
Montage: An X-Based Multimedia
Electronic Mail System

W. Keith Edwards

Graphics, Visualization, & Usability Center - Multimedia Computing Group
Georgia Institute of Technology

Atlanta, GA 30332-0280
keith@cc.gatech.edu
c
on
il

es
ts

-
n
-
ive

ys-
g

e
to
ur

 a

i-
ABSTRACT
This paper describes an extensible multimedia electron
mail system called Montage which is based on the X W
dow System. Montage supports the composition, transm
sion, and viewing of structured documents consisting of
virtually any type of medium. Further, users can at runtim
extend the system easily to support new document type
including text, images, audio, video, executable program
and commercial file formats.

KEYWORDS: Multimedia, electronic mail, X Window
System.

INTRODUCTION: WHY MULTIMEDIA MAIL?
In the past decade, the proliferation of fast, inexpensive
networked computer workstations has produced an exp
sion in the use of electronic mail. Electronic mail system
have traditionally been limited to the transmission of sim
ple textual information.

More recently however, as computer workstations have
increased dramatically in power and as the use of windo
ing interfaces becomes more widespread and standardiz
the capabilities have emerged for the composition, trans
mission, and reception of complex multimedia electronic
mail messages consisting of voice, imaged, video, and
other media (in addition to plain text of course).

The chief advantage of a multimedia electronic mail sys
tem is the increased bandwidth between the users of th
system. Research indicates that some concepts may be
most appropriately expressed in certain media. [7, 8, 10]
good multimedia mail system should allow people to com
municate with one another as freely and without restric-
tion as conventional “paper” mail systems do. With pape
mail, users can compose documents, jot notes onto the
and then seal them along with any other enclosures into
envelope and expect prompt delivery. Multimedia mail
systems would offer similar flexibility.
e
s-

ven

Graphics, Visualization, and Usability
Center Technical Report GIT-GVU-92-29,
October 1992. Georgia Tech.
ic
in-
is-

e
s,
s,

,
lo-
s
-

w-
ed,
-

-
e

A
-

r
m,
an

Furthermore, since the most basic goal of any electroni
mail system is to expedite and enhance the communicati
between people, care should be taken to conform to ma
transport standards. An electronic mail system which do
not interoperate with a broad range of systems denies i
users communication with those systems.

This paper presents a multimedia electronic mail system
calledMontage which has been developed at the Georgia
Tech Multimedia Computing Group (a part of the Graph
ics, Visualization, and Usability Center under the directio
of Dr. James Foley) [6]. We believe that this system pro
vides a flexible and convenient means to send and rece
complex multimedia documents. This system is built
strictly on top of lower-level mail transport standard and
thus should be portable to and interoperate with many s
tems. Our current implementation is on the Unix operatin
system and X11, specifically Motif 1.1.

DESIGN GOALS AND HISTORY
When work was started on this project late in 1990 [5], w
began with several principles that we hoped would lead
a powerful and flexible system. This section describes o
three major design goals.

Extensibility
First, and perhaps most importantly, we wanted to build
system that would not be a “closed box.” That is, we
wanted a system which could be easily extended by its
users at runtime to support arbitrary media. Too many
email systems support only a restricted range of media.
However complex these media may be, there is still no
provision for extending the system.

At the time we began our work, there were several mult
media mail systems already available for Unix systems,
the best-known of these being BBN Slate, the Andrew
Message System, and NeXTmail. Each of these suffers
from its own set of problems. For example, the BBN Slat
system provides users with a number of tools for compo
ing complex mail messages. BBN Slate messages can e

i-
y

ac-

ct
e
f

als

op
s
 to

c
-

n-

rs
e
a

-

-
n

h-

ial
ts
f
s-
p

ts
n-
nd

ich

ch-
ich
t-

.

contain spreadsheet data, but users are restricted to work-
ing with the built-in, integrated Slate spreadsheet rather
than the tools there are most used to.

Another system, the CMU Andrew Message System, was
built using the Andrew tools provided by CMU [1]. This
mail system can send any type of construction which can
be expressed by the objects in the Andrew environment.
Thus, the system is extensible but it can not interoperate
well with systems not built with Andrew.

A third system, NeXTmail, bundled with all NeXT com-
puters, could compose and send fairly complex documents
consisting of formatted (rich) text, images, sounds, and
typed files. There were (and are) a number of problems
with the NeXT mail system though. First, the system is
built to a large extent on primitives provided by the Next-
Step environment which are not likely to be found on other
systems. Second, the specification for the mail encoding
format (specifically the header lines used and required by
the system) is not publicly available.

Mail Transport Protocols
In addition to our goal of extensibility, we wanted to con-
struct a system which was built on top of existing stan-
dards. For our platform, this meant the Simple Mail
Transport Protocol (SMTP) as a base [4, 11]. SMTP is
widespread among the Unix community. As long as our
mailer spoke SMTP its messages would be transmittable
by the large number of mail transport agents in the world
that speak SMTP.

One of the limitations of SMTP is that it only supports the
transfer of non-binary data. Thus, Montage must perform
a “packing” and “unpacking” process to convert the mes-
sage body data to a form which can be transmitted via
SMTP.

We will discuss our approaches to the problems of mail
transport protocols and packing formats shortly.

Message Presentation Format
A third requirement of our system was that it should
present its messages in an intuitive and easy-to-understand
format. It was our belief that, unlike more general hyper-
media documents, mail messages are typically generated
by their authors to convey some small number of impor-
tant ideas or data. Thus, whereas hypermedia documents
which are reader-driven[9], mail messages are typically
author-driven. We reasoned that a hypertext-like presenta-
tion format may not be the most useful or intuitive for a
mail system.

While we did not want our messages to be full-blown
hypermedia documents, we did acknowledge that there
was a need for some interactiveness within a message. One
common example of this may be a document which is
being distributed for review by a number of commentors

or coauthors. One would like to be able to view the orig
nal document as well as selectively viewing annotations b
the various reviewers. We felt that some degree of inter
tivity would empower the mail system and its users.

As we shall discuss later, we feel that the restriction
against generalized hypertext has had a simplifying effe
on the design and implementation of the mail system. W
also feel that the interactiveness provides a great deal o
the system’s power.

The next three sections address our solutions to these go
as they are currently embodied in Montage.

A MODEL FOR MULTIMEDIA MESSAGES
We mentioned that one of our design goals was to devel
a presentation format for multimedia messages that wa
(1) somewhat more restricted than hypermedia systems
facilitate the type of communication common in electroni
mail, and (2) allowed some degree of interactivity, espe
cially in support of annotations.

Our model for multimedia mail messages essentially co
sists of two parts. First, all messages consist of a main
body (called theprimary part). The primary part consists
of any number of components (calledchapters) which
may themselves be of any media type. All of the chapte
of the primary part appear in linear order, just like a singl
paper document. Montage presents the primary part in
scollable window.

In addition to the primary part, a Montage message may
also have zero or moreattachments. Attachments are anal-
ogous to margin notes or “Post-It” notes in a paper docu
ment. They allow the author to attach supplemental
information which refers to or supports the original docu
ment. In Montage, attachments appear as small icons o
the border of the primary part. The image in the icon
denotes the type of medium in the attachment; the attac
ment is activated or opened by clicking on it with the
mouse. At composition time the author chooses the spat
location of the attachment so that, for example, commen
to a document can be located across from the portion o
the document they refer to. As the main body of the me
sage is scrolled, the attachments scroll so that they kee
their relative position to the part of the main body they
refer to. Just like chapters in the primary part, attachmen
can be of any media type. Figure 1 shows a sample Mo
tage mail message in the system mail viewer. The text a
graphics compose the primary part of the message. The
small phonograph icon denotes an audio attachment wh
is spatially located across from the charts.

There are a great number of uses for this scheme of atta
ments to messages. One of the canonical examples wh
we have already referred to is coauthoring and commen
ing of written documents. In Montage, a document could
be exchanged in mail as the primary part of a message

h-

s-

io,
var-
sk-

-

rt
e
rs

t

:

to
n

a-

v-

r
t-
-

e

en-
ng

ts
ls
an-
r

g

Various authors can then attach comments, rewrites,
graphics, audio annotations, or even video clips to the doc-
ument at appropriate points. Research supports the fact
that some types of revisions are most appropriate in non-
textual media [9].

Also, since attachments provide a means of having an
active message which can interact with the user, several
uses for this model which are not based on simply annota-
tion of documents come to mind. For example, a mail mes-
sage may contain a large number of spreadsheets, say, one
for every operating month of a company’s history. The
recipient of this mail message may not want to view data
from every month, so the preferred format may be a mes-
sage with an attachment for every spreadsheet which may
then be opened at the reader’s discretion.

Another example may be an attachment which consists of
a shell script to upgrade some software package on the
user’s machine. The main body may have the message
“Click here to upgrade to release 2.0.” Across from that is
the attachment which will perform the upgrade when
clicked. (We are ignoring the security problems involved
in sending actual executable programs through the mail for
now. Obviously you would not want to execute a program
sent to you through the mail unless you trusted the source
of the message and could verify that indeed the message
had come from that source).

The important thing is that the author has the choice at
composition time to decide on the layout of the message.
We feel that this format gives us a substantial amount of

power in a relatively easy to express (and implement) fas
ion.

EXTENSIBILITY AND CONFIGURABILITY
Ideally, a multimedia mail system should be able to tran
port virtuallyanymedium. This includes not only text and
graphics, but also various dynamic media (such as aud
video, animation, and even executable programs), and
ious commercial file formats (used by spreadsheets, de
top publishing packages, and so on).

Obviously it is not feasible for the builders of the mail sys
tem to have to compile support for these media into the
mailer itself. This requires a great deal of work on the pa
of the system builders to maintain support for all of thes
various formats, and also means that if the system builde
don’t choose to support a given format, the users of tha
format will be out of luck. Further, the mail system is
always a “step behind” the rest of the applications world
the mail system builders are continually playing “catch
up” to build in support for new formats as they become
available.

Perhaps the best solution to the extensibility problem is
have a computing environment in which applications ca
communicate with one another, and application objects
can be shared among and embedded in different applic
tions. Some strongly object-oriented environments
(NeXTstep comes to mind) do support this type of beha
ior, but it is not available yet in the X world.

Since this solution wasn’t available to us, we had to take
another approach to solving the extensibility problem. Ou
solution is to externalize as much of the work of interpre
ing and handling the various media outside the mail sys
tem as possible. We use external programs (called
handlers) that “understand” the various media to display
and edit them. In the Montage model, the mailer itself is
very simple; it is basically just a framework which has the
responsibility of parsing the mail messages, providing th
basic mailer functionality (folders, aliases, and so on),
invoking the external handlers, and creating a nice pres
tation for the overall message. The work of understandi
what a particular medium “means” and then doing the
right thing with it is solely the responsibility of the exter-
nal handlers.

Media types are identified bytagswhich are simple ASCII
strings that are sent along with the message componen
when it is transmitted (see the section Transport Protoco
and Packing Formats). Montage itself associates no me
ing with the media tags; instead it decides which handle
to invoke on a particular component by looking up its ta
in a per-user database which maps tags to handler pro-
grams chosen by the user.

FIGURE 1. An example Montage message

ill

is,

le
s

of
of
.

e.

y

rer
ed
n
at
-
s.

-

e

e

n,

-
ple

-

ll
xt

d
”
n-

hat
s

This design has several benefits. First, users can make use
of the applications most familiar to them to view and edit
message components. Vi and Emacs users will be able to
choose their favorite editor to compose text components.
Secondly, if a work group begins to use a new application
for its work, it is easy to enable support for the new appli-
cation’s data format by simply assigning it a tag and put-
ting an entry in the database that specifies the program the
be run when a message component with this tag is encoun-
tered.

Because of the presentation format we are using
(described in the previous section), message components
belonging to the primary part of the message are presented
“in-line” (that is, they visually and structurally form a sin-
gle document, rather than being presented in different win-
dows), while attachment components are presented
outside the main body of the message in their own win-
dows when they are activated.

The different requirements of displaying message compo-
nents in-line and outside of the main flow of the document
require us to have the notion of several classes of handlers.
The basic handlers are:

• Editor The program which will be invoked when the
user wishes to compose a message component of a
given type.

• Renderer The program which will be invoked when a
message component needs to be displayed in-line to a
message.

• Viewer The program which will be invoked when a
message component needs to be displayed outside of a
document.

The editor and viewer handlers operate as expected. They
are the normal applications found on a system which are
used to display and edit application-specific data (such as
Lotus 1-2-3 or FrameMaker or a paint program). These
applications, by default, create their own windows as chil-
dren of the X root window. Thus, when invoked by Mon-
tage they will start up and appear as top-level windows
“outside” the message itself. Thus, the viewer handler is
the program which will be invoked whenever an attach-
ment is opened.

But what about message components which should be dis-
played in the main body of the message? By default, most
any applications will create their own top-level windows
when they start up. We need to be able to display message
data inside the main body of the message as well as in sep-
arate windows. Our solution to this is the notion of render-
ers. Renderers are programs which know how to draw (or
“render”) the media typeinside the main body of the mes-
sage.

Since this is a rather unusual requirement, most systems
will not have renderers already on them waiting to be used
(as is the case with viewers and editors, which are conven-

tional off-the-shelf applications). We are working to build
several renderers for common formats, and hope that if
Montage ever reaches some degree of popularity there w
be no shortage of publicly-available renderers.

The mechanics of how a renderer performs its job, that
how it draws inside the main body of the mail message,
are somewhat difficult. We have investigated two possib
solutions. In the first potential solution, the renderer draw
the medium into a pixmap and then returns the identifier
the pixmap to Montage which determines the geometry
the pixmap and copies it into the message display area
This effectively disallows any type of dynamic medium in
which the contents of the displayed are subject to chang

In the second solution, which is the one we are currentl
working with, Montage launches renderers with a com-
mand line argument which is the window ID into which
the renderer should draw. This allows fully dynamic
media, but has several drawbacks. One is that the rende
must continue running as long as the message is display
even if it is rendering a static medium. This is so that it ca
handle exposures in the window. Another drawback is th
most existing widgets don’t perform well when their win
dows are resized from some external controlling proces
We are investigating writing a new widget which exhibits
the proper behavior.

Note that if the X Toolkit provided support for forcing an
application’s top-level window to be specified on the com
mand line or via some other mechanism, then we could
actually embed running applications in the mail messag
itself. Unfortunately no X toolkit that we are familiar with
provides this capability.

While the invocation of an external program for every typ
of media provides a great deal of flexibility, it is not the
most efficient way to work with very common media
which will be used on a day-to-day basis. For this reaso
Montage has a few very simple handlers built in to it.
Users can specify “PrimaryTextRenderer” in the configu
ration database to tell Montage that a tag represents sim
text and that the system should use its own internal text
renderer to display it. There is also a “PrimaryImageRen
derer” built-in handler that can understand and display a
good number of image formats internally (including Sun
raster images, PBM, PPM, PGM, Gif, Faces, XWD,
Group 3 FAX, MacPaint, XPM, XBM and a few others).
Similarly, there is a “PrimaryTextEditor” which tells the
system to use its built-in-line text editor so that users wi
not have to open another window to simply compose a te
message.

These built-in handlers provide a certain common groun
of media types that Montage can handler “out of the box
without requiring any sort of external mechanisms. Esse
tially they are an escape hatch around the requirement t
users must have external handlers for all the media type
that they wish to mail or view.

o-
at
ibil-
k-
he

f

s-
ges,

ve
s

a-
e

on-

h-

s

-
-

 in

-

u-
-

r,
TRANSPORT PROTOCOLS AND PACKING FORMATS
As we mentioned, at the time we began work on Montage
there were widely accepted standards for multipart multi-
media mail transport. We knew that we must base our
system on SMTP to allow interoperation with the majority
of existing Unix mail agents, but beyond that there were
few accepted standards. The current implementation of
Montage uses a message transport format developed in-
house to support our model of multimedia mail messages.
In the past year, however, a format called MIME [2]
(Multipurpose Internet Mail Extensions) has gained
considerable acceptance and generated quite a bit of
interest. We shall describe each of these formats in turn.

The MIME format is quite similar in many regards to the
current Montage format and so we plan to convert the
system over to MIME in the near future.

Current Format
To support the message format we wanted, we developed
our own transport format based on SMTP. In this format,
each individual message component was compressed,
bundled, and converted to ASCII (since SMTP doesn’t
support binary message transmission). The conversion of
the individual message components into a single transmit-
table block of data is calledpacking. This block of data
then was transmitted as the body of a message, with the
appropriate SMTP headers placed on the front of the
message. Along with the message components them-
selves we transmit aTable of Contents (or TOC) which
describes how tounpackthe message body into its indi-
vidual components, and the relationship of those
components to one another.

In the current implementation of Montage, the TOC is a
simple ASCII file which has a single line per component,
and specifies the component name, whether it is a primary
or attachment component, the relative position of the
component in the mail message, the medium type, and
compression type. The system packs and unpacks
messages transparently to the user.

MIME
In many regards the MIME format is quite similar to the
current Montage format and, since it will be supported on
many more platforms than the current Montage format,
we plan to convert the system to MIME in the near future.

MIME provides support for multipart messages in which
each part contains the data for that part and specifies the
type and encoding format for the data. The information in
the MIME subparts is sufficient to allow for unencoding
and decompressing Montage components, but there is no
provision in MIME to specify any type of structural infor-
mation about messages, such as component layout.
Therefore we will transmit the Montage TOC as a sepa-
rate MIME subpart so that Montage mailers can display

the messages with all their structural connections, while
other MIME-compliant mailers will display Montage
messages in a linear layout.

IMPLEMENTATION NOTES AND STATUS
The current version of Montage is implemented using
X11R4 and Motif 1.1. The code is approximately 40,000
lines of ANSI C.

This project was begun in late 1990 and resulted in a pr
totype implementation (based on the HP Widget Set) th
demonstrated the basic concepts of the system (extens
ity, external handlers, and so on) but was somewhat lac
ing in the features necessary to convince users to use t
system on a day to day basis. In September of 1990 we
began a reimplementation of the system based on Moti
1.1 and added a number of useful features.

Most of the features found in Montage are, of course,
those found in any conventional non-multimedia mail sy
tem, such as folders, support for aliases, saving messa
replying to messages, and so on.

There are several other features specific to Montage ha
were incorporated into the Motif version though. Perhap
most important is the on-line configuration system. The
prototype version of Montage used the X Resource Dat
base to define media tags and map them to handlers. W
wanted to separate the configuration of the system into
appearance customizations (which would be handled by
the X Resource Database mechanisms) and the more M
tage-specific tag/handler mappings. One of the primary
reasons for this was that we wanted users to be able to
establish new mappings between tags and handlers wit
out having to modify their X resource defaults.

Thus, we defined a format for Montage configuration file
that contains information about tag-handler mappings.
One side benefit of this choice is that we can provide a
function in Montage to automatically rewrite the configu
ration file; this would have been awkward had we contin
ued to use the X Resource Database because rewriting
resource files would have lost any comments contained
the files (and thus customizing Montage would have
erased comments on other applications’ defaults).

Figure2 shows a Montage configuration panel for chang
ing tag-handler mappings. Clicking the Accept button
changed the preferences for the current session only.
Clicking Save causes Montage to rewrite its own config
ration file. These configuration files are, by the way, sim
ple ASCII files and are very human-readable. The
automatic configuration mechanisms simply provide an
easy-to-use tool for customization by novice users.

In addition to the basic handlers mentioned earlier (edito
viewer, and renderer), Montage also keeps some other

ed
k

s

he
ot

i-
e
a-

-

r

e

m,
-

s-
o,
t

n-

f

e
e

s

r-
s.

r.
n-
information in its configuration database on a per-tag
basis. These include:

• CompressorDenotes the type of compression used on
the tag in question (for example, LZW for text compo-
nents, JPEG for images).

• Icon The file to use for the icon image when a medium
of the specified tag is used as an attachment.

• Printer A handler for printing the specified medium.

• Filter A handler for filtering the medium into text for
display on a dumb terminal.

• ConvertTo The name of a tag to try to convert this
medium into whenever it is encountered.

• Converter A handler which is used to perform the con-
version to the new media type.

This information allows users to change the behavior of
Montage in a number of ways. The method of compres-
sion can be changed to suit the particular medium being
sent, icons can be chosen on a per-medium basis, handlers
can be specified for printing and filtering, and so on.

A note on the converter mechanisms. Some media which
are received may not be in a format which the reader can
view. The converter mechanisms provides a means for
Montage to automatically perform type conversions to a
new medium which can be viewed (that is, for which a

renderer or viewer is defined). Converters can be chain
to any arbitrary level, and Montage can detect and brea
cycles in the converter graph.

CONCLUSIONS, CAVEATS, AND FUTURE DIRECTIONS
We feel that the current implementation of Montage serve
to illustrate some useful concepts that are important for
generalizable, flexible electronic mail systems. We view
the current system as an “advanced prototype;” that is, t
system implements a number of nice features but it is n
commercial-quality software.

Currently, Georgia Tech is involved with licensing negot
ations with several companies which wish to take Montag
and turn it into a commercializable product. These comp
nies are interested in adding features (such as security)
which we are ill-equipped to do because of time and
money constraints. Nevertheless, we would like to see
Montage released into the community as freely distribut
able software even if the negotiations succeed.

In the area of future directions, we have several goals fo
Montage. The most important goal is support for the
MIME standard for Internet multipart mail messages. W
are also interested in exploring the domain of dynamic
mail messages to a greater degree. In the current syste
attachments are spatially collocated with the primary com
ponents they reference. We are interested in possibly
exploring a time-based connection in which the main me
sage body would be a dynamic component, such as vide
and the attachments would be tied to a certain time poin
in the video and would scroll by at appropriate times.

While the concept of renderers provides a powerful exte
sibility mechanism, the current implementation leaves
much to be desired, both in terms of flexibility and ease o
implementation. We would like to experiment with more
complex Montage-to-renderer protocols, perhaps using
some sort of RPC-based mechanism. This would provid
a greater degree of renderer control from within Montag
(to support, for example, VCR-style controls on a video
component).

We are also interested in the use of extension language
which could be bundled with Montage to give it even
greater power. Such a system would allow high-level inte
pretted components to be sent as message component

ACKNOWLEDGEMENTS
Thanks to our sponsors for this work, BellSouth and the
Georgia Tech Advanced Technology Development Cente
This work would not have been possible without their ge
erous support.

FIGURE 2. The Media Configuration Panel

e

-
n-

in
d

,

-
se
I would also like to thank Tom Rodriguez and Jens Kilia
for the significant amounts of time and energy they have
devoted to the development of this system.

REFERENCES

[1] Nathaniel Borenstein. A Multimedia Message Syste
for Andrew, inProceedings of USENIX Winter Con-
ference, February 1988.

[2] Nathaniel Borenstein, and Ned Freed.MIME: Mecha-
nisms for Specifying and Describing the Format o
Internet Message Bodies, Internet Draft.

[3] Barbara Chalfonte, Robert Fish, and Robert Krau
Expressive Richness: A Comparison of Speech a
Text as Media for Revision, inProceedings of ACM
SIGCHI Conference, 1991.

[4] David Crocker. Standard for the Format of ARPA
Internet Text Messages, Internet Request for Com-
ment (RFC) 822, August 13, 1982.
n

m

f

t.
nd

[5] Keith Edwards,The Design and Implementation of the
Montage Multimedia Mail System, Technical Report
GIT-SERC-90/04, April, 1990.

[6] Keith Edwards, The Design and Implementation of th
Montage Multimedia Mail System, inProceedings of
IEEE Conference on Communication Software(Tri-
Comm), April 1991.

[7] S. Guastello, M. Traut, and G. Korienek. Verbal Ver
sus Pictorial Representations of Objects in a Huma
Computer Interface, inInternational Journal of Man-
Machine Studies, July 1989.

[8] Brenda Laurel, Tim Oren, and Abbe Don. Issues
Multimedia Interface Design: Media Integration an
Interface Agents, inACM SIGCHI Proceedings,
1990.

[9] Jakob Nielsen.Hypertext and Hypermedia, Academic
Press Inc., 1990

[10] G. Rohr. Using Visual Concepts, inVisual Lan-
guages, S. Chang, T. Ichikawa, and P. Ligomenides
eds., Plenum Press, 1986.

[11] W. Stallings.Handbook of Computer Communica
tions Standards, Volume 3: Department of Defen
(DoD) Protocol Standards. Macmillan, 1987.

	Montage: An X-Based Multimedia Electronic Mail System
	W. Keith Edwards
	Graphics, Visualization, & Usability Center - Multimedia Computing Group
	Georgia Institute of Technology
	Atlanta, GA 30332-0280
	keith@cc.gatech.edu
	ABSTRACT
	INTRODUCTION: WHY MULTIMEDIA MAIL?
	DESIGN GOALS AND HISTORY
	Extensibility
	Mail Transport Protocols
	Message Presentation Format

	A MODEL FOR MULTIMEDIA MESSAGES
	FIGURE 1. An example Montage message

	EXTENSIBILITY AND CONFIGURABILITY
	TRANSPORT PROTOCOLS AND PACKING FORMATS
	Current Format
	MIME

	IMPLEMENTATION NOTES AND STATUS
	FIGURE 2. The Media Configuration Panel

	CONCLUSIONS, CAVEATS, AND FUTURE DIRECTIONS
	ACKNOWLEDGEMENTS
	REFERENCES

