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ABSTRACT
This paper describes the software architecture for our pen-based
electronic whiteboard system, called Flatland. The design goal
of Flatland is to support various activities on personal office
whiteboards, while maintaining the outstanding ease of use and
informal appearance of conventional whiteboards. The GUI
framework of existing window systems is too complicated and
heavy-weight to achieve this goal, and so we designed a new
architecture that works as a kind of window system for pen-
based applications.  Our architecture is characterized by its use
of freeform strokes as the basic primitive for both input and
output, flexible screen space segmentation, pluggable
applications that can operate on each segment, and built-in
history management mechanisms. This architecture is carefully
designed to achieve simple, unified coding and high
extensibility, which was essential to the iterative prototyping of
the Flatland interface. While the current implementation is
optimized for large office whiteboards, this architecture is useful
for the implementation of a range of various pen-based systems.
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1. INTRODUCTION
Office whiteboards are one of the most common tools in a
personal working environment. People use whiteboards to take
notes, organize to do lists, sketch paper outlines, and as a
communication medium for discussions with office mates. In
general, people use office white boards for informal,
unstructured activities in contrast to well-organized activities on
desktop computers [16].
Based on our observations, we are currently developing a
computationally augmented office whiteboard, called Flatland
(Figure 1). Our research goal is to provide computational
support such as storage, calculation, networking, and diagram
beautification, while preserving the physical whiteboard’s
lightweight interaction style and informal appearance. We
envision that these enhanced whiteboards will support informal
activities that are difficult on current desktop computers. Our
current hardware configuration is a touch sensitive large board
(SmartBoard™) and a LCD projector.
Our previous paper [17] introduced the Flatland system from the
user’s point of view. It described the features of the system’s
novel user interface, and discussed how we designed the
interface based on our whiteboard usage study and iterative

prototyping.

Figure 1: Flatland example

In this paper, we discuss the implementation of Flatland in detail
from a programmer’s point of view. We introduce our new
software architecture to support various stroke-based operations,
and describe how our example applications are implemented on
the architecture. This architecture can be seen as a variant of
Kramer’s representation-based architecture [11]. While the
current implementation is optimized for electronic whiteboards
with large physical surfaces, our architecture is applicable to
various pen-based systems such as small hand held PDAs,
display-integrated tablet systems, and huge wall size interfaces.
The software architecture we present in this paper is analogous
to a pen version of GUI-based window system for desktop
computers. Both divide the screen into several regions (windows
in standard window systems and segments in Flatland) to
provide independent workplaces. Both have mechanisms to
support task specific activities within the region (applications
and behaviors). The difference is that our target is informal, pre-
production activities while existing window systems are
designed for well-structured, goal-oriented activities. To be
specific, we observed the following design requirements, which
led us to our unique architecture.
First, the user’s input must be simple, and the system’s output
should be informal to encourage lightweight interaction.
Standard window systems support a variety of operations such
as typing, clicking, dragging, etc., but these are too complicated
for informal interaction. Likewise, their rectilinear widgets and
printed text discourage pre-production activities. In order to
provide the appropriate look and feel of real whiteboards,
Flatland uses a unified notion of “strokes” for input and output.
The user input is always in the form of handwritten strokes, and
system feedback is given as a set of “handwriting style” strokes.
Second, informal activities on a whiteboard are very dynamic:
the structure of the drawings on the board can change over time,
and each drawing can serve different purposes depending on the
situation. This is quite different from well-organized, goal-
oriented activities on desktop computers, and the traditional
notion of static windows and applications turned out to be
inappropriate. This observation led to two important design
decisions: dynamic segmenting and pluggable behaviors.



Users do not have to decide on the organization of their board
before they start working. They can simply pick up a pen and
begin writing. The system will use heuristics to try to group
strokes into segments as needed, and users can flexibly override
the system’s behavior by joining and splitting segments as
desired. Likewise, behaviors—code that supports the semantics
of a particular domain or application—can be flexibly attached
to or removed from the segment on the fly. So a user can write a
“to do” list on the board and then later apply a behavior to cause
the strokes to begin to “act like” a to do list. Other behaviors
could be applied to the same strokes over the lifetime of the
segment. This flexible relationship is quite different from static,
persistent relationship between windows and applications in
standard window systems.
Finally, drawings on whiteboards can persist for a very long
time and can be continuously changing. Additionally, each
“chunk” of information on a board can be very small compared
with a document in a desktop environment. Traditional file
based open-edit-close style document management causes too
much overhead to maintain this fine grained, ever-changing
information. So instead, Flatland is equipped with automatic
backup mechanisms and allows the user to recover the drawing
at any time in the past. This history maintenance mechanism
actually records every event occurring on the board, and thus
influenced the design of entire architecture.
The rest of the paper is organized as follows. After discussing
related work, we briefly introduce how Flatland works from the
user’s point of view. Then we describe the overall architecture
of the system in detail. Finally, we briefly note some
implementation issues, and discuss limitations and implications
of our architecture.

2. RELATED WORK
This work is closely related to Kramer’s seminal work on
dynamic interpretations [10][11]. He introduced the idea of
dynamic association between representation and internal data
structure in the context of electronic whiteboards. He allowed
the user to apply different interpretations (applications) to the
same marks (freeform strokes on the screen). His goal was to
capture the ambiguous nature of design activities.
We share basic ideas and research goals with him. The
contribution of this paper is to extend and complement his work.
While he established the framework for the representation-
centered architecture, we address various implementation issues
with more details and introduce a variety of example
applications. To be specific, we discuss how a stroke-oriented
architecture enables flexible screen real-estate control and
efficient history management.
Pen based computing has become an active research area
recently.  In addition to research and commercial work on
handwriting recognition, much work has been done on efficient
text input methods [18] and gesture recognition [9]. Many
systems use a pen-based sketching interface to encourage
creative activities: SILK [14] uses it for GUI design, MusicPad
[6] uses it for music composition, SKETCH [22] and Teddy [13]
use it for 3D modeling. Pen-based techniques are commonly
used on electronic board systems [8][19][20], with specialized
interfaces designed for large boards. For example, a series of
papers on the Tivoli system [15] proposes many interaction
techniques to organize handwritten notes in meeting
environment.
Although this previous work discusses the interaction techniques
and specific applications for pen computers, relatively few
papers discuss the software architecture to support pen based
activities in general. Kramer’s preceding papers and this paper
are the attempts to design software architecture suitable for
hosting these pen-based applications in a unified way. In a

broader perspective, Flatland can be seen as one of a group of
efforts (such as Pad++ [1] and Magic Lens [2]) that explore
alternative software architectures beyond existing GUIs.

3. FLATLAND USER INTERFACES
This section briefly illustrates how the Flatland system works
from the user’s point of view. Some minor features are
abbreviated because of space limitations. Detailed discussion on
the user interface design is found in [17].

3.1 Inking and Segmenting
As the very first level approximation, Flatland works just like a
physical office whiteboard. The user can draw any handwritten
stroke anywhere in the screen just by dragging the stylus on the
surface (called stroking). Erasing is done by drawing a
scribbling stroke with the stylus’s modifier button down (called
metastroking).
Unlike a physical whiteboard, painted strokes are automatically
grouped together into clusters, which we call segments. Each
segment is explicitly presented to the user by a boundary
surrounding its strokes. When the user draws a stroke on some
open space, a new segment is created for the stroke. If a stroke is
drawn within or close to an existing segment, the stroke joins to
the segment. If necessary, the user can also manually split or join
segments (Figure 2).
To ensure visibility, segments are not allowed to overlap. The
user can drag a segment by grabbing its boundary, but if the
segment collides with another segment, the collided segment is
pushed away. If no more space is available, the collided segment
starts to shrink to give more space (Figure3). When the user
starts working on a shrunken segment, it restores its original
size.

a)Joining to an existing segment b) Assigning a new segment

c) segment joining d) segment splitting

 Figure 2: Segmenting

a) start dragging b) pushing away c) squashing

Figure 3: Moving and squashing

3.2 Application Behaviors
In addition to functioning as a simple whiteboard, Flatland
supports specific activities by allowing the user to attach
application behaviors to segments. An application behavior
interprets the user’s freeform strokes, and gives appropriate
feedback in “handwriting” style to preserve informal
appearance. An active behavior is indicated as an animal figure
in the corner of the segment. The following is the list of
currently available application behaviors.
To do list: maintains a vertical list of handwritten items with
check boxes. A new item is created when the user draws a short
stroke (tap). A vertical stroke starting at a check box reorders the
item, and a horizontal stroke deletes it (Figure 4).



a) Adding a new item b) reordering items

Figure 4: To Do behavior

Map drawing: turns strokes into a double line representing a
street. Intersections are handled appropriately for incoming
stroke and erasing operations (Figure 5).

a) Adding a new  street b) Erasing a street

Figure 5: Map Drawing behavior

2D geometric drawing: automatically beautifies freeform
strokes considering possible geometric relations. The system
generates multiple candidates as pink line segments, and the user
can select a desired one by tapping on it. This behavior also
predicts the next drawings based on the spatial relation among
the new line segment and existing line segments [12]. The
predicted line segments are displayed as pink line segments as
well (Figure 6).

a) Beautification b) Prediction
Figure 6: 2D Geometric Drawing behavior

3D drawing: automatically constructs a 3D model based on the
2D freeform stroke input, and displays the result in pen-and-ink
rendering style [13]. The user can rotate the model by
metastroking. It also supports several editing operations such as
cutting and extrusion (Figure 7).

a) Creation b) Cutting

Figure 7: 3D Drawing behavior

Calculation: recognizes handwritten formulas in a segment and
returns the result of calculation. The user draws a desired
formula using hand drawn numbers, and the system displays the
result in handwriting style when the user draws a long horizontal
line below the formula (Figure 8).

a) user input b) system output

Figure 8: Calculation behavior

Unlike application programs of standard window systems, these
application behaviors can be flexibly applied to and removed
from the segment, and different behaviors can be used in
combination over time. For example, in order to draw a map, the
user draws streets using the map behavior, draws  buildings
using the 2D geometric drawing behavior, and writes comments
without any application behaviors.

3.3 History Management and Context-based
Search
Another feature of Flatland is its automatic history maintenance
mechanism. Every event on the surface is continuously recorded,

and can be retrieved later. This mechanism frees users from
explicit save operations, which are not suitable for informal
activities on whiteboards.
The current implementation provides three interfaces for
accessing automatically stored strokes and segments. The first is
infinite undo and redo. Using undo and redo, the user can access
any past state of the segment. Next is the time slider. Using the
slider, the user can specify the time point directly, or use jump
buttons to get to discrete “interesting” time points. Third is
context-based search, which is implemented as a behavior. The
search behavior allows the user to retrieve previous strokes and
segments based on context information such as time, segment
location, segment size, ink colors, etc. Search results are shown
as a set of thumbnails on the screen, and the user can work on
the stored segment by clicking on a thumbnail.

Segment Segment

Root Segment

Strokes Strokes
Behaviors Behaviors
Calculation

ShowBorder

PaintStroke

DragBorder

PlainDrawing

ShowBorder

PaintStroke

DragBorder

Events

Distribute
by type

Distribute
by location

= Application behavior
= Embedded behavior

Figure 9: Overview of the Flatland architecture

4. FLATLAND ARCHTECTURE
OVERVIEW
This section gives an overview of the entire Flatland
architecture. Following sections describe each feature in detail.
The most basic primitive in the Flatland system is a stroke. The
system receives user input as a stroke, and stores information as
a set of strokes. All information processing in the system can be
seen as manipulation of the stroke set on the screen. This
simplifies the implementation, and matches the user’s perceptual
model of the physical whiteboard.
Strokes on the screen are grouped together based on spatial
proximity, and are maintained by a segment. A segment allows
the user to manipulate multiple strokes within the region as a
group, and provides a workspace to accomplish specific tasks.
Segments are different from standard windows in that they can
be flexibly joined or split. Every segment is a part of the root
segment, which handles the events that influence the entire
whiteboard.
A segment delegates actual computations to behaviors attached
to it. Behaviors respond to various events occurring on the
segment, and modify the segment’s stroke set or perform
specific operations (such as painting). At any given time, a
segment can have one “application” behavior and several
“embedded” behaviors. Application behaviors provide task-
specific functions and are explicitly attached to the segment by
the user. Embedded behaviors provide basic services—such as
inking and event storage—to the segment, and are not visible to
the user. In contrast to applications of standard window systems,



multiple behaviors can be attached to a segment, and a behavior
can be attached or detached on the fly.
Figure 9 shows how the system maintains a set of segments,
each of which holds a set of strokes and a set of behaviors1.
When an event occurs, the root segment distributes it to a child
segment, which dispatches the event to its behaviors. Then, a
behavior can modify the segment’s stroke set or perform other
specific operations. We will see how this architecture efficiently
supports each feature of the Flatland system in the following
sections.

5. STROKES AS UNIVERSAL INPUT AND
OUTPUT
Flatland is characterized by its use of strokes as a universal
primitive for both input and output. The user’s input always
comes into the system in form of a freeform stroke (called an
input stroke), and the system’s feedback is presented as a
collection of handwriting style strokes (called painted strokes).
Since both output and input are in the form of strokes, the
system is capable of using its own output as later input—we will
see later some examples of behaviors that exploit this feature. In
this section, we describe how input strokes are processed and
how painted strokes are maintained in the Flatland architecture

5.1 Processing an Input Stroke
When a user draws an input stroke on a screen, the root segment
first decides which segment to send it to. If the input stroke is
within or close enough to an existing segment, the root segment
sends the input stroke to it. If no segment is found, the system
creates a new segment, and sends the input stroke to it.
The segment does not add the input stroke to its painted stroke
set directly when it receives an input stroke. Instead, the segment
sends the input stroke to its application behavior by calling the
addInputStroke method of the behavior.  It is the behavior, and
not the segment itself, that adds or modifies the segment’s
painted strokes. This allows an application programmer to build
custom application behaviors by just defining the
addInputStroke method which receives input stroke from the
segment, without worrying about low level events (stylus down,
stylus move, etc.).
The application behavior analyzes the input stroke, and modifies
the segment’s painted stroke set. For example, the Calculation
behavior adds multiple painted strokes showing the result of
calculation when the user draws a horizontal line. The Map
behavior adds two painted strokes based on an input stroke, and
it also modifies the existing painted strokes to represent
intersections appropriately.
When the user hasn’t attached a specific application behavior, a
default application behavior called Plain Drawing behavior is
installed. This behavior simply adds each incoming input stroke
as a painted stroke to the segment’s stroke set, mirroring the
behavior of a physical whiteboard.
An application behavior adds a new painted stroke to the
segment by calling the segment’s addPaintedStroke method with
the painted stroke as an argument. Behaviors can also remove an
existing painted stroke by calling the removePaintedStroke
method. These methods actually update the segment’s stroke set,
and perform some low level processing to adjust the segment
size and to push away surrounding segments if necessary. Figure
10 illustrates this event processing flow.
User input based on simple pen down (stroking) is always
handled as a single input stroke in this way. However, user input
with the pen’s modifier button down (called metastroking) is
                                                          
1 In [11], strokes are called marks or inks, segments are called patches,
and behaviors are called interpretations. Properties in [11] are handled
as behavior specific internal structures in our framework.

handled in the conventional button down-move-up event model,
and processed variously depending on its location. Metastrokes
are used to start pie/marking menus, drag/split a segment, erase a
painted stroke, etc. We do not have enough space to discuss each
of the metastroke operations in detail, but generally, metastrokes
are processed in a similar manner to strokes: an metastroking
event starts from the root segment, goes to the target segment,
and is distributed to the appropriate behaviors.

Segment

Root Segment

Strokes
Behaviors ApplicationBehavior 

Input stroke

addInputStroke

addInputStroke

addInputStroke

addPaintedStroke

removePaintedStroke

Figure 10: Input stroke processing.

5.2 Strokes as Universal Output
Flatland uses a stroke as the basic primitive for displaying
information. In addition to directly showing the user’s hand
drawn strokes, system feedback is also presented in the form of
freeform strokes. This decision primarily comes from aesthetic
reasons to give informal appearance, but also helps simplify the
entire architecture.
When an application behavior wants to give feedback to the
user, it has to create an appropriate new stroke and add it to the
segment’s stroke set. Application behaviors are not allowed to
directly paint on the screen using primitive operations such as
drawText, drawLine, drawImage, etc. For example, when the 2D
geometric drawing behavior shows the result of beautification or
prediction, it adds corresponding line segments in form of
strokes to the segment’s stroke set, instead of directly drawing
lines on the screen. And the calculation behavior displays the
result of calculation by adding a set of strokes representing
numbers instead of drawing printed text directly on the screen.
This design has two benefits from the implementation’s point of
view. First, application programmers do not have to worry about
low level painting operations, and they gain the appropriate
informal appearance for free. Second, and more importantly, the
system can recover the appearance of the board just by recording
the segment’s stroke set at each time point. If each behavior
paints arbitrary things directly on the screen, the recovery of the
screen snapshot would have to involve the behavior and could be
very complicated. We will discuss this in detail in the History
Management section.

6. DYNAMIC SEGMENTATION
The structure of drawings on a physical whiteboard is very
volatile and flexible. Our dynamic segmenting mechanism is
designed to capture this property. Dynamic segmenting frees the
user from defining the structure of the board beforehand, and
allows him or her to organize the board on the fly. Flatland
segments are different from windows in a number of ways.
First, a segment is created automatically in response to the user’s
input stroke, while a window has to be explicitly constructed
before stating interaction. Second, segments are not allowed to
overlap. This results in “pushing away and squashing” effects,
which allows more information to be presented while preserving
visibility. Finally, segments can be dynamically merged or split.

6.1 Distribution of an Input Stroke   
When the user draws a freeform stroke, the root segment
calculates the distance between the stroke and existing segments.



If the stroke overlaps or is close enough to a segment, the stroke
will be send to the segment. If the stroke overlaps multiple
segments, the system merges the corresponding segments, and
sends the stroke to the resulting segment. If no such segment is
found, the root segment generates a new segment, and sends the
stroke to it.

6.2 Moving a Segment
The user can move a segment by making a metastroke starting at
the segment’s border. An embedded behavior called Drag
Border responds to the event, and moves the segment according
to the pen movement. It generates a surfaceMoved event to the
application behaviors to update their internal structures. This
surfaceMoved event also occurs when the segment is pushed
away by another segment.

6.3 Pushing and Squashing a Segment.   
When the Drag Border behavior tries to move a segment, the
segment asks the root segment for space. If any segment
occupies the space, the root segment pushes it away to make
space. The pushed segment then requests space for itself, and
this continues until a segment is pushed against the screen
boundary.
When this happens, the segment at the boundary starts to shrink
to give space. When a segment shrinks, the actual coordinates of
its strokes remain unchanged. Instead, the segment maintains a
“scale” field, and the Paint Stroke embedded behavior renders
the scaled strokes on the fly. In other words, the shrinking effect
occurs only superficially. This frees application programmer
from taking care of the scaling effect.

6.4 Merging and Splitting Segments
In order to merge segments, the root segment constructs a new
segment, and calls its addPaintedStroke method using all strokes
in the original segments as argument. After that, the system
deletes the original segments. In order to prevent confusion, the
current implementation does not allow the user to merge
segments with application behaviors.
A segment is split when the user draws a splitting stroke (i.e.
long vertical or horizontal line that cross the segment). This
event is handled by the root segment instead of the segment that
is being split. The root segment constructs a new segment, and
transfer strokes one by one by calling the deletePaintedStroke
method of the original segment and the addPaintedStroke
method of the new segment. Again, the current implementation
does not allow the user to split a segment with an application
behavior.

7. PLUGGABLE BEHAVIORS
Behaviors provide a way to associate domain-specific
computational processing with a particular segment. While
behaviors are superficially similar to traditional applications
running within windows, there are some fundamental
differences.
First, a segment can have multiple composed behaviors active at
a time, while a window cannot belong to multiple applications.
Second, a behavior can be attached to and removed from a
segment on the fly, even after the segment has been created (so
users can “create first, process later”). Third, visual
representation is maintained as a set of strokes by the segment,
and behaviors do not directly render onto the screen (except for
the Paint Stroke and Show Border behaviors).

7.1 Event Processing
A segment distributes a variety of events to its behaviors for
them to perform appropriate action. This process is implemented
based on the event listener model of the Java language. When a
segment detects an event, it distributes the event to the behaviors
equipped with the corresponding event listener such as

SurfaceListener, StrokeListener, MetastrokeListener, etc.
SurfaceListeners handle events related to the segment
configuration. They react to changes in segment location, size,
activation, and inactivation. They also react to  requests for
painting of the segment. Most embedded behaviors are instances
of this event listener. For example, the Paint Stroke and Show
Border embedded behaviors respond to requests for surface
painting. Some application behaviors respond to this event to
modify their internal structure.
StrokeListeners handle the incoming strokes drawn by the user.
This event listener is used by application behavior to detect input
strokes. MetastrokeListener handles the events related to
metastrokes. The Drag Border behavior responds to this event,
and some application behaviors use this event to handle specific
gestures such as erasing.

7.2 Embedded Behaviors
Embedded behaviors are implicitly attached to the segment, and
work as a part of underlying system service. It would have been
possible to implement these services as a part of a segment, but
we chose to implement them as separate entities to make the
entire system highly extensible. For example, it is possible to
give the system a completely different look and feel just by
changing the embedded behaviors without modifying the
segment itself. It is also easy to add new features as new
embedded behaviors. Actually, our “moving a segment” feature
came later in the development process; the Drag Border behavior
was added without requiring much rewriting of the segment
code.

7.3 Application Behaviors
This section describes the implementation of some application
behaviors in detail. The Flatland infrastructure provides an API
which programmers can use to build their own application
behaviors, without worrying about low level implementation
details of the entire system.
Basically, an application behavior receives an input stroke from
the host segment, and modifies the set of painted strokes
maintained by the segment. An application behavior can also
respond to any other events to maintain some task specific
semantics. For example, most application behaviors respond to
metastroke events to delete the closest painted stroke.

Figure 11: Behavior specific internal structures.

An application behavior does not maintain the stroke set—this
is done by the segment—but it may require additional internal
information about the strokes of the host segment. For example,
the To Do behavior has a list of to do items, and each item has a
pointer to its corresponding check box and strokes. The Map
Drawing behavior has a network of streets and crosses, and each
street has a pointer to two strokes (Figure 11). This internal
information disappears when the behavior is detached from the
segment, and is reconstructed when the behavior is re-attached,
as described below in the section, Reapplication of Application
Behaviors

Plain Drawing Behavior
This behavior is the default application behavior and works as a
prototype for other application behaviors. The code for this
behavior is quite simple. It adds a new input stroke to the
segment’s stroke set directly, and removes a painted stroke when
it detects erasing gesture. This behavior does not cause any side



effects on other painted strokes, and it maintains no behavior
specific internal structure.

Map Drawing Behavior
This behavior maintains a graph representation of streets and
intersections internally. Each street has pointers to the two
painted strokes representing the street, and each intersection has
pointers to the streets connected to it.
When an input stroke comes in, this behavior first examines
whether the stroke overlaps some existing streets. If no overlap
is found, the behavior creates two painted strokes at the both
sides of the input stroke, and adds them to the segment’s stroke
set. In addition, the behavior adds the new street to its street set.
If the stroke overlaps some existing street, the behavior divides
the street and the input stroke at the section, and reconstructs the
appropriate graph topology. The behavior deletes the painted
strokes associated with the modified street, and adds a set of new
painted strokes. When the user tries to erase a painted stroke, the
behavior erases the corresponding street. Then it reconfigures
the internal graph representation and edits the segment’s stroke
set.

Calculation Behavior
This behavior works just as a plain drawing behavior until the
user draws a long horizontal stroke requesting calculation. When
this happens, the behavior searches for the set of strokes above
the horizontal stroke, and hands them to a handwriting
recognizer. The recognizer returns the symbolic representation
of a formula. The behavior calculates it, and adds a set of
painted strokes that represent result digits to the segment’s
stroke set. This behavior maintains no internal structure, and
scans the entire segment each time. As a result, this behavior can
accepts any painted stroke as input, including the painted strokes
created by the behavior itself or those painted before the
behavior is applied to the segment.

3D Drawing Behavior
This behavior has a 3D polygonal model internally, and renders
the model by adding painted strokes representing visible
silhouette edges to the segment’s stroke set. When the user
rotates the model, the behavior removes all previous strokes, and
adds new strokes. Unlike other application behaviors, it directly
responds to the low level metastroke events to implement
rotation.

Search Behavior
This behavior is a part of the system infrastructure, and is very
different from other application behaviors. While other
application behaviors provide feedback by editing the segment’s
stroke set and letting the PaintStroke embedded behavior paint
them, the search behavior paints buttons and search results to the
screen by itself. This prevents the search result to be recorded as
new strokes, and gives a distinctive look to the segment.

7.4 Reapplication of Application Behaviors
As we have mentioned already, behavior specific internal
structure disappears when the behavior is removed from the
segment, and the structure is recovered when the behavior is
applied to the segment again. This section discusses the
implementation of this reapplication process in detail. A naïve
implementation may be to save the behavior specific structure in
the segment, but this strategy fails because of our dynamic
segmenting feature. Segments can be merged or split, which
means that a segment is too fragile an entity to store these
structures safely.
As an alternative strategy, we store the behavior specific
structure in the painted strokes. Each stroke remembers the
associated partial internal structure, and a re-applied behavior
uses these partial structures to recover the entire structure. This

allows segments to be split and joined appropriately.
For example, the To Do behavior gives each painted stroke a
pointer to a corresponding to do item object. When the To Do
behavior is reapplied to a segment, it examines all the painted
strokes, and groups them based on the associated to do item
objects. Each to do item can originate from different To Do
behaviors. Then, the To Do behavior constructs a list of to do
items, and organizes the strokes appropriately (Figure 12).

1) Two segments
after removing 
To Do behaviors.

2) Joining of
the two segments.

3) Editing the 
segment without
To Do behavior.

4) Reapplication
of a To Do behavior.

 Figure 12: Re-application of a To Do behavior.

1) Two segments
after removing 
Map behaviors.

2) Joining of
the two segments.

3) Editing the 
segment without
Map behavior.

4) Reapplication
of a Map behavior.

   Figure 13: Re-application of a Map behavior.
The Map Drawing behavior embeds a pointer to the
corresponding street object in a painted stroke. When a map
drawing behavior is reapplied to the segment, it extracts the set
of street objects embedded in the strokes, and constructs a
complete street-intersection graph. Again, each street object can
be generated by different Map Drawing behaviors (Figure 13).
Strokes generated by other behaviors remain unchanged.
The 3D drawing behavior embeds a pointer to the 3D model in
each stroke. When the behavior is reapplied to a segment, it
extracts the 3D geometry from the stroke. If more than one 3D
model is found in the stroke set, the 3D drawing behavior
ignores the rest of them.
An application programmer has to write code to store and
recover the internal structures when he or she uses internal
structures. Currently, this part of coding is too complicated and
difficult. It is our future work to find a more unified way to
handle behavior reapplication.

8 HISTORY MANAGEMENT
One of the goals of Flatland was to create a “change safe”
whiteboard.  What this means is that users should be able to
safely change any content on the board, knowing that they can
recover it later if need be. To satisfy this requirement, Flatland
must be able to reconstruct the contents of any given segment as
requested by the user.
To implement this ability, Flatland uses the combination of two
different mechanisms. One is a command object model, which
maintains short-term history and supports infinite undo/redo and
the time slider. Time slider allows the user to view segment
status in the past [21]. The other is a persistent document
management system based on associative memory, which
maintains long-term history and supports context based search.

8.1 Undo/Redo Model
Our infinite undo/redo is based on the “command object” idiom
[7]. Command objects are objects—in the object-oriented sense
of the word—that encapsulate an operation that can be
performed in an application.  Each type of action that the user
can take on the whiteboard is represented as a discrete class of



command object. Instances of commands are “invoked” by
calling a well-known method on them that causes them to
perform their operation, updating the state of the board.
In our model, commands can be invoked and they can be
reversed. That is, each command supports the ability to both
“do” and “undo” its operation. Once this ability is added to the
base command object pattern, command objects can be
connected together in graphs to form complex histories that
represent all of the possible states in which the application has
existed. By traversing the graph, sequential sets of operations
can be done or undone. This model of graphs of command
objects as a means to represent time has been used by Timewarp
[5] and other systems. (Although, unlike the generalized time
model supported by Timewarp, Flatland doesn’t allow divergent
or revergent histories—in Flatland, the history graph is strictly
linear, and thus avoids issues with conflicts [4].).
The time slider is implemented based on this infinite undo/redo
model. When the user moves the slider forward, the system
invokes redo methods of the command objects sequentially, and
vice versa. Semantic jumping is implemented by putting markers
in the command object sequence. If the user presses the jump
button, the system searches for the next marker and jumps to the
time point.

8.2 Supporting Undo/Redo with Extensible
Behaviors
Flatland faced some unique problems in representing its state as
a linear graph of command objects.  In “traditional” uses of the
command object idiom, each command is atomic—that is, it can
reliably and completely do or undo its operation, and has no side
effects that aren't represented by the state in the command object
itself. As an example, when a command object in a drawing
program is rolled forward, it must take care to store all
information needed to completely reset the state of the
application if it is rolled back. If performing the operation causes
some change to be made to the graphics context of the
application, the creator of the command must be aware of this
side effect, and must account for it when performing the
corresponding undo.
This situation is in contrast to the basic architecture of Flatland,
where the use of extensible, pluggable behaviors means that
essentially every interesting update to the state of the application
does occur as a side effect to user input.  The set of operations
that can occur when a user draws a stroke on the board is
dependent on the set of behaviors installed, and the current state
of each of those behaviors.  This leads to some problems in
applying the command object idiom in the face of extensible
behaviors.
One naïve approach would be to represent only the original user
input in the command history.  So if a user made a stroke, and
the map behavior then drew two parallel strokes to represent a
street, only the original stroke (which doesn't even appear on the
screen after the map behavior is finished with it) would be
present in the history. The problem here is that the history no
longer represents the complete state of the application. Jumping
to a different node in the history graph involves “replaying” the
user input to the behaviors, causing them to perform all of the
same operations they would in response to “fresh” user input.
The computations done by behaviors can be arbitrarily complex,
which means that jumping to distant states can be arbitrarily
expensive.
Flatland uses an alternative approach, where any behavior
expresses its updates in terms of new command objects. So in
the example of the map behavior, the history would contain a
behavior-specific command object indicating that a new street is
present, followed by two painted strokes (added by the map

behavior). This approach has a big advantage: changes based on
user input are “pre-computed” by the behaviors, and only their
final outputs are represented in the history.  The “side effects” of
the input are turned into “foreground effects” and represented as
first-class citizens in the history.

8.3 A Transaction Model for State Changes
This second approach does have a drawback: since behaviors
write their operations into the command history, simple atomic
roll-forward/roll-back is now inappropriate.
For example, with the Map behavior, suppose that a user has
drawn a stroke that corresponds to a new street, and then needs
to roll time back.  The original stroke command is not
represented in this history—it has been replaced by a set of
commands representing the effects of the stroke. Clearly, rolling
back atomically is probably not what the user wants to see: such
a roll back would reveal the individual operations of the map
behavior, rather than the semantic “chunk” of the whole set of
operations.
To solve this problem, we adopted a transaction model for the
commands in our histories. Each original user-level input begins
a new transaction.  As the Flatland event dispatch code runs and
behaviors perform their operations, their effects are grouped into
this new transaction. Figure 14 shows an example of a
transaction. From this model, causality relationships are clearly
indicated, as all operations in a transaction are effects of the
same cause. Transactions are represented explicitly in the history
as commands, and the history roll-forward/roll-back machinery
is augmented to process entire transactions atomically.
121 OpenTransaction
122 BehaviorSpecificCommand

(Map, addstreet, street#12a)
123 AddPaintedStrokeCommand(stroke#23a1)
124 AddPaintedStrokeCommand(stroke#23a2)
125 CloseTransaction

Figure 14: An example of transaction.

8.4 Local versus Global Timeline
Management
One final timeline management issue we had to deal with was
the distinction between the “local” timelines of individual
segments and the  “global” timeline of the entire board. We
wanted the ability for users to interact with the timelines of
individual segments without affecting others: the entire history
of a segment should appear continuous, even though in “real”
time, operations on other segments may be interspersed with it.
But we also wanted the ability to roll forwards and backwards in
global (whole-board) time. Global undo and redo means that the
histories of all individual segments are “packed” into a single
timeline ordered by “real” time, rather than “segment logical”
time.

Segment #1

Segment #2

Segment #3

Local history (segment #1)

Global history

Figure 15: Local versus Global Timeline

In the implementation, each segment maintains its own local
history, and Flatland creates the illusion of a global history
timeline by composing individual segment histories together.
Because users can visit and leave segments as often as needed,
segment histories can be arbitrarily interleaved in “global”
time—so the global history is represented as a list of “chunks” of
history from individual segments, stitched together (Figure 15).



8.5 Persistence
Since Flatland whiteboards are designed for long-term use—
much as physical whiteboards are—we needed a way to ensure
that all data on the board is saved persistently.   We want to
ensure that everything on the board is saved and recoverable, for
the entire duration of the board's use, without requiring users to
have to explicitly save or name files that correspond to
segments. Clearly this would violate the informal nature of the
system and, in many cases, the work required to explicitly save a
persistent data file would outweigh the benefit of using the
board!  We needed a much lighter-weight approach.
Flatland is built atop the Presto document management system
[3]. Presto provides a loosely-structured “information soup” into
which arbitrary content can be stored. Presto presents an
associative memory programming model to its users—chunks of
information can be tagged with arbitrary key/value pairs—which
maps nicely into the Java implementation of Flatland (Presto
tuples can be arbitrary serialized Java objects).
Flatland saves every “dirty” segment periodically to stable
storage via Presto. Each segment is represented as a discrete
Presto “document,” with Flatland-specific objects tagged onto it
as key/value data. The contents of each document are the
serialized command objects that constitute the segment’s history.
The system maintains a “segment cache,” which reflects all of
the “live” segments currently on the board.  If an old segment
needs to be retrieved (either because the user searched for it, or
an undo or time slider operation causes the segment to become
live again), it is “faulted in” from persistent storage. Only the
storage layer in Flatland needs to know about persistence—from
the perspective of behavior writers, all segments are always
“live” and in core at all times. From the user perspective, users
never have to explicitly save at any time, and they never name
the data that is saved.

8.6 Search
Our search behavior retrieves past segment states using this
document management system. The system tries to intuit
information about the context of a segment's use, and its content,
and uses this information to satisfy queries. For example, users
can search based on content attributes such as segment stroke
density (using ambiguous terms like “dense” or “sparse” or
“medium”) and color (“mostly blue”). Context-based searches
can use information about what behaviors were attached to the
segment (“my map” or “my to do list”), and time of last use.
The search result is displayed as a set of thumbnails representing
past states of the segments. The construction of this thumbnail is
done by rolling the addPaintedStroke and removePaintedStroke
command objects forward starting from a blank segment,
ignoring any behavior specific command objects in the segment
history. This allows the system to reconstruct the segment
appearance quickly. If the user tries to interact with the retrieved
segment, the system reconstructs the behavior specific internal
structures by rolling behavior specific command objects
forward.

9. IMPLEMENTATION NOTES
Flatland is implemented in Java, and is approximately 42,000
lines of code. Handwriting recognition (used by the Calculator
behavior) is done by the Calligrapher online recognizer from
Paragraph Corporation.
We did not pay much attention to performance tuning, but the
overall speed is satisfactory on a standard PC as a proof of
concept prototype. Some operations such as the display of
search results cause delay, and require improvement.
Implementation of history management is not yet complete.
Especially, our long-term persistent history causes a sort of time
travel paradox. Multiple restorations of an old segment and time

traversal over merged or split segments badly confuse the
timeline management, and more research is required to address
these problems.

10. SUMMARY AND FUTURE WORK
This paper has introduced our efforts to build a software
platform for a variety of pen based applications. Our design goal
was to support informal, pre-production activities on a
whiteboard, in contrast to the well-organized activities supported
on desktop computers. To achieve this goal, we have introduced
the ideas of strokes as a basic primitive for both input and
output, dynamic segmentation of the screen space, pluggable
behaviors working on a segment, and persistent history
management mechanism.
Our next step is to deploy the Flatland system in real office
environment to observe its usage. However, this is difficult with
our current hardware set up, and its requirement for front
projection. We expect that a large plasma display with touch
sensitive screen will be a good solution. We also plan to
implement additional application behaviors that support
common activities on a white board such as paper outlining,
communications, calendars, and so on.
Another interesting research direction is the application of our
architecture to other pen computing environments. We believe
that our architecture can provide a uniform framework for a
variety of pen based devices to work in corporation.
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