
Balancing Generality and Specificity in Document
Management Systems

W. Keith Edwards and Anthony LaMarca

Xerox Palo Alto Research Center
Palo Alto, CA 94304 USA

+1 (650) 812-4405
{kedwards, lamarca}@parc.xerox.com

ABSTRACT. This paper describes an experiment to extend the reach of the document-centric metaphors of
computing to new physical and virtual objects in the workplace. By bringing these entities into the sphere of
electronic documents, we leverage users’ knowledge and expectations about how documents work, and also
leverage existing tools and applications that understand and manipulate documents. Being able to use general-
purpose tools on semantically-loaded content types can be useful, but there are potential pitfalls with the loss of
the functionality provided by special-purpose applications. We investigate a solution to this problem that strikes
a balance between generality and specificity by allowing application functionality and user interface components
to be associated with the document and used by general-purpose applications that operate on that document.

KEYWORDS: document management, user interfaces, extensible architectures, Placeless Document

1. INTRODUCTION

Much of contemporary computer use is
characterized by document-centered tasks: we edit,
create, mail, print, and file electronic documents. We
commonly see file and folder icons on our desktops,
and the web has brought a document-centered
metaphor to network computing tasks. The
prevalence of electronic documents on our virtual
desktops mirrors the use of physical documents in the
workaday world (Adler 1998, Bellotti 1997). The
result is that the metaphors of document-centered
computing—opening and closing, reading and
writing, searching and printing—have become part of
the lingua franca of computing.

Our desktop tools are specialized to match our
document management tasks and have increased in
sophistication to support the various uses to which
documents are put. Modern tools support such
techniques as indexing, hyperlinking, collaborative
document filtering and recommendation (Shardanand
1995), organization and browsing of document

collections (Lamping 1997), automatic identification
of document genre (Kessler 1997), and so on. The
diversity of document management tools is indicative
of the prevalence of electronic document
management in our online work.

But there is still a large portion of our day-to-day
work which is not document-centric. We commonly
perform system administration tasks such as
managing printers or installing software; control
processes such as databases or other applications;
collaborate with users by initiating on-line
conferences or managing work flow tasks; and
control external devices such as attached cameras or
speakers. While these tasks may use documents—a
work flow task is typically focused around some
shared set of documents for instance—the commonly
used and understood metaphors of document-based
computing do not apply to these tasks. In short, while
they may involve document use, creation, and
management, the tasks themselves are not directly
represented as documents, with the same affordances
and utility of existing electronic documents.

At first glance, many of these tasks seem

qualitatively different than typical document
management: they involve working with processes,
users, and devices that have no innate and a priori
existence as readable and writable content. On closer
examination, however, one can see similarities
between these currently non-document centered tasks
and document management. In particular, many of
these tasks involve the creation and manipulation of
externally-represented state: system management
involves retrieving and updating system status. Work
flow involves determining the steps a task has passed
through, and updating some external record of the
task to move it to new states. Many devices are
readable and writable and can both provide and
accept what may be thought of as content.

With these similarities in mind, we have begun an
investigation into whether a document-centered
model could be expanded to include both physical
and virtual entities not previously represented as
documents. Essentially, the objects at the focus of
this work would be reified as documents, allowing
the metaphors of document creation and
manipulation to be applied to new tasks. And—
perhaps more importantly—such an extension of the
document metaphor would leverage the wide body of
existing applications, tools, and services that already
understand how to work with documents.

In such a system, users would “live” in a
document-oriented world and would be able to use
familiar tools such as editors, and techniques such as
cut and paste or drag and drop, to interact with a
much wider range of computational and physical
entities than before. In essence, electronic documents
become a metaphor for the interactive objects in both
the virtual and the physical worlds, rather than
simply a metaphor for physical documents.

1.1 Goals

Building a system to support a document-centric
view of the world has two major challenges. First we
need a document management infrastructure that can
seamlessly support the mapping from physical and
computational entities to documents in such a way
that these new documents appear as first-class peers
of their existing cousins. Our investigation is part of
a larger project called Placeless Documents (Dourish
1999) which provides this needed functionality; an
overview of Placeless Documents is given in Section
3.

Second, we need to understand how the concept of
the document as a user interface metaphor be mapped
to these other entities. We believe that by creating
such a mapping, we can achieve a number of
benefits. There are the obvious benefits of leveraging
users’ knowledge of document systems in new
domains, and leveraging existing document tools to
apply them to new types of objects. But beyond these
benefits, we believe that two particular effects will

come into play in such a system.
The first is multiplicity. Multiplicity is the

combinatorial effect which occurs when a document
is accessible by any number of tools, users, and
protocols. Multiplicity allows users to select their
preferred tools for interacting with our new document
types, rather than having to rely on customized,
special-purpose tools. It is multiplicity which makes
these new entities seem like “real” documents by
allowing users to interact with them using, say,
Microsoft Word or the File Manager, like they would
any other file on their computer. Multiplicity also
encourages adoption by supporting users’ desired
tools, rather than forcing them on to new
applications.

The second effect is knitting. Knitting is the ability
use a document as a representation of a live and up-
to-date view of the world. The content for these live
documents can come from any number of sources: it
can be composed from pieces of traditional static
content, formed from query results, or read from on-
line devices. By having live content, knitting allows
documents to know the context and history of their
use, and respond in appropriate ways to changes in
their environment. Knitting not only supports
documents that can provide an instantaneous,
updating view of some state, but also supports
documents which carry their own behaviors,
semantics, and perhaps even interfaces with them. In
our discussion of the new document types we have
created, we shall see several examples of multiplicity
and knitting in action.

1.2 Striking a Balance

There is a delicate balance to be struck in this
work. The reason that these computational objects
have not been represented as documents is that they
often carry with them such a great deal of domain-
specific semantics, and the functionality that encodes
these semantics, that general-purpose document tools
are an inappropriate medium for working with them.
Clearly, specialized functionality for a camera would
not be accessible through tools like Word or Excel.

To expose this functionality, such computational
entities are usually manipulated via special-purpose
applications. For example, a cellular telephone may
come with a special purpose application to allow the
editing of its internal phone book from a desktop
computer. This application reflects the functionality
supported by the phone, and yet may allow its
content—the actual names and numbers in the phone
book—to be imported or exported in some common
formats. The fact that the content may be imported or
exported is an acknowledgment of the
“documentness” of the phone book.

This approach to using specialized applications for
accessing and manipulating specialized sorts of data
is, of course, very common, and represents one

endpoint in the spectrum of possibilities. At this
endpoint, the content is so laden with domain
semantics that it is best manipulated via specialized
tools rather than general purpose applications. Video
games are a prime example: they may contain
traditional content in the form of images and sound
samples, but without the game specific functions, the
experience is quite different.

At the other end of the spectrum we see purely
general purpose tools such as word processors,
spreadsheets, and web browsers. These tools, while
they may operate on only a small number of types of
data, still impose very few restrictions on the content
they manipulate—the domain semantics, if any, in
the content they manipulate are not reflected in the
applications themselves. Although, just as specialized
applications may attempt to support general purpose
tools through importing and exporting, general
purpose applications may attempt to reflect
application semantics through the use of extensions
such as ActiveX controls, browser plug-ins, or
macros carried with the content.

Traditionally, these two endpoints of the spectrum
have been the only options available. In our desire to
leverage the power of general-purpose tools and take
advantage of the combinatorial effects of
multiplicity, we wish to strike a new balance. We
want to be able to expose content—even
semantically-loaded, domain-specific content—as
documents. And yet we need to provide ways for
documents to carry enough of their application
behavior that they remain useful in this new setting.

2. RELATED WORK

Some work has been done in the past to expose
computational, and sometimes physical, objects as
documents. On the Unix system, the /proc filesystem
(Curry 1996) is a specific example of making one
particular type of entity—a Unix process—appear as
a file. These files can be read to determine the state
of a process, and written to effect changes in the state
of a process. Operating systems such as Mach
(Rashid 1989) provide a generalization of this feature
by supporting easily-loadable filesystem code that
can be used to provide filesystem interfaces for
arbitrary entities. As opposed to these example, we
have available to us a general framework for easily
extending any type of entity into the realm of
documents. Further, Placeless documents are more
fully realized as first-class documents than the files
in such filesystems: they can be freely created,
grouped, and renamed. The /proc filesystem in
particular imposes sufficient restrictions that process
files are noticeably different than “normal” files in
the Unix filesystem.

On the web, cgi scripts (Gundavaram 1996) are
used to dynamically create web pages based on some

external state—an online catalog may use a cgi script
to create a page with product listings from a
database. An essential distinction between such
scripts and our work, however, is that Placeless
documents are full-fledged documents with their own
innate identity. The URLs that refer to cgi scripts, on
the other hand, are simply the names of documents.
The “documents” that they refer to actually have no
inherent identity as documents—they cannot be
renamed, foldered, sent to other users, and so on. As
opposed to simply providing a naming system which
can refer to new types of content, Placeless provides
a system in which entirely new first-class documents
can be created.

3. ARCHITECTURE

This section presents an overview of the
architecture of our system. We begin with a
discussion of the basic facilities of the Placeless
architecture, highlighting those features that were
necessary to build our document-centric metaphor.

3.1 Overview of Placeless Documents

Traditional document management systems and
filesystems present a hierarchical organizational to
their users: documents are contained in folders;
folders can be nested within other folders. This
structure, while easy to understand, is limiting. For
example, should an Excel document for a project’s
budget be contained in the Excel folder, the budget
folder, or the project’s folder?

The goal of the Placeless Documents project is to
build a more flexible system for organizing a
document space. In the Placeless model, organization
is based on properties that convey information about
its context of use: the document is a budget; it’s
shared with my workgroup, and so on.

3.1.1 Active Properties
While many systems support the association of

extensible metadata with files and documents,
properties in Placeless can be active entities that can
augment and extend the behavior of the documents
they are attached to. That is, rather than being simple
inert tags, extensionally used to describe already-
extant states of the document, properties can also be
live bits of code that can support the user’s desired
intentions about the state of the document.

These active properties can affect the behavior of
the document in multiple ways: they can add new
operations to a document as well as govern how a
document interacts with other documents and the
document management system in which it exists. For
example, in Placeless, active properties are used to
implement access control, to handle reading and
writing of document content from repositories (such

properties are called “bit providers”), and to perform
notifications to interested parties.

It is these active properties in the system,
particularly the bit providers, which accomplish the
“knitting” together of dynamic information described
in the introduction. Since property code can perform
arbitrary actions when it is invoked, properties can
return arbitrary results based on the context of their
use, and the state of the document management
system at the time they are invoked. We shall see
some examples of these in Section 4.

3.1.2 Distribution and Compatibility
Placeless Documents was architected to be a robust

distributed system. Our design allows users to access
document collections across the network and, more
importantly, serve document collections where they
see fit. So, for example, a user who is often
disconnected can run an instance of the Placeless
Documents system on a laptop to provide full
Placeless functionality, even when disconnected from
the rest of the world. Such a user could not, of
course, see documents that reside on other,
unreachable systems with full consistency.

A final feature of Placeless Documents is to
provide compatible interfaces for supporting off-the-
shelf applications. The attributes of the Placeless
system described above—active properties and
robust distribution—enable the construction of novel
applications and document services. To be truly
useful, however, the system must also work with
existing document- and file-based applications. To
this end, we architected a number of “shims” which
map from existing document- and file-management
interfaces and protocols into the concepts provided
by Placeless. Examples of such shims might include
file system interfaces, HTTP, FTP, IMAP and POP3
protocol interfaces, WebDAV, and so on.

For example, we have built a Network File System
(NFS) server layer atop Placeless. This layer lets
existing applications, which are only written to
understand files, work with live Placeless documents.
Existing applications do not have to change to work
with Placeless, although there is a loss of power since
many of the Placeless concepts do not find an easy
expression in a more traditional file system model.

For the purposes of this paper, the Placeless
infrastructure can be thought of as a middleware
layer, capable of reusing or generating content from
varied sources, creating a uniform notion of
“documents” from that content, and then exposing
the resulting documents via a multiplicity of
interfaces.

As mentioned in the introduction, one of the key
benefits of our model is in its multiplicity of access:
by exposing arbitrary entities as documents, and then
making these documents widely available through
arbitrary interfaces, we gain great leverage from

existing tools and applications. We shall see some
examples of multiplicity in use in the next section.

4. DOCUMENTS AS A METAPHOR
FOR THE WORLD

Within the context of Placeless, we have built the
infrastructure that allows us to experiment with
document-centric computing. Our work has followed
two main paths. First, we implemented a set of novel
document types within the Placeless framework.
These new document types reflect objects and tasks
commonly used in office work. So far, we have
focused on documents as representations for:

• Physical devices
• People
• Computational resources, including processes,

machines, and the Placeless system itself
• Abstract tasks and processes such as work

flow
The challenge here was to implement such

disparate concepts within a document metaphor—
that they would act like documents in all important
ways. By leveraging users’ knowledge we can build
on their expectations of document systems, so that
our documents will behave in predictable ways. We
believed that if we could achieve this goal, then the
Placeless infrastructure would allow existing
document management tools to be brought to bear on
these new document types.

The second path of our research was to use the
facilities provided by Placeless to augment and
enhance the semantics and behaviors of these new
documents in powerful ways. While pre-existing
applications can use these documents without
understanding their special qualities, we felt that
there was great utility to be had by providing a means
through which tools specifically written for the
Placeless environment could interact in a general
way with these new document types in novel ways.
In particular, the manifestation of this idea we have
focused on has been to allow documents to provide
portions of their own user interface and application
behavior. Through this mechanism, applications
which are open to runtime extensibility can
essentially be configured by the documents they are
working with to have new behaviors and interfaces.

The following sections describe a number of case
study experiments we have done.

4.1 Physical Devices as Documents

The first—and perhaps most obvious—extension
of the document model was to represent physical
devices as documents. In some ways, the mapping of
devices to documents has been accomplished before;
note the prevalence of live cameras pointed at coffee

pots on the web, for instance.
There is a subtle but important difference between

this work and “web cams” however. While web cams
provide live content from a device, they are not true
first-class documents that support organizing,
sharing, annotating and customizing as our Placeless
documents do. In addition, web pages do not offer
multiplicity as the content is only available through a
limited set of interfaces. A URL pointing to a web
cam could be part of the implementation of a first-
class document, but without the rest of the Placeless
functionality it is just a pointer to a set of content.

Still, in the tradition of the web cam, one of the
first physical devices we modeled as a document was
a camera. This document’s bit provider generates a
stream of JPEG images, and appears in the filesystem
as a JPEG document. The document is not writable.

A more interesting example of a document
representing a physical device is our printer
document. A printer document is instantiated by
creating a new document with the PrinterBitProvider
attached to it. This bit provider looks for a property
called “Printer” that designates the name of the
printer it represents. Reading from this file generates
content representing the current state of the print
queue at the moment in time at which it is read. Any
content which is written to the document is printed.

Our final device document is the most
complicated. We have built an interface to a digital
cellular telephone. Our particular telephone (a Nokia
6190 GSM phone) affords two possible document
representations. The first is the telephone’s role as a
carrier of a personalized phone book. The second
represents the telephone’s role as a sender and
receiver of SMS (Short Message Service) messages.

In our system, both of these capacities are
represented as documents. Reading from a
phonebook document downloads the contents of the
phone into the system for viewing and editing.
Writing this document updates the stored information
on the telephone itself. Since the phonebook content
is a true Placeless Document, it can be indexed and
edited using existing tools on the desktop. With this
particular device, information can only be read or
written if the phone is physically docked with the
computer. Therefore, the Placeless system binds the
“readable” or “writable” attributes of the phonebook
document to the phone’s connection to the computer.

In its second capacity, the phone can send and
receive Short Message Service (SMS) messages. This
role is represented as a separate document which,
when read, downloads the list of stored messages
from the phone and presents them as the document’s
content. Any text written to this document will be
sent via an SMS gateway to the physical phone
represented by this document. In the case of this
SMS document, messages can be read only when the
phone is docked, but messages can be written
anytime. So one can message a remote user by

opening his or her phone document in Word or other
tool, creating some content, and them simply saving
the file.

While specialized tools can provide access to all of
these features of the phone, multiplicity allows us to
leverage existing tools in an extremely powerful way.
Both the phonebook and SMS documents can be
indexed by existing tools such as AltaVista Personal,
edited via existing tools such as MS Word, and
grouped and managed in collections just as any other
document on the desktop.

4.2 People as Documents

Clearly one of the entities that people most often
work with on-line is other people. Placeless has a
cryptographically secure notion of a principal, with a
one-to-one correspondence to physical users. We
have constructed an on-line representation of the
users of the system as “person documents.” These
documents are more than simple home pages for
users of the system. First, we use the document for a
principal as the locus of interaction with that person.
All references to a principal are established as
references to that principal’s document. Second, we
use the idea of knitting to build a representation of
the state and context of the person in the world at the
time the document is viewed.

The person document for an individual is created
as a collection of properties that contain personal
preferences and settings, and a bit provider which can
assemble this information, and other information
from the state of the world, into a cohesive form.
These documents can be annotated by their owners
(or, in some cases, others) with properties for
telephone numbers, email addresses, and so forth.
These properties are also used by the bit provider in
constructing its content when the document is read.
Figure 1 shows an example of a person document.
Contact information is retrieved from the properties
attached to the document and displayed as HTML.

More interestingly, however, is the “live” content
the bit provider constructs based on the context of the
user in the world. The person document for a given
user will contact the Placeless Documents system and
retrieve a list of all currently open documents the
user is working with. These documents are
represented as HTML links to the actual documents.
Here we see both an example of knitting—the
construction of dynamic, live content from multiple
sources—and multiplicity—since these documents
are available as web documents, we can access them
through a web browser or other tool which
understands HTML.

Writing to a person document transmits the written
information to the person represented by the
document. A property on the document, settable by
its owner, denotes the “preferred” contact method—
email, SMS message, etc. The bit provider for the

document will consult this property to see how to
transmit the information. It may also use the type and
size of the information in its process (it probably
makes no sense to send a JPEG file over SMS to the
user’s telephone, for instance). As we shall see in
Section 4.5, applications which are aware of
Placeless Documents can be written to interact with
person documents in a more intelligent way.

4.3 Computation as Documents

A third class of entity we have experimented with
is computational processes. To this end we have
created document types for two computational
processes: the Java Remote Method Invocation
(RMI) registry, and the Placeless kernel itself.

The Java RMI system uses a nameserver, called the
registry, on each host on which a remote object runs.
The RMI registry document provides a means for
determining the objects named in the registry by
reading it. Currently the registry document is not
writable, although one could imagine a process by
which writing to the registry caused new objects to
be registered, or changed the state of the registry.

More interesting is the Placeless kernel document.
This document represents the instantaneous state of a
user’s Placeless kernel. When read, the bit provider
creates a page that contains information about the
type of the kernel on which it is running (the version
number, database implementation being used, etc.),
and information about kernel status (whether certain
internal threads are active, and which documents are
currently in the kernel’s internal cache). See Figure
2. The kernel document is updated live as the kernel
changes states. While the kernel document is not
writable, it does use properties as a way to provide
mechanisms for controlling it from Placeless-aware
applications (see Section 4.5).

4.4 Tasks as Documents

The final type of entity we have brought into the
document domain is abstract tasks. In particular, we
have created a workflow process that is reflected in

documents and properties.
In a traditional workflow system, a tool will be

used to shepherd some document through a set of
required steps (usually approvals by managers) until
it reaches a final state. This workflow application
understands the semantics of the particular tasks it is
administering, perhaps via some rule set that encodes
the company’s policies. The workflow application
provides a centralized point of focus for the process;
the documents that are being approved are the things
which move through this process under the control of
the workflow tool.

We wanted to turn the traditional arrangement on
its head. Rather than using a single workflow tool
that operates on particular types of form documents,
we wanted to be able to use any type of document as
the object of a workflow. Further, rather than using a
specific application that manages a given workflow
interaction, we use a document that represents the
abstract process of a particular workflow situation.

Our primary example of this is a travel approval
document, used to obtain management permission to
take a trip. Rather than representing a travel approval
form or request, this document represents the
abstract process of travel approvals. Opening the
document causes its bit provider to scan the system,
retrieving a set of documents flagged via properties
as being used in the travel approval process. The bit
provider then generates an instantaneous summary of
the state of the world from the perspective of the
travel approval process—which requests are
outstanding, which have been fully approved, which
have been denied.

A document is marked as being “part of the travel
approval process” by having a specific property
attached to it. Thus, any document (not just a
particular form) can be the source of a travel request.
By attaching the travel approval property to it, it

Figure 1: A People Document

Figure 2: A Kernel Document in a Placeless-
aware Content Viewer Application

becomes a travel request and makes its way through
the system. Opening the process document retrieves
the complete state of all travel approvals involving
the current user; dropping a new document on the
process document causes that document to become a
travel request, and begins the approval process.

When a document that is involved in the process is
viewed by a user who needs to make a decision about
that approval, the document can actually
communicate its new affordances—acceptance or
denial of the travel request—through extensions to its
interface. While this process is described more fully
in the next section, this ability for documents to carry
their own behaviors, and be aware of the context of
their use, is one of the key benefits of our system.

The travel approval workflow is an example of
knitting: documents remain the focus of activity, but
their behavior is affected by the context of their use,
and by the states of other documents in the system.

The travel approval process also introduces an
interesting quandary. Specialized forms and
applications for managing a particular process exist
because they encode the semantics of a particular
task. Once we’ve removed both the forms and the
applications, we’ve entered a world of generality in
which we are no longer constrained by the semantics
of the tasks at hand. The next section presents some
thoughts at a solution to this problem.

4.5 Documents that Carry their Interfaces

In the current world, specialized forms of content
are operated on by specialized interfaces. To revisit
some of the examples in this paper, the phonebook of
my phone can be updated by specialized software
that comes with the device. The corporate travel
approval process uses a set of forms that represent
the steps and signatures required for the process.

These specialized applications exist because the
data they operate on are not general-purpose, free-
form documents: they have restrictions on them by
virtue of the semantics of the applications in which
they are used. The applications for these data present
specialized interfaces which reflect these restrictions.
By moving to the lowest common denominator of the
document we gain a certain power (reuse of existing
tools, leverage of existing knowledge), but we also
lose the application-specific support which makes
specific tools valuable. Thus, there is a tension
between the desire for generality and the need for
application-specific knowledge to be involved in the
editing of these documents.

We have investigated a solution to this problem in
which we use the property system provided by
Placeless to allow documents to carry active behavior
and even portions of their own user interfaces. In
essence, “atoms” of application code are broken out
and, rather than existing solely in a centralized
application, travel with the documents they are

attached to. Obviously, existing tools and systems
will have no way to know about Placeless’ properties
on documents; this facility is useful for applications
specifically written for the Placeless setting.

We have established a number of conventions by
which Placeless-aware applications can have portions
of their behavior and interfaces dynamically loaded
from the documents they are operating on. For this
investigation, we have defined three classes of new
document behaviors: actions, views and components.

Actions are simple argumentless commands that
documents can be given. The actions are free to do
whatever computation and produce whatever side
effects they desire, but provide no return result.
Actions provide a way for documents to export
simple operations. As examples, the Placeless kernel
document has an action to flush its internal caches,
the people document has an action to bring up a
window for composing email to the person, and the
camera document has actions to adjust the color, size
and timestamps on the image from the camera.

Views are like actions in that they are simple
argumentless commands, but differ in that they return
another document as the result of their execution.
Views provide an extensible way for documents to
point to or themselves produce other documents. As
an example, people documents have views that both
return the resume and homepage of the person.

The last class of behavior extension is the
component which, when evaluated, returns a UI
component to help display some aspect of the
document’s state. Component extensions provide the
ability to extend the UI beyond the chosen rendition
of the document’s content type. The kernel
document, for example, has a component extension
which returns a progress bar widget which shows
how full the system’s internal caches are.

Placeless provides a way to programmatically
discover and access the extensions that a document is
offering. To demonstrate the use of this, we have
built a general purpose document viewer/editor
which introspects the displayed document and makes
the extensions available in a sensible way: Actions
are put both in an menu named “Action” and on a
tool bar. Selecting an action causes it to be executed.
View extensions are put in a menu called “View”,
and selecting it causes its execution and the resulting
document to be viewed. Component extensions are
all executed and the resulting widgets are placed in a
status bar at the bottom of the viewer. (See Figure 2.)
In this way, we have populated a new point in the
spectrum between general-purpose and domain-
specific applications. Our document viewer is general
purpose in that it is free of application specific
semantics and can view many different content types,
yet it offers some application specific functionality
via action, view and component extensions.

5. CONCLUSIONS

This work has investigated a model in which the
notion of an electronic document is extended to new
types of physical and virtual entities. Our system,
built atop the Placeless infrastructure, provides a way
to represent novel entities as documents. Further, the
system can present these documents in such a way
that they can be used by existing applications,
including tools that read and write to the filesystem,
and that read and write to the web.

Unlike related work on loadable filesystems, cgi
scripts, and the like, Placeless takes a holistic
approach to document management: our system is
extensible in how it exposes underlying content, and
extensible in how it makes this content available to
applications. The resulting multiplicity—the ability
to make most anything look like a document to any
most application—is a key source of power in this
system.

Likewise, the ability to dynamically create content
which exists nowhere in the physical world and is
based on the state of world and the context of the use
of the document is of key importance. This ability to
take multiple information sources and knit them
together based on context is essential in turning
isolated sets of documents into a coherent whole.

6. STATUS AND FUTURE WORK

While the implementation of the Placeless system
is ongoing, the core functionality has been developed
to the point that we were able to build all of the
document types described here. The core Placeless
system is approximately 100,000 lines of Java code.
The properties needed to support particular document
types, however, are only about 300 lines of code
each. We have been encouraged by our experiments
in mapping physical and virtual objects into the
document space. Our work has validated the
usefulness of the facilities provided by Placeless as
an infrastructure on which to base this metaphor.

As discussed, one of the problems with

representing arbitrary entities as documents—and
making them usable via general purpose tools—is
that these entities may lose some of the semantics
which are the basis of their utility. To this end, we
have investigated a set of conventions for allowing
documents to carry with them fragments of
application behavior that are made manifest when the
document is used by a Placeless-aware application.
This solution represents a middle ground between
using existing general-purpose document tools (and
hence losing all semantics associated with the
document), and using specialized applications (and
losing the ability to use existing tools on the
application content). This approach deserves more
work to determine if it is a truly viable solution.

REFERENCES
Adler, A., et al. “A Diary Study of Work-Related Reading:

Design Implications for Digital Reading Devices.”
Proceedings, CHI Conference, 1998.

Bellotti, V,. Rogers, Y., “From Web Press to Web
Pressure: Multimedia Representations and Multimedia
Publishing.” Proceedings, CHI Conference, 1997.

Curry, D., UNIX Systems Programming. O’Reilly
Associates, 1996.

Dourish, P., et al. “Extending Document Management
Systems with Active Properties.” Submitted, Transac-
tions on Information Systems.

Gundavaram, S. CGI Programming on the World Wide
Web. O’Reilly Associates, 1996.

Kessler, et al., “Automatic Detection of Text Genre.”
Proceedings ACL/EACL, 1997.

Lamping, J., et al., “A Focus+Context Technique Based on
Hyperbolic Geometry for Visualizing Large
Hierarchies.” Proceedings, CHI Conference, 1995.

Rashid, R., et al., “Mach: A Foundation for Open Sys-
tems.” Proceedings, Second Workshop on Workstation
Operating Systems (WWOS2), 1989.

Shardanand, U. Maes, P. “Social Information Filtering:
Algorithms for Automating Word of Mouth.” Proceed-
ings, CHI Conference, 1995.

	1. INTRODUCTION
	1.1 Goals
	1.2 Striking a Balance

	2. RELATED WORK
	3. ARCHITECTURE
	3.1 Overview of Placeless Documents
	3.1.1 Active Properties
	3.1.2 Distribution and Compatibility

	4. DOCUMENTS AS A METAPHOR FOR THE WORLD
	4.1 Physical Devices as Documents
	4.2 People as Documents
	4.3 Computation as Documents
	4.4 Tasks as Documents
	4.5 Documents that Carry their Interfaces

	5. CONCLUSIONS
	6. STATUS AND FUTURE WORK
	REFERENCES

