedures, which run without user intervention. Others may
interact with the user to “tune” the resolution process.

The Explosion Strategy. This strategy lets computation
proceed at the cost of history complexity. At any point where
a conflicting action exists in the history, the history is forked
into multiple downstream paths. Each of these paths
represents an alternate in which conflicts are avoided by
selectively removing actions involved in a conflict.

Figure 4 shows such an example, where an inserted Cut
operation would conflict with a downstream Move. The
history is forked into two branches. The first branch “favors”
the Cut by letting it stand and removing its conflicting
partner, the Move. The second branch does the opposite: the
Move is favored and the Cut is deleted.

The explosion strategy resolves conflicts by providingboth
(or multiple) valid interpretations of the state of the artifact
when an inconsistency is encountered.

The Promotion Strategy. This strategy “promotes” actions
that depend on upstream results into actions that can exist
without reference to any upstream information.

FIGURE 4: The Explosion Strategy

1 2 3

Draw A Cut A Move A

Before:  A Cut is inserted between a Draw and a Move

1

Draw A

2

Cut A

3

Move A

...

...

After:  The history is split before the first conflict, allowing
both actions to exist but in separate paths



Figure 5 shows an example of promotion. Here, a figure has
been copied to the clipboard, and then pasted. If the figure is
removed before being copied, an inconsistency exists
because there is no object to copy to the clipboard, and hence
the paste operation cannot proceed.

In the figure, promotion is used to replace the Paste
operation, which depends on the existence of upstream
actions, into a “stand-alone” Draw operation that has no such
dependencies. In effect, the dependency is severed and the
conflict is undone.

Such a strategy may not be effective for all situations. But in
cases where the Paste was performed by the user essentially
as a “short-cut” for a Draw, promoting conflicting Paste
operations to Draw operations preserves the intended
meaning of the user.

The Recursive Acceptance Strategy. One obvious option for
resolving conflicts is, rather than disallowing the insertion of
the new action, remove any downstream actions that conflict
with it. Of course, the removal of these actions may itself
cause new conflicts to be created, which may be resolved.

The recursive acceptance strategy uses this approach. When
a conflict is detected, the user has the option of removing
either the source action, or any conflicting targets. When a
target is “removed,” the system actually creates a new
tentative timeline and recursively executes the conflict
detection code to determine what new conflict may have
been created. At this point, the resolution policies for these
new conflicts is executed. The process continues until the
user has either reconciled the timeline or allowed the
conflicts to stand. At any point the user can “back out” to
undo an earlier conflict decision.

The Quantum Uncertainty Strategy. Quantum uncertainty is
not so much a pure resolution strategy as a combination of
tolerance and user interface ideas. In quantum uncertainty,
inconsistent operations are allowed to exist. All such
operations are said to be in an “uncertain” state, and have a
numeric “uncertainty” value associated with them. This
value is recalculated whenever a change is made to the
history graph, and represents an index of the validity that the
action seems to have, based on the other actions around it.

In quantum uncertainty, the accretion of actions in a history
is used to posit a likely interpretation of inconsistent data.
Thus, a set of actions that reinforce one interpretation of a
conflict lessens the uncertainty of one of the actions
participating in the conflict, while increasing the uncertainty
of the other.

Figure 6 shows an example of quantum uncertainty. Here,
we see our by-now classic Draw-Cut-Move inconsistency.
After the insertion of the Cut, both the Cut and Move
operations have uncertainty values of 0.5 indicating that they
are equally uncertain. In the second graph shown, a sequence
of Moves and Copies of the supposedly-cut object are
appended to the timeline. These actions all “ignore” the
interpretation of the conflict that favors the Cut operation, so
they lessen the uncertainty of the Move, and all other actions
that conflict with the Cut, at the expense of the Cut. In effect,
these later operations reinforce the interpretation that the Cut
should be ignored. Other divergent paths may favor the Cut,
in which case the situation would be reversed in those paths.

Resolution Summary. All of these strategies show the degree
of control the conflict management system has over the
history of the artifact. New paths can be created in the graph,
and actions can be removed and rearranged. Because of the
ability to tentatively insert actions and detect resulting
conflicts, the conflict manager allows “what if” scenarios
(such as shown by the recursive acceptance strategy) in
which the user can iteratively resolve cascading conflicts,
and yet still back out without damaging the artifact.

Conflict Tolerance
An important trait of the Timewarp conflict model is that it
allows applications to managetolerated conflicts. That is,
some applications may decide that certain types of conflicts
need not be resolved, but can be allowed to exist in a
timeline. A common reason for tolerating conflicts is to ease
users’ burden—if the users of a tool understand the intended
state of the shared artifact and are satisfied with it, there may
be no reason to force them to go through a series of steps to
manually resolve any existing inconsistencies. Work can
proceed at its own pace, and users can elect to resolve
conflicts later, if at all.

For example, in the layout application, conflicts often arise
because two users working independently merge disparate
action paths into one shared state. The merge may cause
certain objects to overlap, violating spatial constraints in the
application. Rather than forcing the users to readjust the

FIGURE 5: The Promotion Strategy

1 2 3

Draw A Delete A Copy A

4

Paste

1 2 3

Draw A Delete A Copy A

4

Draw A’

After: The Paste is “promoted” into a Draw of A’, a new
object derived from A.

Before: A Delete action (2) is inserted, which conflicts
with downstream Copy (3) and Paste (4).

FIGURE 6: The Quantum Uncertainty Strategy

1 2 3

Draw A Cut A Move A

1 2

Draw A Cut A

0.5 0.5

3

Move A

4

Copy A

5

Move A
0.250.75 0.25 0.25



entire layout to do away with the inconsistencies, the system
allows the inconsistencies to remain, but flags them in the
interface (more on this later).

Whether or not a class of conflicts will be tolerated depends
solely on the conflict policy in effect for that class of
conflicts. In the Timewarp implementation, determination of
tolerance occurs after the optional resolution step; the policy
returns a boolean value indicating whether the tentatively
inserted action should be installed in the history graph, or
should be discarded. Tolerated conflicts are cached so that
they can be used to effect interface changes if desired.

Conflict Interfaces
Allowing standing conflicts to exist in an application raises
questions about how they should be presented to users. Our
infrastructure must be able to allow application code—
especially the application’s user interface code—to collude
with the conflict management system to systematically
modify the application interface to reflect conflicts.

Interface Examples. One of the goals of this work is to
explore rich interfaces for presenting conflicts. Several
interfaces for interacting with standing conflicts have been
developed. In the layout application, spatial conflicts are
handled by a policy that allows the conflicting, overlapping
objects to co-exist, but renders them transparently and
slightly blurred via a Gaussian blur ([5] contains an image of
this effect). This technique provides an immediately obvious
cue that the state of these objects is somehow “different”
than their neighbors. The fact that the objects are physically
on top of one another and yet can both be seen strengthens
the perception of the cue as indicative of spatial conflict.

In the drawing application, temporal conflicts are handled by
quantum uncertainty. Drawing of conflicting objects is
modified so that the transparency of an object represents its
degree of uncertainty. Fully certain, unambiguous objects
are rendered fully opaque. Other objects, as their uncertainty
increases, gradually fade out over time.

Other policies may annotate drawn objects that are involved
in conflicts with controls that allow the user to pop up a
panel of information about the conflicts they are involved in.

Interface Implementation. The interface of any application is,
by necessity, dictated by the user interface toolkit being used
as well as the semantics of the particular application. This
requires that particularimplementations of our conflict
model know about and support a particular UI toolkit. Still,
the conflict management infrastructure can provide generic
mechanisms for supporting a range of application needs
given a particular UI toolkit.

Our model distinguishes between basic conflict policies and
drawable conflict policies. Drawable conflict policies are
policies that know how to interact with the rendering system
of a particular UI toolkit. Drawable conflict policies add a
number of new behaviors over simple conflict policies; these
behaviors are used by application code to allow some of the
application’s drawing behavior to be delegated to the policy.

Whenever conflicts are detected along a given path, they are
stored and indexed by the particular sets they represent.

When application user interface code is about to draw an on-
screen object that is a part of the shared artifact—and, hence,
may potentially be the product of actions that are involved in
standing conflicts—the application may delegate drawing to
the drawable conflict policies that affect the object.

Again, the particulars of how this delegation is done depends
on the particular toolkit in use. The current implementation
of Timewarp provides a drawable conflict policy
infrastructure for interacting with the SubArctic GUI toolkit
[8], but the general concepts are portable to other UI toolkits,
albeit perhaps with more work for implementors.

The infrastructure provides a mapping from on-screen
objects to the actions which have affected them. Once this
mapping has been created, applications can inquire to the
conflict management system about whether a particular on-
screen object should have its drawing delegated to one or
more drawable conflict policies. If the conflict management
system indicates that drawing should be delegated, the
application passes the on-screen object into the conflict
management system for drawing. The conflict management
system then identifies all of the drawable conflict policies
that are involved in conflicts for the object. These policies
are applied—pipeline fashion—to the drawing process for
the object. The final result is that each policy has a chance to
impose its own policy-specific drawing modifications to
objects involved in conflicts.

This mechanism addresses the integration of conflict
management with a UI toolkit, and is extensible to new
policies, new applications, and new UI toolkits—it requires
only the cooperation of the set of actions used in the
application, and the particular conflict policy used to manage
the interfaces of conflicts among these actions. No changes
are required to the basic conflict management system, and
the conflict management code does not have to understand
the particulars of a given UI toolkit; only the particular
drawable conflict policies in use are required to be able to
“speak” to a particular UI toolkit.

The next section discusses the particulars of the conflict
interface implementation provided by Timewarp, along with
other implementation details.

CONFLICT IMPLEMENTATION IN TIMEWARP
In Timewarp, the ordered atomic operations model is
realized as a set of concrete classes, in the object-oriented
sense. Actions are classes that represent the atoms of
behavior in a given application; particular action classes are
provided by application writers when they build their
applications. When a new operation is performed, a new
action instance is created to represent it, and is installed in a
history graph that provides an explicit representation of the
parallel timelines of the shared artifact.

Timewarp uses an open implementation [9] approach: the
infrastructure “speaks” in terms of actions, generically.
Applications are built by extending these actions through
subclassing, and then “pushing” them back into the
infrastructure, thereby inserting their own semantics into the
toolkit framework.



Conflict sets and roles are represented as a hierarchy of
interfaces that can be multiply inherited by the actions. So
application writers, when creating the actions that constitute
their application, declaratively assign these actions to a
number of interfaces representing the roles of a particular
set. The use of interfaces here provides a declarative
notational convenience and strong compile-time type safety.

All of the infrastructure (non-application) code for detecting
and managing conflicts is localized in the
ConflictManager  class. This class uses information
provided in the types of the actions defined by the
application writer (accessed via reflection), as well as
explicitly-provided application code such as detection
predicates, to implement the conflict model described here.

The current implementation provides a number of drawable
conflict policies that interact with the SubArctic GUI toolkit.
These policies leverage the “drawing isolation” features of
that toolkit [4] to provide convenient pipelines of drawing
operations that represent the effects of multiple drawable
conflict policies. UI-specific code is not present in the
infrastructure, with the exception of the particular drawable
conflict policies where it is isolated.

The Timewarp system is implemented entirely in the Java
programming language [1]. Currently, the framework itself
is approximately 15,000 lines of code. The entire conflict
subsystem, along with the set of “pluggable” policies
described above, represents 2,000 lines of the total. A
number of applications have been created using this system.
The total number of lines devoted to conflict management in
each of these applications averages only 60 lines of code,
almost exclusively in the detection protocols.

SUMMARY AND FUTURE DIRECTIONS
This paper has described a comprehensive model for
thinking about the detection and management of semantic
conflicts in applications. These conflicts can arise in any
number of application genres, from distributed systems to
version control to collaboration. The model here supports
rich definition of conflicts, including the ability to define
multiple simultaneous conflict categories. Further, the model
provides a framework for the resolution and tolerance of
detected conflicts, and can interact with application code to
produce novel interface effects based on standing conflicts.

This model has been implemented as a part of the Timewarp
collaborative infrastructure. While this toolkit provides
significant capabilities to application writers for defining and
managing conflicts, the amount of work required by
application writers to participate in conflict management is
minimal. Typically only a small amount of code must be
written to interact with the conflict subsystem.

There are a number of future directions for this work. An
obvious area is the investigation of more forms of conflict
resolution. The forms described here, while novel, do not
capture the entire space of conflict resolution. A second area
of focus is on conflict interfaces. Our current model only
supportsoutput changes in response to standing conflicts.
We would like to also be able to modify theinput to on-
screen objects based on the conflict policies in effect. A final

area for future work is on declarative specification of
detection protocols. In the current system, detection is
implemented procedurally by the application writer in the
form of a detection predicate. We are investigating a
declarative implementation based on constraints, which may
provide a more natural way to define conflict relationships.

ACKNOWLEDGEMENTS
Thanks to Paul Dourish, Beth Mynatt, and Ian Smith for
their contributions in reviewing and editing this paper.

REFERENCES
[1] Arnold, K., and Gosling, J.The Java Programming

Language. Addison-Wesley Co., Reading, MA, 1996.

[2] Berlage, T., and Genau, A., “A Framework for Shared
Applications with a Replicated Architecture,”Proc.
ACM Symposium on User Interface Software and
Technology (UIST), Atlanta, GA, November, 1993.

[3] Dourish, P.Open Implementation and Flexibility in
Collaboration Toolkits. Ph.D. dissertation, Computer
Science Department, University College, London,
June, 1996.

[4] Edwards, W.K., Hudson, S.E., Marianucci, J., Roden-
stein, R., Rodriguez, T., Smith, I. “Systematic Output
Modification in a 2D User Interface Toolkit,”Proc.
ACM Symposium on User Interface Software and
Technology (UIST), Banff, Alberta, Oct. 1997.

[5] Edwards, W.K., and Mynatt, E.D., “Timewarp: Tech-
niques for Autonomous Collaboration,” inProceed-
ings of the ACM Conference on Computer-Human
Interaction (CHI).Atlanta, GA, March, 1997.

[6] Ellis, C.A., and Gibbs, S.J, “Concurrency Control in
Groupware Systems,”Proc. ACM SIGMOD Confer-
ence on Management of Data, June 1989.

[7] Greenberg, S., and Marwood, D. “Real Time Group-
ware as a Distributed System: Concurrency Control
and its Effect on the Interface.”Proc. ACM Confer-
ence on Computer-Supported Cooperative Work
(CSCW). Chapel Hill, NC, October, 1994.

[8] Hudson, S., and Smith, I., “Ultra-Lightweight Con-
straints,” Proc. ACM Symposium on User Interface
Software and Technology (UIST).Seattle, WA,
November 1996.

[9] Kiczales, G., “Beyond the Black Box: Open Imple-
mentation,” IEEE Software, January, 1996.

[10] Rhyne, J.R., and Wolf, C.G., “Tools for Supporting the
Collaborative Process.” InProc. ACM Symposium on
User Interface Software and Technology (UIST).
Atlanta, GA, November, 1992.

[11] Terry, D.B., Theimer, M.M., Petersen, K., Demers,
A.J., Spreitzer, M.J., Hauser, C. “Managing Update
Conflicts in Bayou, a Weakly Connected Replicated
Storage System.”Proc. ACM Symposium on Operat-
ing Systems Principles (SOSP), Dec. 1995.


