
An Architecture for Transforming Graphical Interfaces

W. Keith Edwards and Elizabeth D. Mynatt
Graphics, Visualization, and Usability Center

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
keith@cc.gatech.edu, beth@cc.gatech.edu

issues of translating an interactive, spatially presented,
visually-dense interface into an efficient, intuitive and non-
intrusive nonvisual interface are numerous. Likewise, the
software architecture issues of monitoring, modeling and
translating unmodified graphical applications are equally
complex.

The typical scenario to providing access to a graphical
interface is as follows: While an unmodified graphical
application is running, an outside agent (or screen reader)
collects information about the application interface by
watching objects drawn to the screen and by monitoring the
application behavior. This screen reader then translates the
graphical interface into a nonvisual interface, not only
translating the graphical presentation into an nonvisual
presentation, but providing different user input mechanisms
as well.

During UIST 1992, we presented a set of strategies for
mapping graphical interfaces into auditory interfaces
primarily with the aim of providing access for blind users
[ME92]. These strategies, implemented in a system called
Mercator, demonstrated a scheme for monitoring X
Windows [Sch87] applications transparently to both the
applications and the X Windows environment. Guidelines
for creating a complex auditory version of the graphical
interface using auditory icons and hierarchical navigation
were also introduced.

Much has happened since November 1992. Both formal and
informal evaluations of the techniques used to create
Mercator interfaces have offered new insights into the design
of complex auditory interfaces. Since these interface
techniques have generally been welcomed by the blind and
sighted communities, they now form a set of requirements
for screen reader systems.

More significantly, the entire architecture of Mercator has
been replaced in response to experiences acquired in
building the system as well as by the auditory interface
requirements. The new architecture is based onaccess hooks
located in the Xt Intrinsics and Xlib libraries. These hooks
allow state changes in application interfaces to be
communicated to outside agents such as screen readers,
customization programs and testing programs. The Mercator
project played a significant role in championing and
designing these hooks which were accepted by the X

ABSTRACT
While graphical user interfaces have gained much popularity
in recent years, there are situations when the need to use
existing applications in a nonvisual modality is clear.
Examples of such situations include the use of applications
on hand-held devices with limited screen space (or even no
screen space, as in the case of telephones), or users with
visual impairments.

We have developed an architecture capable of transforming
the graphical interfaces of existing applications into
powerful and intuitive nonvisual interfaces. Our system,
called Mercator, provides new input and output techniques
for working in the nonvisual domain. Navigation is
accomplished by traversing a hierarchical tree representation
of the interface structure. Output is primarily auditory,
although other output modalities (such as tactile) can be used
as well. The mouse, an inherently visually-oriented device,
is replaced by keyboard and voice interaction.

Our system is currently in its third major revision. We have
gained insight into both the nonvisual interfaces presented
by our system and the architecture necessary to construct
such interfaces. This architecture uses several novel
techniques to efficiently and flexibly map graphical
interfaces into new modalities.

KEYWORDS: Auditory interfaces, GUIs, X, visual
impairment, multimodal interfaces.

INTRODUCTION
The graphical user interface is, at this time, the most
common vehicle for presenting a human-computer interface.
There are times, however, when these interfaces are
inappropriate. One example is when the task requires that the
user’s visual attention be directed somewhere other than the
computer screen. Another example is when the computer
user is blind or visually-impaired [BBV90][Bux86].

The goal of providing nonvisual access to graphical
interfaces may sound like an oxymoron. The interface design

This paper was presented at the UIST ‘94
conference and is included in the
proceedings for UIST ‘94: The Seventh
Annual Symposium on User Interface
Software and Technology Conference
Proceedings , November 1994.

Consortium (a vendor-neutral body which controls the X
standard) and released with X11R6.

In addition to modifying Mercator to use these new hooks,
we have restructured Mercator to support a simplified event
model which allows nonvisual interfaces to be loaded and
customized in an extremely flexible manner. A litmus test of
our work is that this architecture is sufficient to model and
transform numerous X applications.

This paper is organized as follows. The following section
summarizes the design of Mercator interfaces. It also briefly
describes some of the modifications to the interfaces as last
reported in this forum. The next section introduces the
Mercator architecture and the design issues that have
influenced the new implementation. We step through the
construction of our system, highlighting the general
applicability of our work to other user interface monitoring
and manipulation tasks. We close by summarizing the status
of our current system, introducing some of our future
research goals and acknowledging the sponsors of our
research.

MERCATOR INTERFACES
The design of Mercator interfaces is centered around one
goal--allowing a blind user to work with a graphical
application in an efficient and intuitive manner. Previous
Mercator papers have discussed the preferred use of audio
output for North American users, as well as the object model
for the auditory interface [ME92]. In short, information
about the graphical interface is modeled in a tree-structure
which represents the graphical objects in the interface (push
buttons, menus, large text areas and so on) and the
hierarchical relationships between those objects. The blind
user’s interaction is based on this hierarchical model.
Therefore blind and sighted users share the same mental
model of the application interface--interfaces are made up of
objects which can be manipulated to perform actions. This
model is not contaminated with artifacts of the visual
presentation such as occluded or iconified windows and
other space saving techniques used by graphical interfaces.
In general, the blind user is allowed to interact with the
graphical interface independent of its spatial presentation.

The contents of the application interface are conveyed
through the use of speech and nonspeech audio. The first
Mercator system established the use of auditory icons
[Gav89] andfiltears [LC91] to convey the type of an object
and its attributes. For example, a text-entry field is
represented by the sound of an old-fashioned typewriter,
while a text field which is not editable (such as an error
message bar) is represented by the sound of a printer.
Likewise a toggle button is represented by the sound of a
chain-pull light switch, while a low pass (muffling) filter
applied to that auditory icon can convey that the button is
unavailable (this attribute may be conveyed by “graying out”
in a graphical interface). Additional design work has led to
the use of auditory cues to conveyhidden information in the
auditory interface, such as mapping a pitch range to the
length of a menu [My94][MW94]. Finally, the label for that

button, and any other textual information, can be read by a
speech synthesizer.

At the simplest level, users navigate Mercator interfaces by
changing their position in the interface tree structure via
keyboard input. Each movement (right, left, up or down
arrow keys) positions the user at the corresponding object in
the tree or informs the user, through an auditory cue, that
there are no objects at the requested location. Additional
keyboard commands allow the user to jump directly to
different points in the tree structure. Likewise keyboard
shortcuts native to the application, as well as user-defined
macros, can be used to speed movement through the
interface.

The navigation model has been extended to work in a multi-
application environment. Essentially the user’s desktop is a
collection of tree structures. Users can quickly jump between
applications while the system stores the focus for each
application context. The user’s current focus can also be
used to control the presentation of changes to the application
state. For example, a message window in an application
interface may (minimally) use the following modes of
operation:

• Always present new information via an auditory cue and
synthesized speech.

• Signal new information via an auditory cue.

• Do not signal the presentation of new information.

These modes of operation can be combined in various ways
depending on whether the application is the current focus.
For example, an object can use one mode (always present via
speech and/or nonspeech) when the application is the current
focus and use another mode (signal via an auditory cue)
when the application is not the current focus. Cues from
applications which are not the current focus are preceded by
a cue (speech or nonspeech) which identifies the sending
application.

Mercator interfaces have undergone numerous informal
evaluations by blind computer users. Generally, Mercator is
demonstrated alongside commercial screen readers in the
exhibit area of conferences devoted to technology and
persons with disabilities. Feedback from blind users
confirms that the hierarchical navigation and nonspeech
auditory cues are intuitive and welcomed by the blind user
community. This feedback is significant since Mercator is
the only screen reader which uses these techniques, although
versions of these techniques are now beginning to appear in
other screen reader systems.

The capsule summary of the system requirements for the
creation of Mercator interfaces cluster around three common
themes.

• The construction of the interfaces must be based on the
semantic organization of the application interface, not
just its graphical presentation.

• The interfaces should be highly interactive and intuitive
in the auditory space.

• The system must be able to generate efficient and
compelling interfaces for a broad range of applications.

The remainder of this paper is devoted to describing the new
architecture for Mercator, and how it is able to meet these
requirements as well as providing a platform for other user
interface monitoring and modeling tasks.

ARCHITECTURE
Given the user interface requirements described above, our
goal was to build a software architecture capable of
constructing these interfaces. Any architecture which is
capable of producing such interfaces must address the
following issues:

• The architecture must gather information with sufficient
semantic content to support our object-based interaction
model and yet be broadly applicable to a wide variety of
applications.

• Our information capturing techniques must guarantee
complete knowledge about the application’s graphical
interface.

• The architecture must support both a fine degree of
control to configure the individual interfaces as well as
coarse-grained control to explore the design space of
nonvisual interfaces.

• Since we are providing new interaction techniques to
control existing applications, we must support a
separation between the semantic operations that the
application provides and the syntactic grammar of user
input.

In the following sections, we describe an architecture which
addresses the aforementioned issues. This discussion
explores the range of techniques for information capture that
can provide varying degrees of semantic information about
the graphical interface. Next, we detail the particular
information capture strategy used by Mercator and discuss
its applicability to other interface monitoring and modeling
tasks.

Given the demands of fully monitoring interactive graphical
applications, we describe the cooperation between the
functional components of our system as it dispatches
multiple forms of input from both the applications and the
user. Next, we provide an overview of our modeling

techniques for representing application interfaces and
generic text, as well as strategies for handling potential
inconsistencies in the data store.

We explain how our design allows us to provide highly
flexible and dynamic nonvisual interfaces as well as a
flexible and powerful event model which can represent user
input as well as application output. Finally, we describe the
input and output mechanisms in our system which support
interactivity in the nonvisual domain, and provide a
separation between syntax and semantics of application
control.

Information Capture
When we began our work on this project, it became clear
that there is, in fact, a spectrum of solutions for capturing
information from applications. Along this spectrum we see
essentially a trade-off between transparency and the
semantic level of the information available to an external
agent (see Figure 1).

At one extreme of the spectrum, we have the option of
directly modifying every application so that it provides
information about its state to the external agent. While this
approach provides the highest possible degree of semantic
information about what the application is doing, it is
completely non-transparent: each application must be
rewritten to be aware of the existence of the external agent.
Obviously this end of the spectrum serves as a reference
point only, and is not practical for a “real world” solution.

At the other extreme of the spectrum we can rely only on the
facilities inherent in whatever platform the application was
built on. In our design space, this platform meant the X
Window System, specifically applications built using the
Xlib and Xt libraries. This use of existing facilities is
essentially the approach taken by the first version of
Mercator. Our system interposed itself between the X server
and the application and intercepted the low-level X protocol
information on the client-server connection. This approach
had the benefit that it was completely transparent to both the
application and the X server (indeed, it was impossible for
either to detect that they were not communicating with a
“real” X client or server), but had a rather severe limitation:
the information available using this approach was extremely
low level. Essentially we had to construct a high-level
structural model of the application from the low-level pixel-
oriented information in the X protocol. Our first system also
used the Editres widget customization protocol which

Internal ExternalHybrid

Early Mercator SystemCurrent Mercator System

(Modify Applications) (Modify Toolkits) (Use Only Existing Facilities)

Per-application Access Systems

FIGURE 1. A Spectrum of Solutions for Information Capture

appeared in X11R5 [Pet91], but we found that Editres was
insufficient for all our needs. The use of these approaches
was the only practical solution available to us in our first
system, however, because of our requirement for application
transparency.

There is a third possible solution strategy which lies near the
middle point of these two extremes. In this strategy, the
underlying libraries and toolkits with which the application
is built are modified to communicate changes in application
state to the external agent. This approach is not completely
transparent--the libraries must be modified and applications
relinked to use the new libraries--but all applications built
with the modified libraries are accessible. The semantic level
of information available to the external agent depends on the
semantics provided by the toolkit library.

Modifications to Xt and Xlib
During our use of the first version of Mercator, it became
clear that the protocol-level information we were
intercepting was not sufficient to build a robust high-level
model of application interfaces. We began to study a set of
changes to the Xt Intrinsics toolkit which could provide the
information needed to support a variety of external agents,
including not only auditory interface agents, but also testers,
profilers, and dynamic application configuration tools.

Originally our intention was to build a modified Xt library
which could be relinked into applications to provide access.
Through an exchange with the X Consortium, however, it
became clear that the modifications we were proposing
could be widely used by a number of applications. As a
result, a somewhat modified version of our “hooks” into Xt
and Xlib are a part of the standard X11R6 release. A
protocol, called RAP (Remote Access Protocol) uses these
hooks to communicate changes in application state to an
external agent. RAP also provides communication from the
external agent to the application.

This section describes (in fairly X-specific terms) the design
of the toolkit modifications which are present in X11R6. We
feel that the modifications are fairly complete and can serve
as a guideline for developers of other toolkits who wish to be
able to communicate information about interface state
changes to external agents. Further, these hooks can be used
to implement all of the functionality of the Editres system
used in our previous implementation; the new hooks and
RAP subsume the configuration capabilities of Editres.
Table 1 presents the basic messages in RAP.

Message Description
GetResources Retrieve the resources associated with a

particular widget.

QueryTree Retrieve the widget hierarchy of the
application.

GetValues Retrieve the values of a list of resources
associated with a given widget.

TABLE 1. Remote Access Protocol

The hooks consist of a new widget, called the Hook Object,
which is private to Xt. The hook object maintains lists of
callback procedures which will be called whenever widgets
are created or destroyed, their attributes (resources) are
changed, or their configuration or geometry is updated.
Some bookkeeping data is also maintained in the Hook
Object. A new API has been added to Xt which allows
application programmers to retrieve the Hook Object
associated with a connection to the X server.

All of the Xt Intrinsics routines which can create or destroy
widgets, or modify widget state have been modified to call
the appropriate callback functions that have been installed in
the Hook Object. By default, no callbacks are installed in the
Hook Object. Instead, a set of callbacks is installed in the
Hook object when an application is initially contacted by an
external agent such as Mercator. These callback routines
implement the application-to-Mercator half of the RAP
protocol which informs Mercator about changes in
application state.

Protocol Setup. The Xaw Vendor Shell widget (essentially
the “outer window” interface object) has been modified to
support the initial “jump-start” phase of the connection setup
protocol. External agents (including testers and profilers--

SetValues Change the values of a list of resources
associated with a given widget.

AddCallback “Turn on” a particular callback in the
Hooks Object.

RemoveCallback “Turn off” a particular callback in the
Hooks Object.

ObjectToWindow Map an object ID to a window ID.

WindowToObject Map a window ID to an object ID.

LocateObject Return the visible object that is under the
specified X,Y location.

GetActions Returns a list of actions for a widget.

DoAction Invoke an action on a widget (may not be
available in all implementations).

CloseConnection Shut down the RAP connection.

Block Stall the client so that an external agent
can “catch up.”

ObjectCreated Inform an agent that a new widget has
been created.

ObjectDestroyed Inform an agent that a widget has been
destroyed.

ValueChanged Inform an agent that a resource has
changed.

GeometryChanged Inform an agent that a widget’s geometry
(size, position) has changed.

Configuration-
Changed

Inform an agent that a widget’s configu-
ration (map/unmap state) has changed.

Message Description

TABLE 1. Remote Access Protocol

not just Mercator) pass a message to an application via a
selection. This message contains the name of the protocol
the external agent wishes to speak. Code in the Vendor Shell
catches the message, and searches a table for the named
protocol. If found, an initializer routine will be called which
will install the callback routines appropriate for that protocol
in the Hooks Object. If the application needs to be able to
receive messages from the external agent (in addition to
simply passing information out via the hook callbacks), then
it can create a communications port with an associated
message handler for incoming messages from the external
agent. This port is used for Mercator-to-application
messages in the RAP protocol.

Replacing the Pseudoserver. We have also argued for a
change to the lower-level Xlib library which has been
adopted by the X Consortium for inclusion in X11R6. This
change is an enhancement to the client-side extension
mechanism in X which allows a function to optionally be
called just before any X protocol packets are sent from the
application to the server. A function can be installed in this
“slot” by the protocol initializer which will pass to an
external agent the actual X protocol information being
generated by an application. This modification to Xlib serves
as a “safety net” for catching any information which cannot
be determined at the level of Xt. This hook in Xlib allows us
to operate without the use of a pseudoserver system, unlike
our previous implementation. Events from the server to the

application are passed via a function installed in an already-
extant client-side extension.

The modifications described above provide a general
framework to allow a wide variety of external agents to
cooperate closely with applications; these modifications
consist of a number of small changes to Xt and Xlib which
are, for the most part, invisible to applications which do not
care about them. They allow protocols to be automatically
installed and thus our goal of transparency has been
achieved: any application built with the X11R6 libraries will
be able to communicate with an external agent.

It is our conjecture that this foundation will be usable by
other generic tools that will work across a wide array of
applications. Although it may be possible to instrument a
single application with, say, a profiling system, this
infrastructure makes it possible to construct a generic
profiler which will work across applications. Given the
significant requirements that screen readers have for
monitoring and interacting with graphical applications, it is
reasonable to conclude that this architecture will be
sufficient for less demanding tasks such as profiling,
configuring or monitoring a graphical application. Since the
system is built on standard X hooks which minimally impact
the performance of a running application, this platform
should be well-suited to other commercial and research
endeavors.

X ClientX Server Pseudo Server

Rules Engine Editres Mgr

Model MgrSound Mgr

Toolkit Agent

Rules Engine

Model MgrSound Mgr

Network communication
Inter-object communication

Mercator components

X Server

X Protocol

Xlib

Xt Intrinsics

Widget Set

X Application

FIGURE 2. Old and New Mercator Architectures

Old Architecture

New Architecture

(XTEST)

Control Flow
Mercator must constantly monitor for changes in the states
of the graphical applications as well as for user input. The
new techniques for information capture mean that we no
longer have to be slaved to the X protocol stream. In our
earlier pseudoserver-based implementation, care had to
constantly be taken to ensure that Mercator never blocked,
since blocking would have stalled the X protocol stream and
effectively deadlocked the system.

In our new system, using the Xlib hook, we have a more
flexible control flow. We can generate protocol requests to
the server at any time, and engage in potentially long
computation without having to worry about deadlock. In our
previous implementation a fairly complex callback system
was constructed so that computation segments could be
chained together to prevent potential deadlock situations.
We avoid potential deadlocks in the new system because,
unlike with the pseudoserver implementation, the client
applications can continue running even if Mercator is
blocked. The Xlib hook approach gives us the benefits of the
pseudoserver approach--access to low-level information--
without the costs associated with pseudoservers.

All components of Mercator which perform I/O are
subclassed from a class called FDInterest. Each instance of
this class represents a connection (over a file descriptor) to
some external component of the system. For example, a
separate FDInterest exists for each connection Mercator has
to an application, each connection to an audio server, and so
on. Each FDInterest is responsible for handling I/O to the
entity it is connected to. This architecture makes the division
of I/O responsibility much cleaner than in our older system.

Figure 2 shows the older pseudoserver-based Mercator
architecture alongside the newer architecture which replaces
the pseudoserver with the Xlib hook.

The overall system is driven by RAP messages to and from
the client applications. For example, whenever an
application changes state (pops up a dialog box, for
example), a RAP message is generated from the application
to Mercator. It is received in Mercator by the FDInterest
connected to that client. The FDInterest determines the type
of the message and dispatches it according to a hard-coded
set of rules which keep our model of the application interface
up-to-date. For example, if a new widget is created, the
FDInterest generates commands to add the new widget,
along with its attributes, to our model of the interface.

Interface Modeling
Application interfaces are modeled in a data structure which
maintains a tree for each client application. The nodes in this
tree represent the individual widgets in the application.
Widget nodes store the attributes (orresources) associated
with the widget (for example, foreground color, text in a
label, currently selected item from a list).

There are three storage classes in Mercator: the Model
Manager (which stores the state of the user’s desktop in its
entirety), Client (which stores the context associated with a

single application), and XtObject (which stores the attributes
of an individual Xt widget). Each of these storage classes is
stored in a hashed-access, in-core database for quick access.
Each storage class has methods defined on it to dispatch
events which arrive while the user’s context is in that object.
Thus, it is possible to define bindings for events on a global,
per-client, or per-object basis.

Other objects in Mercator can access this data store at any
time. A facility is provided to allow “conservative retrievals”
from the data store. A data value marked as conservative
indicates that an attempt to retrieve the value should result in
the generation of a RAP message to the application to
retrieve the most recent value as it is known to the
application. This provides a further safety feature in case
certain widgets do not use approved APIs to change their
state.

Text is stored in a special entity called a TextRep object.
TextReps are created automatically whenever text is drawn
to a window for the first time. TextReps are associated with
objects in the data store and can be accessed by other
components of Mercator to retrieve an up-to-date account of
the text present in a given window. The Xlib hook keeps this
information current; the text model maintains consistency
over scrolling, font changes, and refreshes.

Embedded Computation to Dynamically Construct
Interfaces
One of the more novel concepts in the Mercator
implementation is its use of embedded interpreters to
dynamically build the interface “on the fly” as the user is
interacting with the application. Unlike graphical interfaces,
where there is a constant, usually-static, presentation of the
interface on the screen, auditory interfaces are much more
dynamic. In Mercator, the auditory presentation for a given
object is generated at run-time by applying a set of
transformation rules to the application model. These rules
are solely responsible for producing the user interface (play
sounds, change the user’s current context, and so on). No
interface code is located in the core of Mercator itself.

In the earlier implementation, these rules were hard-coded
into the system in a stylized predicate/action notation
expressed in C++. In the current implementation, all of the
interface rules are expressed in an interpreted language
which is parsed and executed as users interact with the
application. The interpreted approach has the benefit that we
can quickly experiment with new auditory interfaces without
having to recompile the system. It also allows easy
customization of interfaces by users and administrators.

The interpreted language is based on TCL (the Tool
Command Language [Ous90]), with extensions specific to
Mercator. TCL is a light-weight language complete with
data types such as lists and arrays, subroutines, and a variety
of control flow primitives, so Mercator rules have available
to them all of the power of a general-purpose programming
language. Table 2 presents some of the Mercator-specific
extensions to TCL.

When Mercator is first started, a base set of rules is loaded
which provides some simple key-bindings, and the basic
navigation paradigm. Each time a new application is started,
Mercator detects the presence of the application, retrieves its
name, and will load an application-specific rule file if it
exists. This allows an administrator or user to configure an
interface for a particular application according to their
desires.

Event/Action Model
After start-up time, rules are fired in response to Mercator
events. Mercator events represent either user input or a
change in state of the application (as represented by a change
in the interface model). Thus, we use a traditional event-
processing structure, but extend the notion of the event to
represent not just user-generated events, but also
application-generated events. Events are bound to actions,
which are interpreted procedures which are fired
automatically whenever a particular event type occurs.
Action lists are maintained at all levels of the storage
hierarchy, so it is possible to change event-action bindings
globally, on a per-client basis, or a per-widget basis.

As stated before, actions are fired due to either user input, or
a change in the state of the application. In the second case,

Key Word Description
currentobject Get or set the current object.

currentclient Get or set the current client.

callaction Fires the named action procedure.

playsound Plays a sound, allowing control over vol-
ume, muffling, rate, etc.

addaction Make the named action procedure callable
from C++.

setfocus Moves the pointer and sets the focus to the
named object.

button Synthesize either a button press or release
from the mouse.

speak Send a string to the speech synthesizer. Con-
trol over voice and interruptibility is pro-
vided.

sreader Invoke screen reader function on the speci-
fied object (word, line, paragraph reading,
etc.)

widget Retrieve information from the data store
about widget hierarchy and state.

bindkey Shortcut for bindevent which associates the
named action procedure with a keypress.

bindevent Associates an action with an event type.

key Synthesize a key press or key release event
to the object which currently has the focus.

resource Get or set the value of a resource on the
specified object.

TABLE 2. Mercator Language Extensions

we fire actions at the point the data model is changed which
ensures that application-generated actions are uniformly
fired whenever Mercator is aware of the change. The call-out
to actions occurs automatically whenever the data store is
updated. This technique is reminiscent of access-oriented
programming systems, in which changing a system variable
causes some code to be run [Ste86].

Here is an example of an extremely simple action. This
action is defined as a TCL procedure with four arguments:
the name of the application, its class, the initial current
location within that application, and an ID token which can
be used to programmatically refer to the application. When
the action fires, speech output is generated to inform the user
of the presence of the new application, and the user’s context
is changed to the new application.

proc NewApplication {name class loc id} {
speak “Application $name has started.”
currentclient $id
speak “Current location is now $loc.”

}

This action procedure is first made visible to the C++ side of
Mercator through a call toaddaction . Addaction is a
language extension we have added which “publishes” the
name of a TCL procedure so that it may be called from
compiled code. After this, bindevent is called to bind the
action procedureNewApplication with the event type
(also called NewApplication) which is generated
whenever a new application is started:

addaction NewApplication
bindevent NewApplication NewApplication

Bindings can be changed at any time, and rules can
themselves change the event to action association.

Output
All output to the user is generated through the interface
rules. The “hard-coded” portions of Mercator do not
implement any interface. This reliance on interpreted code to
implement the interface makes it easy to experiment with
new interface paradigms.

Interface rules generate output by invoking methods on the
various output objects in the system. Currently we support
both speech and non-speech auditory output, and we are
beginning to experiment with tactile output. The Speech
object provides a “front-end” to a speech server which can
be run on any machine on the network. This server is capable
of converting text to speech using a number of user-
definable voices.

The Audio object provides a similar front-end to a non-
speech audio server. The non-speech audio server is capable
of mixing, filtering, and spatializing sound, in addition to a
number of other effects.

Both the Speech and Audio objects are interruptible, which
is a requirement in a highly interactive environment.

Input
User input handling can be conceptually divided into three
stages (see Figure 3). At the stage closest to the user, actual
user input events are received by Mercator. These events
may be X protocol events (in the case of key or button
presses) or events from an external device or process (such
as a braille keypad or a speech recognition engine).

At the middle stage, the low-level input events are passed up
into the rules engine where they may cause action
procedures to fire. The rules fired by the input may cause a
variety of actions. Some of the rules may cause output to an
external device or software process (for example, braille
output or synthesized speech output). Some rules, however,
will generate controlling input to the application. This input
is passed through to the third stage.

At the third stage, the stage closest to the application,
Mercator synthesizes X protocol events to the application to
control it. These events must be in an expected format for the
given application. For example, to operate a menu widget,
Mercator must generate a mouse button down event, mouse
motion to the selected item, and a mouse button release
when the cursor is over the desired item. Note that the actual
event sequence which causes some action to take place in the
application interface may be determined by user, application,
and widget set defaults and preferences. Thus Mercator must
be able to retrieve the event sequence each interface
component expects for a given action. This information is
stored as a resource (called the translation table) in each
widget and can be retrieved via the RAP protocol. The figure
shows an example of Mercator generating the events
required to select a menu item (“Print”) when a spoken
selection command is detected.

We have opted to synthesize input to the application by
directly generating the low-level events which would be

required if a user with a mouse and keyboard were operating
the interface. One possible alternative, providing messages
in the RAP protocol to operate interface components, was
rejected as not practical because it is possible that some
applications rely on actually receiving “real” events.

Consider the example of selecting a push button. The user’s
context is at a push button widget in the application
interface. The actual input the user provides to select the
push button may be a spoken command or a keypress.
Mercator detects the user input and fires any action
procedures bound to this input. If the input provided by the
user is bound to an action which attempts to select the
current object, this action will query the current widget to
retrieve its translation table. The translation table will be
parsed to determine the events which must be generated to
cause an actual “select” action to take place in the
application interface. The action will then generate these
events to the widget.

We are currently using the XTEST X server extension to
generate these events to the widget (see Figure 2).

STATUS
The client-side library hooks have been implemented and are
present in the X11R6 release from the X Consortium. The
RAP protocol is currently not shipped with X11R6 pending
a draft review process; we hope that in the near future RAP
will ship with the standard distribution of X.

The various components of Mercator are written in C++; the
current system is approximately 16,000 lines of code, not
counting I/O servers and device-specific modules. Our
implementation runs on Sun SPARCstations running either
SunOS 4.1.3 or SunOS 5.3 (Solaris 2.3). Network-aware
servers for both speech and non-speech audio have been

Stage 1 Stage 2 Stage 3

Application

Rules Engine

MouseButton1Down<X,Y>
MouseMotion<X,Y>
MouseButton1Up<X,Y>

“Select Print!”

Select event causes action to fire

SelectAction {
Look up current object
Retrieve translation table

Determine which events map

Generate those events
}

resource

onto selection for the
object

FIGURE 3. Stages of Input Processing

implemented as Remote Procedure Call services, with C++
wrappers around the RPC interfaces.

The speech server supports the DECtalk hardware and the
Centigram software-based text-to-speech system and
provides multiple user-defined voices. The non-speech audio
server controls access to the built-in audio hardware and
provides prioritized access, on-the-fly mixing, spatialization
of multiple sound sources, room acoustics, and several
filters. In our previous release, the non-speech audio server
ran only on DSP-equipped workstations (either a NeXT
machine or a Sun SPARCstation equipped with an Ariel
DSP board). The current system will run on any Sun
SPARCstation, although a SPARCstation 10 or better is
required for spatialization [Bur92].

We are undertaking a commercialization effort to bring our
work to the potential users of such a system.

FUTURE ISSUES
There are several new directions we wish to pursue with both
the Mercator interface and the Mercator implementation.

Our current implementation of the Mercator core is single-
threaded. While the various I/O servers are implemented as
separate heavy-weight processes, the actual application
manager itself consists of only one thread of control. This
can create problems in the case of, for example, non-robust
interpreted code. Any interpreted code which loops
indefinitely will effectively “hang” the system. We believe
that a multithreaded approach will provide more modularity,
robustness, and performance to the system.

We have also begun to experiment with voice input to the
system. We are using the IN3 Voice Control System, from
Command Corp, which is a software-only speech
recognition system for Sun SPARCstations. Recognized
words from the voice input system are passed into the rules
engine just like any other events: keypresses, mouse button
presses, and so on. We are investigating high-level
abstractions for input and output so that users can easily
select which I/O media they wish to use on the fly.
Essentially these new abstractions would add a level of
indirection between the low-level hardware-generated events
and the tokens which the rules engine uses to fire action
procedures.

ACKNOWLEDGEMENTS
This work has been funded by Sun Microsystems and the
NASA Marshall Space Flight Center. We are grateful to
them for their generous support.

REFERENCES

[BBV90] L.H. Boyd, W.L. Boyd, and G.C. Vander-
heiden. The graphical user interface: Crisis,
danger and opportunity.Journal of Visual
Impairment and Blindness, pages 496–502,
December 1990.

[Bur92] David Burgess. Low Cost Sound Spatilization.
In UIST ‘92: The Fifth Annual Symposium on
User Interface Software and Technology and
Technology, November 1992.

[Bux86] William Buxton. Human interface design and
the handicapped user. InCHI’86 Conference
Proceedings, pages 291–297, 1986.

[Gav89] William W. Gaver. The sonicfinder: An inter-
face that uses auditory icons.Human Computer
Interaction, 4:67–94, 1989.

[LC91] Lester F. Ludwig and Michael Cohen. Multidi-
mensional audio window management.Inter-
national Journal of Man-Machine Studies,
Volume 34, Number 3, pages 319-336, March
1991.

[My94] Mynatt, E.D., “Mapping GUIs to Auditory
Interfaces, In Kramer G. (ed), Auditory Dis-
play: The Proceedings of ICAD ‘92. SFI Stud-
ies in the Sciences of Complexity Proc. Vol.
XVIII, Addison-Wesley, April 1994.

[ME92] Elizabeth Mynatt and W. Keith Edwards. Map-
ping GUIs to Auditory Interfaces. In UIST ‘92:
The Fifth Annual Symposium on User Interface
Software and Technology Conference Proceed-
ings, November 1992.

[MW94] Elizabeth Mynatt and Gerhard Weber. Nonvi-
sual Presentation of Graphical User Interfaces:
Contrasting Two Approaches,” in theProceed-
ings of the ACM Conference on Human Fac-
tors in Computing Systems, 1994.

[Ous90] J.K. Ousterhout. “TCL: An Embeddable Com-
mand Language,” in theProceedings of the
1990 Winter USENIX Conference, pp. 133-
146.

[Pet91] Chris D. Peterson. Editres-a graphical resource
editor for x toolkit applications. InConference
Proceedings, Fifth Annual X Technical Confer-
ence, Boston, Massachusetts, January, 1991.

[Sch87] Robert W. Scheifler. X window system proto-
col specification, version 11. Massachusetts
Institute of Technology, Cambridge, Massa-
chusetts, and Digital Equipment Corporation,
Maynard, Massachusetts, 1987.

[Ste86] Stefik, M.J., Bobrow, D.G., and Kahn, K.M.
“Integrating Access-Oriented Programming
into a Multiparadigm Environment.”IEEE
Software, 3,1, IEEE Press, January, 1986, 10-
18.

