Systematic Output Modification in a 2D
User Interface Toolkit

W. Keith EdwardsiScott E. Hudsont, Joshua Marinacci*, Roy Rodenstein*,
Thomas Rodrigueztt, lan Smith*

T Xerox PARC ttJavaSoft
3333 Coyote Hill Road Sun Microsystems
Palo Alto, CA 94304 10201 N. DeAnza Blvd.
kedwards@parc.xerox.com Cupertino, CA 95014
never@eng.sun.com
tHuman Computer Interaction Institute *Graphics Visualization and Usability Center
Carnegie Mellon University College Of Computing
5000 Forbes Avenue Georgia Institute of Technology
Pittsburgh, PA 1513-3891 Atlanta, GA 30332-0280
hudson@cs.cmu.edu {iansmith, joshuam, royrod} @cc.gatech.edu
ABSTRACT visually consist of simple lines and boxes, often drawn using

In this paper we present a Simp|e but genera| set &nlyasma” number of colors. Most graphical interfaces, at
techniques for modifying output in a 2D user interfaceleast for “traditional” applications, have been wanting in
toolkit. We use a combination of simple subclassinggraphical richness.

wrapping, and collusion between parent and output object§he reasons for the limited

N d bit i f bl i vocabulary” of output in these
0 produce arbitrary S€tS of composable ou pucgerfaces is obvious—most early systems were constrained

computational power to produce only the most basic flat-
king 2D interfaces. More recently, most Ul toolkit and
pplication designers have decided that they are willing to
de computational cycles for a slightly richer look on the
ktop. Hence we see 3@bkinginteractors, such as those
nd in Motif, Windows 95, and NextStep. The 3D look of
se toolkits can, and has, been leveraged by designers to
nvey new visual cues in their interfaces. The dialog boxes
the OPEN LOOK system which appear to “fly off” of the
esktop are an example of such a cue [13].

transformations. The techniques described here allow ri
output effects to be added to most, if not all, existingl00
interactors in an application, without the knowledge of thea
interactors themselves. This paper explains how th
approach works, discusses a number of example effects t
have been built, and describes how the techniques presenta
here could be extended to work with other toolkits. Weie
address issues of input by examining a number of extensio
to the toolkit input subsystem to accommodate transforme
graphical output. Our approach uses a set of “hooks” to un
output transformations when input is to be dispatched.
i _ Our work is concerned with augmenting and extending the
KEYWORDS: User Interface Toolkits, Output, Rendering, yisyal richness in user interface toolkits. In particular, we are
Interactors, Drawing Effects. interested in ways to create neffectsthat can be applied to
objects in a graphical user interface. Unlike the move to 3D
INTRODUCTION looking toolkits, where each interface interactor had to be re-
Graphical user interfaces have, since their inception, reliegbded to provide the new look, our focus is on effects that

on a fairly basic set ahteractors(sometimes calledontrols can be appliedransparentlyto any existing object in an

or widgety to effect change in applications. Theseapplication’s interface.

interactors have typically been rendered on the screen using?1)

fairly simple output techniques—nearly all interactorsThese effects form a new visual vocabulary that can be used
by application writers to convey new cues and new
information in their interfaces. These effects are visually
This work was supported in part by a grant from the Intetich, easy to create and use, and can be applied throughout
Corporation, and in part by the National Science Foundatioan application.

under grants IRI-9500942 and CDA-9501637.

Figure 1 shows an example of several transformations being
applied to a simple graphical interface. All of these

Copyright ©1997, Association for Computing transformations have been implemented using our
Machinery. Published in Proceedings of the infrastructure for creating output effects; application writers
Tenth ACM Symposium on User Interface who desire new effects can easily create them using this

Software and Technology (UIST'97), Banff,

Alberta, Canada, October 14-17, 1997, infrastructure. An application writer may choose to use these

effects, and others, in any number of ways. For example, the

Applet |i

alignment
Harizantal Verical
Let (@ Top)
Center) Middle)
Right Bottom (@

Cone |

Applet started,

la: Original Unmodified Interface

Applet |i

olinneang
| sinsapmen” AR
lop @ T

SR R

ST Ssfnn,

D, E

Applet started,

1d: Sine Wave Mapped (Shimmer)

Algneent
g onn Verscy
Led L Top
Cont hsdidig
Rigni Bomom @

Applet started,

1b: Blurred

Applet |i

Mywtazrag

ke mbag Ire gy
Yrgp (@ Ghe
Pragre _) Zyggyr _)
Evtug _) Ok O]

Cone |

Applet started,

le: Rot-13

Applet started,

1c: Rotated
|| nppet viewer: affinez.cll_|_|
Applet ||
alignment
ignment
Harizontal Wetical
Hatizontal Wetical

Let (@ Ta
tet ol Bop
Cantar _h Middle
Center Middle

Rigjht Bottom (@
Igight 'h Bottom Bl
Cone

Applet started,

1f: Shadowed

FIGURE 1: Examples of Output Modifications

presence of a modal dialog box may be indicated by blurrin§econd, transformations can be composed, dynamically, at
the inactive portion of an application. Scaling can be usetln-time. This requirement is essential since we do not wish
throughout many applications, including drawing tools,to require that all possible transformations—and
interface builders, and document layout systems, to provideombinations of transformations—be explicitly known and
zooming. Shear and shimmer can be used to add noviehplemented by the application writer or toolkit builder.
animation effects to application interfaces and cast shadows
can be used to enhance dragging interactions. This pap€hird, we must be able to accommodate positional input in
focuses on the architectural requirements, design, artle face of output transformations. So, for example, if we
implementation of a user interface toolkit that supportscale an on-screen interactor to twice its size, we require that
arbitrary output transformations throughout the interfacethe interactor be able to receive and process input in its new
These transformations can be applied to user interfacdimensions. Such accommodation must be able to work for
interactors (such as buttons, scrollbars, and the like), as welibitrary output modifications, even ones that change the
as other on-screen objects (such as drawn figures in pmsition and bounding box shape of the interactors.
graphical editor, or text regions in a word processor).

The work presented here is discussed in the context of the
Our work has several goals. First, it is essential that alBubArctic user interface toolkit [8]. SubArctic is based on
transformations can be applied transparently. Bythe Java [6] language, and is implemented entirely in Java—
transparency we mean that the output of on-screen objeat® native code outside the standard Java runtime
can be modified without the objects themselves “knowing’environment is required. The techniques presented here are
about the modification. Interactors in the Ul toolkit as wellapplicable to other interface toolkits, however, since
as applications can use new effects, even if the effect wasibArctic assumes only a fairly simple model of the
written after the interactor or application was created. fundamental constructs in the user interface.

This paper is organized as follows. First, we present a briehodify the drawable before it is passed to each child,
overview of the output subsystems typically found in mostypically by translating the coordinate system used in the
object-oriented user interface toolkits. Next, we discuss ourawable to one “rooted” at the child and clipped to the
particular architectural approach to supporting arbitrarychild’s bounding box.

output transformations, given our goals of transparency,

composition, and input accommodation. This discussion

provides details of our particular implementation atop the graw _Jine(int x1, int y1, int x2,

Java Abstract Windowing Toolkit (AWT). Next, we examine Tint y2);

several effects that we have developed as a part of the . . .
subArctic user interface toolkit. Some of these effects draw_rect(intxl, intyl, intx2,
provide fairly simple output transformations; others int'y2);

implement a set of complex modifications that can draw_circle(int center_x, int
significantly reduce the burden of application writers for center_y, int radius);
certain tasks. These effects are presented both as an example .

of the kinds of modifications that are possible, and as set_foregound(Color fg);
examples of how particular transformations are implemented ~ set_font(Font f);
using our infrastructure. Finally, we discuss issues related to
input that arise with our approach, and detail several
approaches to solving various input problems. We close with
a discussion of implementation details, conclusions, and
future work.

FIGURE 2: A Portion of the Drawable API from
subArctic

For this discussion, we have assumed that the same drawable

OUTPUT OVERVIEW _ . _is passed to each interactor in the tree. We shall see shortly,
Essentially all of the object oriented user interface toolkits imowever, that this is not strictly required.

use today—»both in the research community, such as Garnet
[10], Amulet [11], Artkit [7], and Fresco [9], and in Note that in a system such as this, interior nodes of the tree
production systems, such as AWT [1] and the Be toolkit [2Fan produce various stacking orders of their children and
—share two important properties. themselves by imposing an ordering for the traversal and
. . . . drawing of themselves and their children. For example, an
* The runtime composition of the user interface isinterior node that wanted its output to be “above” (drawn on
represented as a tree of objetwe call the nodes of this top of) the output of its children could simply traverse its
treeinteractors children, causing their drawing to be performed before doing

« The graphical operations on the display are encapsulat&@fy drawing of its own.

provides an interface which allows each interactor tqechniques will quickly see that this abstraction of the
display its output on the screen. The drawable providegrawing API into an object allows for effective subclassing
access to the drawing surface, and also keeps track of thé drawable objects. For example, subclasses of drawable
state of drawing such as the current foreground color, thebjects could be (and are) used to allow the same
current font, and so on. programmatic interface to drawing on the screen and

. . . o . drawing on a printer. We will exploit this property quite
In this work we will describe our output modifications in theheavilygin ourtepchniques. P property q

context of the subArctic Java-based toolkit. SubArctic
presents the same architectural model of interactor trees afile AWT Graphics Object
drawables as the toolkits mentioned above, and thus o@ubArctic is built on top of the AWT toolkit [1] which
discussion of output modifications is easily applicable t¢omes standard with any Java implementation. AWT uses its
them as well. Graphics object—the underlying object on top of which
ubArctic’s drawable object is built—as a means to facilitate
|atform-independence, a major goal of Java. AWT
plications use the Graphics object's APl to provide
awing operations, but never use the Graphics object
jrecty—only subclasses of it. A particular AWT
fplementation on a given platform will provide a platform-
ecific implementation of the Graphics object that is
upplied to the application at runtime for drawing. This
chnique allows the same application code to work on
idely different platforms such as UNIX systems running X,
Windows, and the Macintosh.

Typically in these systems, a graphical user interface iS
rendered to the screen through a traversal of the interactB
tree. The traversal begins at the root of the tree, and
drawable object is recursively passed down the tree. At ea
node of the tree, interactors use the drawable’s API (s
Figure 2) to render their desired image onto the display. Ead
interior (parent) node in the tree is responsible for passin
the drawable on to its children so that they will have th
opportunity to draw themselves using it. The parent ma

1. The Fresco toolkit allows this structure to be a directed
acyclic graph rather than a proper tree but this modifica- ~ Although this platform independence is clearly beneficial,
tion does not change our discussion so we willassume there are drawbacks to the AWT Graphics object. Most
that each toolkit uses a tree. notably, AWT applications normally do not create their own

new types (subclasses) of Graphics objects. In fact, it is nobtation. A rotate drawable can implement its operations in
clear that the AWT design even considers that user level coderms of an “inner” drawable that it calls on to perform the
would want to subclass the Graphics object. For this reasoactual output. The rotate drawable would be instantiated with
the subArctic drawable is “wrapped around” an AWTa reference to the drawable it is wrapping, and would
Graphics object [5]. By wrapping, we mean that theforward method calls to it, modifying them appropriate to
subArctic drawable forwards most calls on its APl to themplement its particular effect. Wrapping can obviously be
underlying Graphics object but also the subArctic drawablehained at runtime—users can create wrappers of wrappers
allows user code to subclass and override its behavior. to compose effects—and can be created using any drawable
subclass as an inner drawable—so they can wrap “primitive”
OUR APPROACH TO OUTPUT MODIFICATION drawables such as printing drawables and so forth.
The architectural approach subArctic takes to output
modification is the use of subclassing of drawable objects i) most drawing effects, these techniques are used side-by-
conjunction with wrapping. A toolkit must support both of side. That is, a new drawable subclass will be created for a

these techniques to achieve maximum flexibility of theparticular behavior (subclassing being used to provide type
output system. safety and polymorphism), but in most cases, the subclass

will wrap another drawable and forward method calls on to
As an example, consider the possibility that a drawabl@ Only operations that are not decomposable (such as
subclass has been written for rendering images to a printejrinting) avoid the wrapping technique.
This subclass may not be known to the application)))
programmer; certainly the application programmer shouldNote that the subArctic drawable class itself is a subclass of
not berequiredto know about this subclass to write his orthe AWT Graphics object, so it can be used anywhere an
her application. Requiring a priori knowledge such as thigXisting Graphics object is used, even in pure AWT (non-
defeats one of the points of subclassing, namely th&ubArctic) code.
application code can transparently use subclasses witho tth' d techni . din situati h dcul
modification. Subclassing provides an effective means for Ird technique 1S used In situations where a particuiar

adding new behaviors while retaining existing APIs in a wa)P;Jtlet gffect may.nee?] to Eappmﬁtersome complletefsines
that is transparent to application code. of drawing operations has happened. An example of this type

of effect is blur. A blur performs an average of the pixel

But now suppose that the application writer would like tovalues surrounding a given pixel to compute a new value for
provide a drawable class that performs scaling, perhaps to Effects such as this cannot easily be computed “on the fly”
implement a zoom function in a drawing application. Ideally;as rendering is done—typically having the entire, completed
we would like for the scaling drawable and the printingimage available is required for blurring.

drawable to be usable in conjunction. That is, we should

able to “mix and match” drawing functionality. If the writer
of the scalable drawable is also the creator of the printin

drawable, then he or she could compose these statica e effect. As an examole blurring miaht be accomolished
through subclassing. This method is inflexible, however, an L pi€, g mig P

does not lend itself well to easy, on-the-fly composition o y a combination of a blur drawable anq a blur parent. These
drawable effects. Further. it p;romotes a combinatoria}wo classes would collude to blur any interactors contained

explosion in the drawable class hierarchy (scaled drawable the blur parent. To perform this effect, the biur parent

printing drawables, scaled-printing drawables, and so OI,¥\/ould first create an off-screen image, and cause its children

each specialized at compile-time for a given set of tasks). 0_ender themselves into it (off-screen rendering is
" accomplished simply by creating a drawable that draws into

Our approach is to combine the use of subclassing for stat@ off-screen image). Next, this image is rendered on the
extensibility of drawables with the use of wrapping forscreen using the blur drawable. The end effect is that the
dynamic, or run-time composition of effects. In this model,interactor tree rooted at the blur parent is rendered blurred.

behaviors that are entirely new and not expressible in termﬁ1
of existing drawing behaviors are implemented througI'E

b§uch “deferred drawing” effects are accomplished through
ollusion between a drawable that implements the effects,
nd a parent interactor that sets up the context and extent of

is collusion can be used anytime that drawing effects can
e performed only after a complete set of drawing operations
as been finished. The disadvantage of this technique is that
ié requires modification of the interactor hierarchy by the
pplication writer to implement the effect—the colluding
rent interactor must be inserted at the appropriate point in
tie hierarchy.

simple subclassing. An example of this type of behavior is
printing drawable. The low-level details of how to talk to a
given printer are not decomposable into terms of any existin
functionality in the drawable class. Thus, entirely new
behavior such as this would be created through subclassi
drawable to provide a new class that implements printing.

bq summary, our approach can be characterized by three

In contrast, behaviors which can be expressed in terms ; .
fhain features:

existing drawable operations are implemented throug
wrapping. Unlike simple subclass relationships, which are The ability to subclass drawable objects to provide new
fixed at t.he time the fappllcatlon is written, wrapping can be primitive output behaviors.

accomplished at runtime. An example of a behavior that can

be decomposed into primitive drawable operations, and The ability to wrap drawable objects inside other
hence is a suitable candidate for the wrapping pattern, is drawables to allow functionality to be composed.

* The ability for drawables and parent interactors toRot-13

collude to perform deferred drawing. Although this drawable is of questionable utility as shown in
Figure 1B, its ability to transform drawn text makes it of
EXAMPLES OF SIMPLE OUTPUT MODIFICATIONS interest here. The rot-13 drawable is a wrapper around

In this section we will briefly explain several of the outputanother drawable and whose only function is to perform the
transformations we have implemented. Theseot-13 transformation on text drawn with it. All other output
transformations are implemented as new drawable classdgawing operations are not changed and are passed through
that either subclass or wrap other drawables. The effects aitemodified to the wrapped drawable.

composable and—more importantly—can be used with an

existing interactor transparently. he rot-13 transformation is one in which all the letters of
the alphabet are shifted by 13 positions, wrapping around the
Shadow end when necessary. For example, the rot-13 of ‘A" is ‘N.

The shadow drawable was the first drawable subclass wWéumbers, punctuation marks, and other symbols are not
created. This drawable has a simple effect—it forces thaffected.

color of any drawing done using it to be gray. Further, i : - - . :
prevents user code from changing the drawing color t Ee |maged_?fhovl\;n Itr;1 I?gure 1E is m;[]erestln% bec%'“l'se.'t
anything other than gray. The goal of this drawable was tg oS & difficulty that can anse when a drawable IS

leverage the pre-existing drawing code in interactors t@erformlng a drawing modification without telling _the

; “ " - P nteractor. In a proportional font like the one used in Figure
gLZ?ﬁv;hdergv(\?;vbrl]e drop shadows” by simply substituting thélE, the size of a string to be drawn can change substantially

when the content is changed—even in a simple
To support interactors that draw using images, the shadotansformation like rot-13. We have imagined that it might
drawable supports both a fast and slow image handlinge possible for “language drawables” to be implemented
mode. In “fast mode,” the drawable simply copies a grayvhich can render their display in different languages, but this
rectangle with the same bounds as the image to the screensiaing problem seems to make the construction of such a
“slow mode,” only the non-transparent pixels of the imageglrawable quite a difficult task.
are rendered in gray. Slow mode allows images that u

transparency to cast shadows with “holes” in them, albeit a e ability to capture and modify text, as explored by the
the price of compute-intensive drawing. rot-13 drawable, can be used in other ways. We have

constructed a drawable very similar to the rot-13 drawable
To achieve effects like the one seen in Figure 1F, wéhat can take all output drawn with it and record it to a file
introduce a new interior node into the interactor tree, called @nd/or send the text to a speech synthesizer. This ability to
“shadow parent.” This parent works with a shadow drawablérap” all textual output has been used in the Mercator
to create the shadow effect. When the drawing travers&ystem to build an offscreen model of text on the screen for
reaches the shadow parent, the parent does not immediatéhnd users [12].

draw its children. Instead, it performs an “extra” drawingShilrnmer

traversal over its children, using the shadow drawable tg?_ . . - .
produce images of their shadows slightly offset from the N€ Shimmer effect that is shown in Figure 1D is actually a
normal position of the children. Finally, it allows “normal” Snapshot of an animation. A given frame of this animation is
drawing to proceed. The end result is that shadows are draWgfgated by shifting each horizontal line of pixels to the right

slightly offset and undereath any output drawn by thén @mount which is controlled by a sine wave. The vertical
children. position of the row of pixels determines at which point along

the sine wave the given row is placed. One can imagine the
Importantly, and like all of our drawing effects, this effectgraph of a sine wave placed vertically down the left hand
can be used with any interactor, and requires no modificatisside of the image and the image shifted by an amount
to any existing interactor code. corresponding the amplitude of the sine wave at that point.

Blur For the animation, the input parameter of the sine wave is

Like the pair of shadow parent and shadow drawable, w@radually modified and the whole interface appears to
have a blur parent and blur drawable that work together ghimmer. This shimmer effect is very similar to the
children. An averaging blur is one in which a given pixel istélevision.

compared to its neighbors, the values of all ne:_arby IOiXeIﬁx’his effect is accomplished by a parent and drawable using
summed and the result averaged to get the new pixel value,[he deferred drawing approach outlined above. After the

Our blur parent creates this effect as a “post processing” stéfgrent’s children have rendered their image, the entire image
after the all of its children’s drawing is completed. This is!S POSt-processed to form the shimmer.

done by allowing the normal drawing traversal of the

children to proceed as usual, but with the parent substituting 1. We have used the rot-13 drawable to implement a lens

a drawable that renders to an off-screen image. This image is ~ which can be moved over the interface to see any text

then rendered on-screen using the blur drawable, wrapped on the interface through the rot-13 function. This is

around the original drawable. much more useful!

Affine Transformations transformations. In our discussion of the input side of
The screen shot shown in Figure 1C represents taking tfigese transformations, we will use an approach that is
interface in Figure 1A and applying a rotation transformmore similar to glyphs.

This transformation is applied by using a special subclasg \;orRE COMPLEX OUTPUT MODIEICATION
of drawable, the affine drawable. The affine drawable ca

be parameterized by any reversible transformation on X'@ther applications built using subArctic can support more

coordinates. Simple uses of the affine drawable includ€®MPIex —output - modifications. The Timewarp
scaling, shearing, rotation, and other “normal’ tWO_collaboratlve toolkit [4] makes use of a number of rich

dimensional transformatiors. qrawing effc_acts. For e_xample, onscreen objects that are
involved in “conflicts"—operations where the

The affine drawable can be implemented in two basiéterpretation of the result is ambiguous—are drawn

ways. The most obvious approach is to allow the user coddurred or transparently to indicate their special status.

to “draw” into an offscreen image and then perform theOne Timewarp application, an office furniture layout tool,

appropriate transformation on each pixel. While this : e
approach is general, it can be slow if the size of théjses the subArctic output modification system to create a

offscreen image is large. The second approach is tooseydo—3D _w;terface. Th|_s mtﬁrfacg leverages - the
subclass and intercept each function in the drawable AI1‘>31X'S‘tIng 2D in rastructurf?. n Tshg Arctic to creatﬁ gg
and transform the coordinates that are supjiifdreany axc;]nometrlc View on allln 0 ICIF.I i IS VIBW IS es?le?tla y
drawing is done. This approach offers a substantial spee thout perspective; all paraliel lines stay parallel.
improvement (since only a few points need to berigure 3 shows an example from this application. Here we
transformed) but has several drawbacks. First, one of thgse a room layout containing several pieces of furniture. In
drawable APIs allows user code to simply copy arthis application, if two pieces of furniture are in conflict—
offscreen image onto the drawing surface. This implieshey occupy the same space at the same time—the

that affine operations on images will be required anywaysffending pieces of furniture are displayed as partially
Slightly more subtly, some of the drawable APIs don'ttransparent.

work as expected when a transformation is being applied.
For example, drawing a circle is not correct behavior for
the draw_circle() function if there is a scale transformation)
in use that is not the same scale in the X dimension as it is RN = {
in Y dimension. In this example, the affine drawable fa &= 7es swss Ham
would need to realize to convert APl calls from -
draw_circle() to draw_ellipse().

For these and other similar reasons, we have chosen to us
a hybrid approach. On API calls that can be transformed
without image manipulations in all cases we do so,
otherwise we resort to manipulating the images
themselves.

Our work here has a relationship to, but differs
substantially from, the concept of glyphs found in
Interviews[3] and Fresco[14]. Glyphs do not store their
own size or position— they derive (compute) these
guantities when needed. Further, glyphs compute their X
and Y position with respect to their parent, so it is implicit
that a parent can affect the computations of its children’s
position or size. (In [14] these properties of are used to
implement a technique for mixing visual transformations FIGURE 3: An Example of a Complex Output
with conventional Ul layout techniques, which is Modification
complementary to the techniques presented here.) In our
case, interactors are allowed to cache their own locgh this example, all of the objects in the office—including
copies of their state variables, so the system must conspiggy|es, chairs, walls, and so on—are subArctic interactors,
with particular parents to implement the outputas are the “typical” interactors found in the interface—
scrollbars, buttons, and the like. The axonometric

ERifIeoEAmREr

1. Although this drawable will work correctly for any interactors change the semantics of position and size to
imagedrawn with it under any reversible X,Y trans- work in their pseudo-3D world. These interactors maintain
form it will not work as expected if polygons or lines a “floor location” and “floor size,” which indicate the
are drawn with it and the transformation is not affine. “virtual” position of the furniture on the floor. But to work
This is because we modify only the endpoints in an in the subArctic 2D world, they also maintain “real”
API call like draw_line()we do not attempt to mod- location and size information, which indicates the absolute

ify each point along the line. location of the interactor in the subArctic interface.

Essentially, the “real” coordinates represent the boundingariables is generally not allowed, but rather access is
box of the projection of the furniture, while the “floor” always through a method (function) call. This insulation
coordinates represent the bounding box of the plan of therovides us with an opportunity to add a “hook” to several
furniture. key methods so that these methods could be “updated” to
understand that output is being transformed. When a

" : ¢ - parent object is using an output transformation, it provides
position these interactors, and to detect spatial conflic

; X - ; ach of its children with a “hook object” that is the reverse
among them. subArctic coordinates and dimensions arg; ihe output transformation in use. Methods that are used

computed “on the fly” as needed, by a special axonometrig, the calculation of interactor boundary or position call

drawable. The drawing code for the furniture interactorgy . gh the hook object before the normal computation is
knows how to draw a given piece of furniture. For a chairyarformed. This mechanism gives the hook object an
for example, the code understands .how to draw a bap pportunity to manipulate the coordinate systems
seat, and four I(_ags. It colludes with .the axonomet”%ppropriately to “reverse’ the effects of the output
drawable to pofsmon, scale, and project the drawingransformation. Effectively, we have allowed the parent
operations it performs on It. object to become involved in the size and position

When the drawing for a scene is started, the top-levéj@lculation of its children.

parent of the scene creates an axonometric drawable, and . . _ .

sets scaling and projection angle values for it. Thesg alternative to this approach is to manipulate the
values will hold for all children drawn in the scene. Next,coordlnat.es of input events expll_C|tIy W'th a tree walk.

when each child interactor draws, it begins by establishing/nder this scheme, before any input is provided to an

its floor bounding box with the axonometric drawable., telrfc(tjc:rdthe):1 and Y”coqrdlnater? IOf lthe mprt are
Next, as it draws the features of its particular piece ofV&lked" down the tree allowing each level to perform a
furniture, the axonometric drawable transforms theiransformation on the values. Since most interactors don't

coordinates and angle of drawing, based on floor boundirfgedify the coorﬂ!nate s;:cstems. of theirldchi_ldreln, ti)n ﬂ;]e
box information, to create the projected drawing at th&OMmmon case this transformation would simply be the
angle and size specified by the overall scene. identity transformation. However, a parent that was

manipulating its childrens’ output could reverse the effects
This pseudo-3D effect was created easily and efficiently inf its transformation by modifying the coordinates as
a toolkit that was primarily written for 2D interfaces. needed.

Likewise, the transparency effect used for conflicts iSThe reason we did not choose this approach was the
accomplished by using a special transparent drawablgossibility that an interactor might cache the coordinate
subclass. This drawable can easily be used to render ap¥jues for use at a later time. If some parent interactor
object in the interface with a given opacity value.decided to change its transformation (without telling the
Interactors in the interface are unaware of thisnteractor doing the caching) after the cached values were
transformation. stored, the cached coordinates would no longer correct In

Both of these modifications are examples of the kinds gpractice, it is not yet clear how often this case will occur.
output effects that applications can easily achieve usingnother alternative we considered was a

Floor coordinates and dimensions are universally used

. : ! layer of
the flexible drawing approach outlined here. translation between the input dispatch system and the
INPUT WITH OUTPUT MODIFICATION interactors that receive the input. Under this approach,

The primary challenge with modifying the output of inPut would no longer be dispatched directly to

interactors—principally via parents modifying their interactors, but would be _|nd|rected through a ta_ble of
childrens’ output—is that the interactor being modified is input filters.” When an interactor was to receive a

unaware of these changes and thus may make assumptigtticular type of input, the table entry for that type of

about its size or position that are not valid. (Again, thidnPut would be consulted and the input would be

problem does not occur with glyphs, since glyphs partiauﬁlsp.atched to the filter found in the table. The handler then
delegate the computation of their area and position to thefp given the responsibility for transmitting the input the

parents.) We have implemented one solution to thighteractor. This would permit users to introduce new filters
problem and have devised two other possible approach#¥0 the table that were aware of the output

that may be useful. It should be clear that the problems dfansformations and to perform the correction on the input
interactors having invalid local notions about their positionvalues “early” in the process—before the interactor tree
and size is only a problem for positional input (such ag§ven became aware of the input.

mouse clicks) and is not relevant for focus-based inpu . _— . .
(such as keyb)oard input). P éur primary objection to this approach is that for each new

input protocol [7] the user code must be concerned with all
This problem primarily occurs in situations where a parenpossible output modifications and adjusted accordingly. In
interactor knows about a transformation being applied tpractice, we have found that subArctic’s users do construct
its childrens’ output. To address this case, we haveew input protocols for their own uses, and we were
implemented a parent/child solution that is related taconcerned about requiring additional effort for them to
Linton’s glyphs. In subArctic, direct access to instancework with custom input protocols.

IMPLEMENATION STATUS

example, the affine drawable presented here was one of the

All of the simple techniques shown in Figure 1 areauthors’ (Marinacci) first project using subArctic
implemented and have either already been released as P8HrERENCES

of the toolkit or will be available soon in forthcoming 1]
releases of subArctic. Most new drawable effects are fairl)L
simple to implement. As an example the shadow drawable
is 500 lines of Java code and the blur interactor is 160 lines
of code. One of the authors (Marinacci) estimates that th]
blur interactor took 5-6 hours to successfully implement
and many simple drawable modifications can probably be
done in substantially less time. 3]

The more advanced technique for axonometric drawing
discussed in the text is currently being integrated with the
toolkit. The original implementation of this technique was
not done with a drawable.

FUTURE WORK [4]

Our approach to modifying output has at its core the
difficulty that interactors “know” their position and size.
While this is good for performance, since computing a
position or size requires simply retrieving a stored value, it
has created many challenges for our system. Glyphs are at
the other end of this design spectrum of caching vers
computing position—glyphs are always required to
compute their size and position. While this requirement
makes output modifications easier, performance can be a
guestion. There may be a middle ground in this spectru 6]
an approach we are investigating with an object we ar
calling asemiglyph A semiglyph is an object that could
have some numbe\ of sizes and positions. Its “current” [7]
size and position would be selected from this set, or
perhaps even computed on-the-fly, by a parent. This
technique incurs some storage overhead, but gives objects
the capability to perform complex output manipulations

transparently.

(8]
CONCLUSIONS
In this paper, we have presented our approach to adding
complex output modifications to a 2D user interface
toolkit. The techniques described here allow a set of
complex, arbitrary output transformations to be created®]

and composed. Further, drawing effects can be added after
the fact to existing interactor libraries and applications.

We have also discussed our approach to adaptinﬂ
positional input to work correctly in the face of output 0]
modifications that may transform an interactor’s position,
size, or bounding shape.

We believe that the techniques described here provide [41]
convenient and systematic way to provide more realistic
displays and effects to any interactor.

The strongest evidence of the utility of this approach may
be found in the fact that many people outside of the
subArctic research group have constructed output effects
using this approach. From their experiences, we believid 2]
that the using the output techniques presented here does
not require an understanding of the entire toolkit—the
handling of output, and the construction of new output
effects, is largely separable from the rest of toolkit. As an

Abstract Window Toolkit APAvailable from http://
www.javasoft.com/products/JDK/1.1/docs/api/
packages.html

BeOS Interface Kit Available from http:/
www.be.com/documentation/be_book/InterfaceKit/
ikit.html

Calder, Paul, and Linton, Mark. “Glyphs: Flyweight
Objects for User Interfaces,” iRroceedings of the
ACM Symposium on User Interface Software and
Technology(UIST'90), Snowbird, Utah: ACM, pp.
92-100.

Edwards, W.K., and Mynatt, E.D., “Timewarp: Tech-
nigues for Autonomous CollaboratiorPfoceedings

of the ACM Conference on Human Factors in Com-
puting SystemgCHI'97), Atlanta, GA: ACM, pp.
218-225.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,
Design Patterns: Elements of Reusable Object-Ori-
ented Software.Addison-Wesley, 1995. Reading,
Mass.

Gosling, JamesThe Java Programming Language.
SunSoft Press, 1996.

Henry, Tyson., Hudson, Scott., and Gary Newell.,
“Integrating Snapping And Gesture in a User Inter-
face Toolkit,"Proceedings of the ACM Symposium on
User Interface Software and Technold@ST'90),
Snowbird, Utah: ACM, pp. 112-122.

Hudson, Scott, and Smith, lan. “Ultra-Lightweight
Constraints.’Proceedings of the ACM Symposium on
User Interface Software and Technola@ST'96),
Seattle, WA, 1996.

Linton, M., and Price, C., “Building Distributed User
Interfaces with FrescoProceedings of the Seventh X
Technical Conferenc&oston, Mass., January 1993,
pp. 77-87.

Myers, Brad A., “A New Model for Handling Input,”
ACM Transactions on Information Syste®s3 (July
1990), pp. 289-320.

Myers, B.A., McDaniel, R., Miller, R., Ferrency, A.,
Doane, P., Faulring, A., Borison, E., Mickish, A., and
Klimovitski, A., “The Amulet Environment: New
Models for Effective User Interface Software Devel-
opment,” Carnegie Mellon University Technical
Report CMU-CS-96-189, November, 1996.

Mynatt, E.D., and Edwards W.K., “Mapping GUIs To
Auditory Interfaces,” inProceedings of the ACM
Symposium on User Interface Software and Technol-
ogy (UIST'92), Hilton Head, South Carolina: ACM,
pp. 61-70.

