
Providing Access to Graphical User Interfaces - Not
Graphical Screens

W. Keith Edwards, Elizabeth D. Mynatt, Kathryn Stockton
Graphics, Visualization, and Usability Center

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
keith@cc.gatech.edu, beth@cc.gatech.edu, kathryn@cc.gatech.edu

ACCESSING INTERFACES
The design of screen readers for graphical interfaces is
centered around one goal: allowing a blind user to work with
a graphical application in an efficient and intuitive manner.
There are a number of practical constraints which must be
addressed in the design. First, collaboration between blind
and sighted users must be supported. Blind users do not
work in isolation and therefore their interaction with the
computer must closely model the interaction which sighted
users experience. A second, and sometime competing, goal
is that the blind user’s interaction be intuitive and efficient.
Both social and pragmatic pressures require that blind users
not be viewed as second class citizens based on their
effectiveness with computers.

The careful balance between these two goals is often
violated by screen readers which provide a blind user with a
representation of the computer interface which is too
visually-based. Essentially these systems provide access to
the screen contents, not the application interface. The
distinction between these two terms will be discussed at
length later in this section. Suffice to say that the application
interface is a collection of objects which are related to each
other in different ways, and which allow a variety of
operations to be performed by the user. The screen contents
are merely a snapshot of the presentation of that interface
which has been optimized for a visual, two dimensional
display. Providing access to a graphical interface in terms of
its screen contents forces the blind user to first understand
how the interface has been visually displayed, and then
translate that understanding into a mental model of the actual
interface.

In this section, we will briefly describe graphical user
interfaces, focusing on their potential benefits for sighted
and nonsighted users. Next we will examine three historical
reasons why screen reader technology has not adapted
sufficiently to the challenge of providing access to graphical
user interfaces. We will complete our argument by exploring
the levels of abstraction which make up a graphical user
interface.

The Power of GUIs
For much of their history, computers have been capable of
presenting only textual and numeric data to users. Users
reciprocated by specifying commands and data to computers
in the form of text and numbers, which were usually typed
into a keyboard. This method of interaction with computers
was only adequate at best.

INTRODUCTION
The 1990 paper “The Graphical User Interface: Crisis,
Danger and Opportunity” [BBV90] summarized an
overwhelming concern expressed by the blind community: a
new type of visual interface threatened to erase the progress
made by the innovators of screen reader software. Such
software (as the name implies) could read the contents of a
computer screen, allowing blind computer users equal access
to the tools used by their sighted colleagues. Whereas
ASCII-based screens were easily accessible, new graphical
interfaces presented a host of technological challenges. The
contents of the screen were mere pixel values, the on or off
“dots” which form the basis of any bit-mapped display. The
goal for screen reader providers was to develop new methods
for bringing the meaning of these picture-based interfaces to
users who could not see them.

The crisis was imminent. Graphical user interfaces were
quickly adopted by the sighted community as a more
intuitive interface. Ironically, these interfaces were deemed
more accessible by the sighted population because they
seemed approachable for novice computer users. The danger
was tangible in the forms of lost jobs, barriers to education,
and the simple frustration of being left behind as the
computer industry charged ahead.

Much has changed since that article was published.
Commercial screen reader interfaces now exist for two of the
three main graphical environments. Some feel that the crisis
has been adverted, that the danger is now diminished. But
what about the opportunity? Have graphical user interfaces
improved the lives of blind computer users? The simple
answer is not very much.

This opportunity has not been realized because current
screen reader technology provides access to graphical
screens, not graphical interfaces. In this paper, we discuss
the historical reasons for this mismatch as well as analyze
the contents of graphical user interfaces. Next, we describe
one possible way for a blind user to interact with a graphical
user interface, independent of its presentation on the screen.
We conclude by describing the components of a software
architecture which can capture and model a graphical user
interface for presentation to a blind computer user.

This paper was presented at ASSETS ‘94
and is included in the Proceedings for
ASSETS '94, the First Annual
International ACM/SIGCAPH Conference on
Assistive Technologies , November 1994.



More recently, advances in computer power and display
screen technology have brought about a revolution in
methods of human-computer interaction for a large portion
of the user population. The advent of so-called Graphical
User Interfaces (or GUIs) has been usually well-received. In
this section we examine some of the defining characteristics
of GUIs, and explore some of the traits that make them
useful to the sighted population. This examination will
motivate our design of a powerful interface for users with
visual impairments.

As implemented today, most GUIs have several
characteristics in common:

• The screen is divided into (possibly overlapping) regions
called windows. These windows group related
information together.

• An on-screen cursor is used to select and manipulate
items on the display. This on-screen cursor is controlled
by a physical pointing device, usually a mouse.

• Small pictographs, called icons, represent objects in the
user’s environment which may be manipulated by the
user.

A snapshot of a typical graphical user interface is shown in
Figure 1.

GUIs are quite powerful for sighted users for a number of
reasons. Perhaps, most importantly, there is a direct
correlation between the objects and actions which the GUI
supports and the user’s mental model of what is actually
taking place in the computer system. Such a system is often
called a direct manipulation interface, since to effect changes
in the computer’s state, the user manipulates the on-screen
objects to achieve the desired result. Contrast this design to
textual interfaces in which there are often arbitrary mappings
between commands, command syntax, and actual results.
Direct manipulation interfaces are usually intuitive and easy
to learn because they provide abstractions which are easy for
users to understand. For example, in a direct manipulation
system, users may copy a file by dragging an icon which
“looks” like a file to it’s destination “folder.” Contrast this
approach to a textual interface in which one may accomplish
the same task via a command line such as “cp mydoc.tex
~keith/tex/docs.” Of course, the syntax for the command line
interface may vary widely from system to system.

In addition to direct manipulation, GUIs provide several
other important benefits:

• They allow the user to see and work with different pieces
of information at one time. Since windows group related
information, it is easy for users to lay out their
workspaces in a way that provides good access to all
needed information.

• An interface to multitasking is easily supported on most
GUI-based systems. Each window provides a separate
input/output point of control for each process which is
running in the system. Processes continue running and
users attend to the windows they choose.

• The graphical images used in GUIs lend themselves to
the easy implementation of interface metaphors. The
graphics support the metaphor by providing a natural
mapping between metaphor and on-screen representation
of the metaphor.

It is important to note that the power of graphical user
interfaces lies not in their visual presentation, but in their
ability to provide symbolic representations of objects which
the user can manipulate in interesting ways.

Historical Reasons for Screen-Based Access
There are three major trends which help explain screen-
based designs for accessing graphical interfaces. First, at one
point in time, the screen contents closely equaled the
application interface. The precursor to graphical interfaces
were ASCII-based command-line interfaces. These
interfaces presented output to the user one row at a time.
Input to the interface was transmitted solely through the
keyboard, again in a line-by-line manner. Screen reader
systems for command line interfaces simply presented the
contents of the screen in the same line by line manner,
displaying the output via speech or braille. Input to the
interface was the same for sighted and nonsighted users. In
this scheme, both sighted and nonsighted users worked with
the same interface - only the presentation of the interface
varied. These strategies were sufficient as long as visual
interfaces were constrained to 80 columns and 24 rows.
However, the advent of the graphical user interface has made
these strategies obsolete.

Second, reliance on translating the screen contents is caused,
in part, by distrust of screen reader interfaces and concern
about blind users not being able to use the same tools as
sighted users. The general sentiment is that “I want to know
what is on the screen because that is what my sighted

Figure 1: A Typical Graphical Interface



colleague is working with.” As concepts in graphical user
interfaces became industry buzzwords, it was not uncommon
to hear that blind users required screen readers that allowed
them to use the mouse, drag and drop icons, and shuffle
through overlapping windows. Although a popular notion in
human-computer interface design is that the user is always
right, it is interesting to compare these requirements with the
requirements of sighted users who want auditory access to
their computer. Current work in telephone-based interaction
with computers allows a user to work with their desktop
applications over the phone [Yan94]. These interfaces
perform many of the same functions that screen readers do -
they allow the user to work with an auditory presentation of
a graphical interface. Yet these system do not translate the
contents of a graphical screen. Instead they provide an
auditory interface to the same concepts conveyed in the
graphical interfaces.

Third, limitations in software technology have driven the use
of screen-based access systems. The typical scenario to
providing access to a graphical application is that while the
unmodified graphical application is running, an external
program (or screen reader) collects information about the
graphical interface by monitoring drawing requests sent to
the screen. Typically these drawing requests contain only
low-level information about the contents of the graphical
interface. This information is generally limited to the visual
presentation of the interface and does not represent the
objects which are responsible for creating the interface and
initiating the drawing requests.

Modeling Application Interfaces
At one level, an application interface can be thought of as a
collection of lines, dots, and text on a computer screen. This
level is the lexical interpretation of an interface: the
underlying primitive tokens from which more meaningful
constructs are assembled.

At a higher level, we can group these primitives into
constructs such as buttons, text entry fields, scrollbars, and
so forth. This level is thesyntactic level of the interface.
Lexical constructs (lines, text, dots) are combined into
symbols which carry with them some meaning. While a line
in itself may convey no information, a group of lines
combined to form a push button conveys the information, “I
am pushable. If you push me some action will occur.”

There is a still higher level though. At the highest level, we
can describe an interface in terms of the operations it allows
us to perform in an application. We might describe an
interface in terms of theaffordances [Gav89] of the on-
screen objects. For example, buttons simply provide a means
to execute some command in the application; menus provide
a list of possible commands, grouped together along some
organizing construct; radio buttons provide a means to select
from a group of settings which control some aspect of the
application’s behavior. It is the operators which the on-
screen objects allow us to perform, not the objects
themselves, which are important. This level is thesemantic
interpretation of the interface. At this level, we are dealing
with what the syntactic constructs actuallyrepresent in a
given context: these objectsimply that the application will
allow the user to take some action.

Seen from this standpoint, the most important characteristics
of an application’s interface are the set of actions the
interface allows us to take, rather than how those actions are
actually presented to the user on screen. Certainly we can
imagine a number of different ways to capture the notion of
“execute a command” rather than a simple push button
metaphor represented graphically on a screen. In linguistic
terms, the same semantic construct can be represented in a
number of different syntactic ways.

This concept is the central notion behind providing access to
graphical interfaces: rather than working with an application
interface at the level of dots and lines, or even at the higher
level of buttons and scrollbars, our goal is to work with the
abstract operations which the application allows us to
perform.

By divorcing ourselves from the low-level graphical
presentation of the interface, we no longer constrain
ourselves to presenting the individual graphical elements of
the interface. By separating ourselves from the notion of
graphical buttons and graphical scrollbars, we do away with
interface objects which are merely artifacts of the graphical
medium.

Does it make sense to translate application interfaces at the
semantic level? Lines and dots on a screen, and even buttons
and scrollbars on a screen, are simply one manifestation of
the application’s abstract interface. By translating the
interface at the semantic level, we are free to choose
presentations of application semantics which make the most
sense in a nonvisual presentation.

Certainly we could build a system which conveyed every
single low-level lexical detail: “There is a line on the screen
with endpoints <X1,Y1> and <X2,Y2>.” The utility of such
an approach is questionable, although some commercial
screen readers do construct interfaces in a similar manner.

Alternatively, we could apply some heuristics to search out
the syntactic constructs on the screen: “There is a push
button on the screen at location <X,Y>.” Certainly this
method is better approach than conveying lexical
information, although it is not ideal. Screen readers which
use this method are taking the syntactic constructs of a
graphical interface (themselves produced from the internal,
abstract semantics of the actions the application affords), and
mapping them directly into a nonvisual modality. Along
with useful information comes much baggage that may not
even make sense in a nonvisual presentation (occluded
windows, scrollbars, and so forth, which are artifacts of the
visual presentation). Certainly interacting with such an
interface is not as efficient as interacting directly with a
presentation explicitly designed for the nonvisual medium.

We believe that transforming the application interface at the
semantic level is the best approach for creating usable and
efficient nonvisual interfaces. We can take the operations
allowed by the application and present them directly in a
non-visual form.

The question at this point is: are sighted and blind users
working (and thinking) in terms of the same constructs? It is
clear that they are if we translate the interface at the syntactic
level. We argue that by constraining our semantic translation
so that we produce “similar” objects in our non-visual



presentation that the native application produces in its
default graphical presentation, we maintain the user’s model
of the application interface. By giving things the same names
(buttons, menus, windows), sighted and non-sighted users
will have the same lexicon of terminology for referring to
interface constructs.

NONVISUAL INTERACTION WITH GRAPHICAL
INTERFACES
This section presents a set of implications for designers of
nonvisual interfaces driven by our philosophy of translation
at the semantic level. This discussion is presented in the
context of the design of a particular nonvisual interface to
provide access to graphical applications.

Auditory and Tactile Output of Symbolic Information
The first step in transforming a semantic model of a
graphical interface into a nonvisual interface is to convey
information about the individual objects which make up the
interface. It is necessary to convey the type of the object (e.g.
menu, push button), its attributes (e.g. highlighted, greyed
out, size), and the operations it supports. Since the
presentation of the objects is independent of its behavior,
auditory and tactile output can be used as separate or
complementary avenues for conveying information to the
users. Our design focuses exclusively on the use of auditory
output as a common denominator for North American users.
Braille users will require additional, redundant braille output
for textual information in the interface.

The objects in an application interface can be conveyed
through the use of speech and nonspeech audio. Nonspeech
audio, in the form of auditory icons [Gav89] and filters
[LC91], convey the type of an object and its attributes. For
example, a text-entry field is represented by the sound of an
old-fashioned typewriter, while a text field which is not
editable (such as a error message bar) is represented by the
sound of a printer. Likewise a toggle button is represented by
the sound of a chain-pull light switch while a low pass
(muffling) filter applied to that auditory icon can convey that
the button is unavailable; that is, grayed out in the graphical
interface. The auditory icons can also be modified to convey
aspects of the interface which are presented spatially in the
graphical interface such as the size of a menu or list. For
example, all menus can be presented as a set of buttons
which are evenly distributed along a set pitch range (such as
5 octaves on a piano). As the user moves from one menu
button to another, the change in pitch will convey the
relative size and current location in the menu. Finally, the
labels on buttons, and any other textual information, can be
read by the speech synthesizer.

In most screen reading systems, the screen reader will not
have adequate access to the semantics of the application. To
offset this problem, the screen reader must incorporate
sematic information in the way that is models, and
eventually presents, the graphical interface. The important
concept is that symbolic information in the interface should
be conveyed through symbolic representations which are
intuitive for the user. By layering information in auditory
cues, blind users interact with interface objects in the same
way that sighted users interact with graphical objects.

Spatial versus Hierarchical Modeling of Object
Relationships
The next step is to model the relationships between the
objects which make up the application interface. Two
principal types of relationships need to be conveyed to the
users. First, parent-child relationships are common in
graphical interfaces. An object is a child of another object if
that object is contained by the parent object, such as menu
buttons which make up a menu, or a collection of objects
which form the contents of a dialog box. In graphical
interfaces these relationships are often conveyed by the
spatial presentation of the graphical objects. Second, cause-
effect relationships represent the dynamic portions of the
graphical interface. For example, pushing a button makes a
dialog box appear.

These relationships form the basis for navigating the
application interface. Both of these relationships can be
modeled with hierarchical structures. Parent-child
relationships form the basis for the hierarchy, and cause and
effect relationships are modeled by how they modify the
parent-child object structure. Navigation is simply the act of
moving from one object to another where the act of
navigating the interface reinforces the mental model of the
interface structure.

In short, information about the graphical interface is
modeled in a tree-structure which represents the graphical
objects in the interface (push buttons, menus, large text areas
etc.) and the hierarchical relationships between those
objects. The blind user’s interaction is based on this
hierarchical model. Therefore blind and sighted users share
the same mental model of the application interface
(interfaces are made up of objects which can be manipulated
to perform actions) without contaminating the model with
artifacts of the visual presentation such as occluded or
iconified windows and other space saving techniques used
by graphical interfaces. In general, the blind user is allowed
to interact with the graphical interface independent of its
spatial presentation.

At the simplest level, users navigate the interface by
changing their position in the interface tree structure via
keyboard input. Each movement (right, left, up or down
arrow keys) positions the user at the corresponding object in
the tree structure or informs the user, through an auditory
cue, that there are no objects in the requested location.
Additional keyboard commands allow the user to jump to
different points in the tree structure. Likewise keyboard
shortcuts native to the application as well as user-defined
macros can be used to speed movement through the
interface.

The hierarchical navigation model is extended to work in a
multi-application environment. Essentially the user’s
desktop is a collection of tree structures. Users can quickly
jump between applications while the system stores the focus
for each application context. The user’s current focus can
also be used to control the presentation of changes to the
application state. For example, a message window in an
application interface may (minimally) use the following
modes of operation:

• Always present new information via an auditory cue and
synthesized speech.



• Signal new information via an auditory cue.

• Do not signal the presentation of new information.

These modes of operation can be combined in various ways
depending on whether the application is the current focus.
For example, an object can use one mode (always present via
speech and/or nonspeech) when the application is the current
focus and use another mode (signal via an auditory cue)
when the application is not the current focus. Cues from
applications which are not the current focus are preceded by
a cue (speech or nonspeech) which identifies the sending
applications.

input Semantics and Syntax
We must also make a distinction, not only between the
syntax and semantics of application output, but also between
the syntax and semantics of application input. In a graphical
interface, the semantic notion of “selection” (for example,
activating a push button) may be accomplished by the
syntactic input of double clicking the mouse on the on-
screen push button. In the nonvisual medium we wish to
preserve the input semantics (such as the notion of selection)
while providing new input syntax which maps onto the
semantics.

Our interfaces provide currently two input modalities:
keyboard input and speech recognition. In the keyboard
domain, the selection semantic is mapped to a keypress
(currently the Enter key on the numeric keypad). Users who
wish to perform selection via voice commands simply utter a
keyword (“Select”) which invokes the select action. The
underlying mechanisms in the screen reader system take the
input actions in the new modality and produce the syntactic
input required to control the application.

AN ARCHITECTURE FOR X WINDOW ACCESS
We now present a system which implements the interface
described above. This system, called Mercator, is designed
to provide access to the X Window System [Sch87]. The
system is currently in its third major revision [ME92].

X is the de facto standard windowing system for Unix
workstations. It is an open system controlled by the X
Consortium, a vendor-neutral standards body. Figure 2
shows the layers of toolkits and libraries on which Xt-based
applications are built. X is based on a client-server
architecture, where X applications communicate with a
display server via a network protocol. This protocol is the
lowest layer of the X hierarchy. Xlib and the Xt Intrinsics
provide two programming interfaces to the X protocol. Xlib

X Protocol

Xlib

Xt Intrinsics

Motif Athena ...

Figure 2: X Windows Hierarchy

provides the concept of events and provides support for
drawing graphics and text. The Xt Intrinsics provide the
concept of widgets (programmable interface objects) and
provide a basic set of widgets. Most X applications are
developed using libraries of widgets layered on top of the
Intrinsics. Motif and Athena are two common widget sets.

The nonvisual interfaces produced by Mercator require high-
level semantic information about the graphical interfaces of
running applications. We now present a design space of
potential solutions for information capture from running
applications. Next, we discuss a set of modifications to the
Xlib and Xt libraries which we have made and which have
been accepted as a standard by the X Consortium. We
describe a network protocol used to communicate interface
information between Mercator and X applications. Finally
we describe how our system implements input and output
and maps from the graphical world into the nonvisual one.

A Spectrum of Solutions for Information Capture
How do we gather semantic information from running
applications? How do we attain our goal of translating
application interfaces at the semantic, rather than syntactic
or lexical, level?

When we began our work we found that there is a spectrum
of possible design choices for information capture. There are
trade-offs between application transparency and the
semantic level of the information available to us in this
design space.

External Approaches. At one extreme of the spectrum, it is
possible to construct a system which is completely external
to both the application and the window system. This point in
the design space is essentially the approach taken by the
initial version of Mercator: an external agent interposed
itself between the client applications and the X Window
System server. This approach has the advantage that it is
completely transparent to both the application and to the
window system. In the case of Mercator, the external agent
appeared to the client to be an X server; to the “real” X
server, Mercator appeared to be just another client
application. There was no way for either to determine that
they were being run in anything other than an “ordinary”
environment.

This approach, while providing complete transparency, has a
serious drawback however. Since we are interposing
ourselves between the application and the window system,
we can only access the information that would normally pass
between these two entities. In the case of our target platform,
the X Window System, this information is contained in the X
Protocol which is exchanged between applications and the
window server. While the X Protocol can describe any on-
screen object (such as a button or a text area), it uses
extremely low-level primitives to do so. Thus, while our
system might detect that a sequence of lines was drawn to
the screen, it was difficult to determine that these lines
represented a button or some other on-screen object.

While the level of information captured by a system taking
this approach depends on the particular platform, in general
this method will provide only lexical information.

Our initial system did make use of another protocol called
Editres [Pet91] that allowed us to obtain some higher-level



information about the actual structure of application
interfaces. Thus, we could gain some information about
interface syntax with which to interpret the lexical
information available to us via the X Protocol. From our
experiences, however, we determined that the level of
information present in the X Protocol and Editres was
insufficient to build a reliable and robust screen reader
system.

Internal Approaches. At the other extreme on the information
capture spectrum, we can modify the internals of individual
applications to produce non-visual interfaces. In this
approach, the highest possible level of semantic information
is available since in essence the application writer is building
two complete interfaces (visual and non-visual) into his or
her application. Of course the downside of this approach is
that it is completely non-transparent: each application must
be rewritten to produce a non-visual interface.

Obviously this approach is interesting as a reference point
only. It is not practical for a “real world” solution.

Hybrid Approaches. There is a third possible solution to the
information capture problem which lies near the midpoint of
the two alternatives discussed above however. In this
solution, the underlying interface libraries and toolkits with
which applications are written are modified to communicate
information to an external agent which can implement the
non-visual interface. This approach can potentially provide
much more semantic information than the purely external
approach: application programmers describe the semantics
of the application interface in terms of the constructs
provided by their interface toolkit. The interface toolkit then
produces the actual on-screen syntax of these constructs.

The benefit of this strategy is that we do gain access to fairly
high-level information. This approach cannot provide the
level of semantic knowledge present in the purely internal
strategy however, since the semantic level of information
captured depends on the semantics provided by the toolkit
library (and toolkits vary greatly in the semantic level of the
constructs they provide). Still, for most platforms, toolkit
modifications will provide access to enough useful
information to accomplish a semantic translation of the
interface.

The drawback of this approach is that, while it is transparent
to the application programmer (that programmer just uses
the interface toolkit as usual, unaware of the fact that the
toolkit is providing information about the interface to some
external agent), there must be a way to ensure that
applications actually use the new library. Requiring all
applications to be relinked against the new library is not
feasible. Many systems support dynamic libraries, but this is
not a practical solution for all platforms.

Rationale for Our Information Capture Strategy
During our use of the first version of Mercator it became
clear that the protocol-level information we were
intercepting was not sufficient to build a robust high-level
model of application interfaces. Up until this point we had
not seriously considered the hybrid approach of modifying
the underlying X toolkits because of our stringent
requirement for application transparency.

From our experiences with the initial prototype, we began to
study a set of modifications to the Xt Intrinsics toolkit and
the low-level Xlib library. These modifications could be
used to pass interface information off to a variety of external
agents, including not just agents to produce non-visual
interfaces, but also testers, profilers, and dynamic
application configuration tools.

Originally our intention was to build a modified Xt library
which could be relinked into applications to provide access
(either on a per-application basis, or on a system-wide basis
for those platforms which support run-time linking).
Through an exchange with the X Consortium, however, it
became clear that the modifications we were proposing
could be widely used by a number of applications. As a
result, a somewhat modified version of our “hooks” into Xt
and Xlib have become a part of the standard X11R6 release
of the X Window System. A protocol, called RAP (Remote
Access Protocol) uses these hooks to communicate changes
in application state to the external agent.

As a result of the adoption of our hooks by the X
Consortium, our concerns with the transparency of this
approach have been resolved. Essentially our hybrid
approach has become an external approach: it is now
possible to write non-visual interface agents which exist
entirely externally to both the application and the window
server, and only use the mechanisms provided by the
platform.

IMPLEMENTING INTERFACES
The preceding section of this paper described our strategies
for information capture from running X applications.
Information capture alone is only half of the solution,
however. A framework for coordinating input and output,
and for presenting a consistent, usable, and compelling non-
visual interface for applications is also required.

This section describes how our system creates effective non-
visual interfaces based on the interface information captured
using the techniques described above.

Rules for Translating Interfaces
We have designed our system to be as flexible as possible, so
that we can easily experiment with new non-visual interface
paradigms. To this end, Mercator contains an embedded
interpreter which dynamically constructs the non-visual
interface as the graphical application runs. The auditory
presentation of an application’s graphical interface is
generated on-the-fly by applying a set of transformation
rules to the stored model of the application interface as the
user interacts with the application.

These rules are expressed in an interpreted language and are
solely responsible for creating the non-visual user interface.
No interface code is located in the core of Mercator itself.
This separation between the data capture and I/O
mechanisms of the system from the interface rules makes it
possible for us to easily tailor the system interface in
response to user testing. The presence of rules in an easily-
modifiable, human-readable form also makes customization
of the system easy for users and administrators.

Our interpreted rules language is based on TCL (the Tool
Command Language [Ous90]), with extensions specific to



Mercator. TCL is a light-weight language complete with
data types such as lists and arrays, subroutines, and a variety
of control flow primitives; Mercator rules have available to
them all of the power of a general-purpose programming
language.

Simulating Input
Mercator provides new input modalities for users, just as it
provides new output modalities. The mouse, the most
commonly used input device for graphical applications, is
inherently bound to the graphical display since it is a
relative, rather than absolute positioning device (positioning
requires spatial feedback, usually in the form on an on-
screen cursor that tracks the mouse). Other devices may be
more appropriate for users without the visual feedback
channel. Our current interfaces favor keyboard and voice
input over the mouse. We are also exploring other
mechanisms for tactile input.

But while we provide new input devices to control
applications, already existing applications expect to be
controlled via mouse input. That is, applications are written
to solicit events from the mouse device, and act accordingly
whenever mouse input is received. To be able to drive
existing applications we must map our new input modalities
into the forms of input applications expect to receive.

For Xt-based applications we generate the low-level mouse
input to control applications based on the user’s actions in
the new modalities (speech, keyboard, and so forth). We
currently use the XTEST X server extension to generate
events to the application. This approach is robust and should
work for all X applications.

System Output
All output to the user is generated through the interpreted
interface rules. The “hard-coded” core of Mercator does not
implement any particular interface. Interface rules generate
output by calling into the various output modules located in
the core of the system. Currently we support both speech and
non-speech auditory output, and we are beginning to
experiment with tactile output.

The Mercator speech module provides a “front end” to a
speech server which can be run on any machine on the
network. The audio module provides a similar front end to a
non-speech audio server developed by our group. This server
is capable of mixing, filtering, and spatializing sound, as
well as a number of other effects [Bur92].

STATUS
The hooks into the Xt and Xlib libraries have been
implemented and are present in the X11R6 release from the
X Consortium. The RAP protocol is currently not shipped
with X11R6 pending a draft review process; we hope that in
the near future RAP will ship with the standard distribution
of the X Window System.

The various components of Mercator are written in C++; the
current core system is approximately 16,000 lines of code,
not including I/O servers and device specific modules. Our
implementation runs on Sun SPARCstations running either
SunOS 4.1.3 or SunOS 5.3 (Solaris 2.3). Network-aware
servers for both speech and non-speech audio have been
implemented using Transport Independent Remote

Procedure Calls (TI-RPC), with C++ wrappers around their
interfaces.

The speech server supports the DECtalk hardware and the
Centrigram TruVoice software-based text-to-speech system
and provides multiple user-defined voices. The non-speech
audio server controls access to the built-in workstation audio
hardware and provides prioritized access, on-the-fly mixing,
spatialization of multiple sound sources, room acoustics, and
several filters and effects. The non-speech audio server will
run on any SPARCstation, although a SPARCstation 10 or
better is required for spatialization effects.

Speech input is based on the IN3 Voice Control System,
from Command Corp, which is a software-only speech
recognition system for Sun SPARCstations. The recognition
server runs in conjunction with a tokenizer which generates
input to the Mercator rules system based on recognized
utterances.

FUTURE DIRECTIONS
There are several new directions we wish to pursue. These
directions deal not only with the Mercator interface and
implementation, but also with standards and
commercialization issues.

From the interface standpoint, we will be performing more
user studies to evaluate the non-visual interfaces produced
by Mercator. Further testing is required to fully ensure that
the interfaces produced by the system are usable, effective,
and easy to learn.

Our implementation directions lie in the area of building a
more efficient architecture for producing Mercator
interfaces. Our current implementation is singly-threaded;
we plan to investigate a multi-threaded architecture. We are
also experimenting with a more refined I/O system in which
input and output modalities can be more easily substituted
for one another.

We are working with the X Consortium and the Disability
Access Committee on X to ensure that the RAP protocol is
adopted as a standard within the X community. It is our
desire that any number of commercial screen reader products
could be built on top of RAP.

Finally, we are exploring the possibilities of undertaking a
commercialization effort of our own to bring our research
prototype to market.

ACKNOWLEDGEMENTS
This work has been sponsored by Sun Microsystems
Laboratories and the NASA Marshall Space Flight Center.
We are indebted to them for their support.

REFERENCES

[BBV90] L.H. Boyd, W.L. Boyd, and G.C. Vanderheiden.
The graphical user interface: Crisis, danger and
opportunity.Journal of Visual Impairment and
Blindness, pages 496–502, December 1990.

[Gav89] William W. Gaver. The sonicfinder: An interface
that uses auditory icons.Human Computer Inter-
action, 4:67–94, 1989.



[LC91] Lester F. Ludwig and Michael Cohen. Multidi-
mensional audio window management.Interna-
tional Journal of Man-Machine Studies, Volume
34, Number 3, pages 319-336, March 1991.

[ME92] Elizabeth Mynatt and W. Keith Edwards. Map-
ping GUIs to Auditory Interfaces. In UIST ‘92:
The Fifth Annual Symposium on User Interface
Software and Technology Conference Proceed-
ings, November 1992.

[Ous90] J.K. Ousterhout. “TCL: An Embeddable Com-
mand Language,” in the Proceedings of the 1990
Winter USENIX Conference, pp. 133-146.

[Pet91] Chris D. Peterson. Editres-a graphical resource
editor for x toolkit applications. InConference
Proceedings, Fifth Annual X Technical Confer-
ence, Boston, Massachusetts, January, 1991.

[Sch87] Robert W. Scheifler. X window system protocol
specification, version 11. Massachusetts Institute
of Technology, Cambridge, Massachusetts, and
Digital Equipment Corporation, Maynard, Mas-
sachusetts, 1987.

[Yan94] Nicole Yankelovich. “SpeechActs & The Design
of Speech Interfaces,” in theAdjunct Proceed-
ings of the 1994 ACM Conference on Human
Factors and Computing Systems, Boston, MA,
1994.


