
Systematic Output Modification in a 2D
User Interface Toolkit

W. Keith Edwards‡, Scott E. Hudson†, Joshua Marinacci*, Roy Rodenstein*,
Thomas Rodriguez††, Ian Smith*

††JavaSoft
Sun Microsystems

10201 N. DeAnza Blvd.
Cupertino, CA 95014
never@eng.sun.com

*Graphics Visualization and Usability Center
College Of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

{iansmith, joshuam, royrod} @cc.gatech.edu

‡ Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

kedwards@parc.xerox.com

†Human Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 1513-3891

hudson@cs.cmu.edu

ABSTRACT

In this paper we present a simple but general set of
techniques for modifying output in a 2D user interface
toolkit. We use a combination of simple subclassing,
wrapping, and collusion between parent and output objects
to produce arbitrary sets of composable output
transformations. The techniques described here allow rich
output effects to be added to most, if not all, existing
interactors in an application, without the knowledge of the
interactors themselves. This paper explains how the
approach works, discusses a number of example effects that
have been built, and describes how the techniques presented
here could be extended to work with other toolkits. We
address issues of input by examining a number of extensions
to the toolkit input subsystem to accommodate transformed
graphical output. Our approach uses a set of “hooks” to undo
output transformations when input is to be dispatched.

KEYWORDS: User Interface Toolkits, Output, Rendering,
Interactors, Drawing Effects.

INTRODUCTION

Graphical user interfaces have, since their inception, relied
on a fairly basic set of interactors(sometimes calledcontrols
or widgets) to effect change in applications. These
interactors have typically been rendered on the screen using
fairly simple output techniques—nearly all interactors

visually consist of simple lines and boxes, often drawn using
only a small number of colors. Most graphical interfaces, at
least for “traditional” applications, have been wanting in
graphical richness.

The reasons for the limited “vocabulary” of output in these
interfaces is obvious—most early systems were constrained
by computational power to produce only the most basic flat-
looking 2D interfaces. More recently, most UI toolkit and
application designers have decided that they are willing to
trade computational cycles for a slightly richer look on the
desktop. Hence we see 3Dlooking interactors, such as those
found in Motif, Windows 95, and NextStep. The 3D look of
these toolkits can, and has, been leveraged by designers to
convey new visual cues in their interfaces. The dialog boxes
in the OPEN LOOK system which appear to “fly off” of the
desktop are an example of such a cue [13].

Our work is concerned with augmenting and extending the
visual richness in user interface toolkits. In particular, we are
interested in ways to create neweffects that can be applied to
objects in a graphical user interface. Unlike the move to 3D
looking toolkits, where each interface interactor had to be re-
coded to provide the new look, our focus is on effects that
can be appliedtransparently to any existing object in an
application’s interface.

These effects form a new visual vocabulary that can be used
by application writers to convey new cues and new
information in their interfaces. These effects are visually
rich, easy to create and use, and can be applied throughout
an application.

Figure 1 shows an example of several transformations being
applied to a simple graphical interface. All of these
transformations have been implemented using our
infrastructure for creating output effects; application writers
who desire new effects can easily create them using this
infrastructure. An application writer may choose to use these
effects, and others, in any number of ways. For example, the

This work was supported in part by a grant from the Intel
Corporation, and in part by the National Science Foundation
under grants IRI-9500942 and CDA-9501637.

Copyright ©1997, Association for Computing
Machinery. Published in Proceedings of the
Tenth ACM Symposium on User Interface
Software and Technology (UIST’97), Banff,
Alberta, Canada. October 14-17, 1997.

presence of a modal dialog box may be indicated by blurring
the inactive portion of an application. Scaling can be used
throughout many applications, including drawing tools,
interface builders, and document layout systems, to provide
zooming. Shear and shimmer can be used to add novel
animation effects to application interfaces and cast shadows
can be used to enhance dragging interactions. This paper
focuses on the architectural requirements, design, and
implementation of a user interface toolkit that supports
arbitrary output transformations throughout the interface.
These transformations can be applied to user interface
interactors (such as buttons, scrollbars, and the like), as well
as other on-screen objects (such as drawn figures in a
graphical editor, or text regions in a word processor).

Our work has several goals. First, it is essential that all
transformations can be applied transparently. By
transparency we mean that the output of on-screen objects
can be modified without the objects themselves “knowing”
about the modification. Interactors in the UI toolkit as well
as applications can use new effects, even if the effect was
written after the interactor or application was created.

Second, transformations can be composed, dynamically, at
run-time. This requirement is essential since we do not wish
to require that all possible transformations—and
combinations of transformations—be explicitly known and
implemented by the application writer or toolkit builder.

Third, we must be able to accommodate positional input in
the face of output transformations. So, for example, if we
scale an on-screen interactor to twice its size, we require that
the interactor be able to receive and process input in its new
dimensions. Such accommodation must be able to work for
arbitrary output modifications, even ones that change the
position and bounding box shape of the interactors.

The work presented here is discussed in the context of the
subArctic user interface toolkit [8]. SubArctic is based on
the Java [6] language, and is implemented entirely in Java—
no native code outside the standard Java runtime
environment is required. The techniques presented here are
applicable to other interface toolkits, however, since
subArctic assumes only a fairly simple model of the
fundamental constructs in the user interface.

1a: Original Unmodified Interface 1b: Blurred 1c: Rotated

1d: Sine Wave Mapped (Shimmer) 1e: Rot-13 1f: Shadowed

FIGURE 1: Examples of Output Modifications

This paper is organized as follows. First, we present a brief
overview of the output subsystems typically found in most
object-oriented user interface toolkits. Next, we discuss our
particular architectural approach to supporting arbitrary
output transformations, given our goals of transparency,
composition, and input accommodation. This discussion
provides details of our particular implementation atop the
Java Abstract Windowing Toolkit (AWT). Next, we examine
several effects that we have developed as a part of the
subArctic user interface toolkit. Some of these effects
provide fairly simple output transformations; others
implement a set of complex modifications that can
significantly reduce the burden of application writers for
certain tasks. These effects are presented both as an example
of the kinds of modifications that are possible, and as
examples of how particular transformations are implemented
using our infrastructure. Finally, we discuss issues related to
input that arise with our approach, and detail several
approaches to solving various input problems. We close with
a discussion of implementation details, conclusions, and
future work.

OUTPUT OVERVIEW
Essentially all of the object oriented user interface toolkits in
use today—both in the research community, such as Garnet
[10], Amulet [11], Artkit [7], and Fresco [9], and in
production systems, such as AWT [1] and the Be toolkit [2]
—share two important properties.

• The runtime composition of the user interface is
represented as a tree of objects.1 We call the nodes of this
treeinteractors.

• The graphical operations on the display are encapsulated
in an object that we call adrawable. The drawable object
provides an interface which allows each interactor to
display its output on the screen. The drawable provides
access to the drawing surface, and also keeps track of the
state of drawing such as the current foreground color, the
current font, and so on.

In this work we will describe our output modifications in the
context of the subArctic Java-based toolkit. SubArctic
presents the same architectural model of interactor trees and
drawables as the toolkits mentioned above, and thus our
discussion of output modifications is easily applicable to
them as well.

Typically in these systems, a graphical user interface is
rendered to the screen through a traversal of the interactor
tree. The traversal begins at the root of the tree, and a
drawable object is recursively passed down the tree. At each
node of the tree, interactors use the drawable’s API (see
Figure 2) to render their desired image onto the display. Each
interior (parent) node in the tree is responsible for passing
the drawable on to its children so that they will have the
opportunity to draw themselves using it. The parent may

1. The Fresco toolkit allows this structure to be a directed
acyclic graph rather than a proper tree but this modifica-
tion does not change our discussion so we will assume
that each toolkit uses a tree.

modify the drawable before it is passed to each child,
typically by translating the coordinate system used in the
drawable to one “rooted” at the child and clipped to the
child’s bounding box.

For this discussion, we have assumed that the same drawable
is passed to each interactor in the tree. We shall see shortly,
however, that this is not strictly required.

Note that in a system such as this, interior nodes of the tree
can produce various stacking orders of their children and
themselves by imposing an ordering for the traversal and
drawing of themselves and their children. For example, an
interior node that wanted its output to be “above” (drawn on
top of) the output of its children could simply traverse its
children, causing their drawing to be performed before doing
any drawing of its own.

Readers familiar with object oriented programming
techniques will quickly see that this abstraction of the
drawing API into an object allows for effective subclassing
of drawable objects. For example, subclasses of drawable
objects could be (and are) used to allow the same
programmatic interface to drawing on the screen and
drawing on a printer. We will exploit this property quite
heavily in our techniques.

The AWT Graphics Object
SubArctic is built on top of the AWT toolkit [1] which
comes standard with any Java implementation. AWT uses its
Graphics object—the underlying object on top of which
subArctic’s drawable object is built—as a means to facilitate
platform-independence, a major goal of Java. AWT
applications use the Graphics object’s API to provide
drawing operations, but never use the Graphics object
directly—only subclasses of it. A particular AWT
implementation on a given platform will provide a platform-
specific implementation of the Graphics object that is
supplied to the application at runtime for drawing. This
technique allows the same application code to work on
widely different platforms such as UNIX systems running X,
Windows, and the Macintosh.

Although this platform independence is clearly beneficial,
there are drawbacks to the AWT Graphics object. Most
notably, AWT applications normally do not create their own

FIGURE 2: A Portion of the Drawable API from
subArctic

draw_line(int x1, int y1, int x2,
int y2);

draw_rect(int x1, int y1, int x2,
int y2);

draw_circle(int center_x, int
center_y, int radius);

set_foregound(Color fg);

set_font(Font f);

new types (subclasses) of Graphics objects. In fact, it is not
clear that the AWT design even considers that user level code
would want to subclass the Graphics object. For this reason,
the subArctic drawable is “wrapped around” an AWT
Graphics object [5]. By wrapping, we mean that the
subArctic drawable forwards most calls on its API to the
underlying Graphics object but also the subArctic drawable
allows user code to subclass and override its behavior.

OUR APPROACH TO OUTPUT MODIFICATION
The architectural approach subArctic takes to output
modification is the use of subclassing of drawable objects in
conjunction with wrapping. A toolkit must support both of
these techniques to achieve maximum flexibility of the
output system.

As an example, consider the possibility that a drawable
subclass has been written for rendering images to a printer.
This subclass may not be known to the application
programmer; certainly the application programmer should
not berequired to know about this subclass to write his or
her application. Requiring a priori knowledge such as this
defeats one of the points of subclassing, namely that
application code can transparently use subclasses without
modification. Subclassing provides an effective means for
adding new behaviors while retaining existing APIs in a way
that is transparent to application code.

But now suppose that the application writer would like to
provide a drawable class that performs scaling, perhaps to
implement a zoom function in a drawing application. Ideally,
we would like for the scaling drawable and the printing
drawable to be usable in conjunction. That is, we should be
able to “mix and match” drawing functionality. If the writer
of the scalable drawable is also the creator of the printing
drawable, then he or she could compose these statically
through subclassing. This method is inflexible, however, and
does not lend itself well to easy, on-the-fly composition of
drawable effects. Further, it promotes a combinatorial
explosion in the drawable class hierarchy (scaled drawables,
printing drawables, scaled-printing drawables, and so on,
each specialized at compile-time for a given set of tasks).

Our approach is to combine the use of subclassing for static
extensibility of drawables with the use of wrapping for
dynamic, or run-time composition of effects. In this model,
behaviors that are entirely new and not expressible in terms
of existing drawing behaviors are implemented through
simple subclassing. An example of this type of behavior is a
printing drawable. The low-level details of how to talk to a
given printer are not decomposable into terms of any existing
functionality in the drawable class. Thus, entirely new
behavior such as this would be created through subclassing
drawable to provide a new class that implements printing.

In contrast, behaviors which can be expressed in terms of
existing drawable operations are implemented through
wrapping. Unlike simple subclass relationships, which are
fixed at the time the application is written, wrapping can be
accomplished at runtime. An example of a behavior that can
be decomposed into primitive drawable operations, and
hence is a suitable candidate for the wrapping pattern, is

rotation. A rotate drawable can implement its operations in
terms of an “inner” drawable that it calls on to perform the
actual output. The rotate drawable would be instantiated with
a reference to the drawable it is wrapping, and would
forward method calls to it, modifying them appropriate to
implement its particular effect. Wrapping can obviously be
chained at runtime—users can create wrappers of wrappers
to compose effects—and can be created using any drawable
subclass as an inner drawable—so they can wrap “primitive”
drawables such as printing drawables and so forth.

In most drawing effects, these techniques are used side-by-
side. That is, a new drawable subclass will be created for a
particular behavior (subclassing being used to provide type
safety and polymorphism), but in most cases, the subclass
will wrap another drawable and forward method calls on to
it. Only operations that are not decomposable (such as
printing) avoid the wrapping technique.

Note that the subArctic drawable class itself is a subclass of
the AWT Graphics object, so it can be used anywhere an
existing Graphics object is used, even in pure AWT (non-
subArctic) code.

A third technique is used in situations where a particular
output effect may need to happenafter some complete series
of drawing operations has happened. An example of this type
of effect is blur. A blur performs an average of the pixel
values surrounding a given pixel to compute a new value for
it. Effects such as this cannot easily be computed “on the fly”
as rendering is done—typically having the entire, completed
image available is required for blurring.

Such “deferred drawing” effects are accomplished through
collusion between a drawable that implements the effects,
and a parent interactor that sets up the context and extent of
the effect. As an example, blurring might be accomplished
by a combination of a blur drawable and a blur parent. These
two classes would collude to blur any interactors contained
in the blur parent. To perform this effect, the blur parent
would first create an off-screen image, and cause its children
to render themselves into it (off-screen rendering is
accomplished simply by creating a drawable that draws into
an off-screen image). Next, this image is rendered on the
screen using the blur drawable. The end effect is that the
interactor tree rooted at the blur parent is rendered blurred.

This collusion can be used anytime that drawing effects can
be performed only after a complete set of drawing operations
has been finished. The disadvantage of this technique is that
it requires modification of the interactor hierarchy by the
application writer to implement the effect—the colluding
parent interactor must be inserted at the appropriate point in
the hierarchy.

In summary, our approach can be characterized by three
main features:

• The ability to subclass drawable objects to provide new
primitive output behaviors.

• The ability to wrap drawable objects inside other
drawables to allow functionality to be composed.

• The ability for drawables and parent interactors to
collude to perform deferred drawing.

EXAMPLES OF SIMPLE OUTPUT MODIFICATIONS

In this section we will briefly explain several of the output
transformations we have implemented. These
transformations are implemented as new drawable classes
that either subclass or wrap other drawables. The effects are
composable and—more importantly—can be used with any
existing interactor transparently.

Shadow

The shadow drawable was the first drawable subclass we
created. This drawable has a simple effect—it forces the
color of any drawing done using it to be gray. Further, it
prevents user code from changing the drawing color to
anything other than gray. The goal of this drawable was to
leverage the pre-existing drawing code in interactors to
create their own “drop shadows” by simply substituting the
shadow drawable.

To support interactors that draw using images, the shadow
drawable supports both a fast and slow image handling
mode. In “fast mode,” the drawable simply copies a gray
rectangle with the same bounds as the image to the screen. In
“slow mode,” only the non-transparent pixels of the images
are rendered in gray. Slow mode allows images that use
transparency to cast shadows with “holes” in them, albeit at
the price of compute-intensive drawing.

To achieve effects like the one seen in Figure 1F, we
introduce a new interior node into the interactor tree, called a
“shadow parent.” This parent works with a shadow drawable
to create the shadow effect. When the drawing traversal
reaches the shadow parent, the parent does not immediately
draw its children. Instead, it performs an “extra” drawing
traversal over its children, using the shadow drawable to
produce images of their shadows slightly offset from the
normal position of the children. Finally, it allows “normal”
drawing to proceed. The end result is that shadows are drawn
slightly offset and underneath any output drawn by the
children.

Importantly, and like all of our drawing effects, this effect
can be used with any interactor, and requires no modification
to any existing interactor code.

Blur

Like the pair of shadow parent and shadow drawable, we
have a blur parent and blur drawable that work together to
perform a simple “averaging” blur on the blur parent’s
children. An averaging blur is one in which a given pixel is
compared to its neighbors, the values of all nearby pixels
summed and the result averaged to get the new pixel value.

Our blur parent creates this effect as a “post processing” step
after the all of its children’s drawing is completed. This is
done by allowing the normal drawing traversal of the
children to proceed as usual, but with the parent substituting
a drawable that renders to an off-screen image. This image is
then rendered on-screen using the blur drawable, wrapped
around the original drawable.

Rot-13
Although this drawable is of questionable utility as shown in
Figure 1E1, its ability to transform drawn text makes it of
interest here. The rot-13 drawable is a wrapper around
another drawable and whose only function is to perform the
rot-13 transformation on text drawn with it. All other output
drawing operations are not changed and are passed through
unmodified to the wrapped drawable.

The rot-13 transformation is one in which all the letters of
the alphabet are shifted by 13 positions, wrapping around the
end when necessary. For example, the rot-13 of ‘A’ is ‘N.’
Numbers, punctuation marks, and other symbols are not
affected.

The image shown in Figure 1E is interesting because it
shows a difficulty that can arise when a drawable is
performing a drawing modification without telling the
interactor. In a proportional font like the one used in Figure
1E, the size of a string to be drawn can change substantially
when the content is changed—even in a simple
transformation like rot-13. We have imagined that it might
be possible for “language drawables” to be implemented
which can render their display in different languages, but this
sizing problem seems to make the construction of such a
drawable quite a difficult task.

The ability to capture and modify text, as explored by the
rot-13 drawable, can be used in other ways. We have
constructed a drawable very similar to the rot-13 drawable
that can take all output drawn with it and record it to a file
and/or send the text to a speech synthesizer. This ability to
“trap” all textual output has been used in the Mercator
system to build an offscreen model of text on the screen for
blind users [12].

Shimmer
The shimmer effect that is shown in Figure 1D is actually a
snapshot of an animation. A given frame of this animation is
created by shifting each horizontal line of pixels to the right
an amount which is controlled by a sine wave. The vertical
position of the row of pixels determines at which point along
the sine wave the given row is placed. One can imagine the
graph of a sine wave placed vertically down the left hand
side of the image and the image shifted by an amount
corresponding the amplitude of the sine wave at that point.

For the animation, the input parameter of the sine wave is
gradually modified and the whole interface appears to
shimmer. This shimmer effect is very similar to the
“flashback sequence” marker that is common in movies and
television.

This effect is accomplished by a parent and drawable using
the deferred drawing approach outlined above. After the
parent’s children have rendered their image, the entire image
is post-processed to form the shimmer.

1. We have used the rot-13 drawable to implement a lens
which can be moved over the interface to see any text
on the interface through the rot-13 function. This is
much more useful!

Affine Transformations

The screen shot shown in Figure 1C represents taking the
interface in Figure 1A and applying a rotation transform.
This transformation is applied by using a special subclass
of drawable, the affine drawable. The affine drawable can
be parameterized by any reversible transformation on X,Y
coordinates. Simple uses of the affine drawable include
scaling, shearing, rotation, and other “normal” two-
dimensional transformations.1

The affine drawable can be implemented in two basic
ways. The most obvious approach is to allow the user code
to “draw” into an offscreen image and then perform the
appropriate transformation on each pixel. While this
approach is general, it can be slow if the size of the
offscreen image is large. The second approach is to
subclass and intercept each function in the drawable API
and transform the coordinates that are suppliedbeforeany
drawing is done. This approach offers a substantial speed
improvement (since only a few points need to be
transformed) but has several drawbacks. First, one of the
drawable APIs allows user code to simply copy an
offscreen image onto the drawing surface. This implies
that affine operations on images will be required anyway.
Slightly more subtly, some of the drawable APIs don’t
work as expected when a transformation is being applied.
For example, drawing a circle is not correct behavior for
the draw_circle() function if there is a scale transformation
in use that is not the same scale in the X dimension as it is
in Y dimension. In this example, the affine drawable
would need to realize to convert API calls from
draw_circle() to draw_ellipse().

For these and other similar reasons, we have chosen to use
a hybrid approach. On API calls that can be transformed
without image manipulations in all cases we do so,
otherwise we resort to manipulating the images
themselves.

Our work here has a relationship to, but differs
substantially from, the concept of glyphs found in
Interviews[3] and Fresco[14]. Glyphs do not store their
own size or position— they derive (compute) these
quantities when needed. Further, glyphs compute their X
and Y position with respect to their parent, so it is implicit
that a parent can affect the computations of its children’s
position or size. (In [14] these properties of are used to
implement a technique for mixing visual transformations
with conventional UI layout techniques, which is
complementary to the techniques presented here.) In our
case, interactors are allowed to cache their own local
copies of their state variables, so the system must conspire
with particular parents to implement the output

1. Although this drawable will work correctly for any
image drawn with it under any reversible X,Y trans-
form it will not work as expected if polygons or lines
are drawn with it and the transformation is not affine.
This is because we modify only the endpoints in an
API call likedraw_line() we do not attempt to mod-
ify each point along the line.

transformations. In our discussion of the input side of
these transformations, we will use an approach that is
more similar to glyphs.

A MORE COMPLEX OUTPUT MODIFICATION
Other applications built using subArctic can support more
complex output modifications. The Timewarp
collaborative toolkit [4] makes use of a number of rich
drawing effects. For example, onscreen objects that are
involved in “conflicts”—operations where the
interpretation of the result is ambiguous—are drawn
blurred or transparently to indicate their special status.

One Timewarp application, an office furniture layout tool,
uses the subArctic output modification system to create a
“pseudo-3D” interface. This interface leverages the
existing 2D infrastructure in subArctic to create an
axonometric view on an office. This view is essentially 3D
without perspective; all parallel lines stay parallel.

Figure 3 shows an example from this application. Here we
see a room layout containing several pieces of furniture. In
this application, if two pieces of furniture are in conflict—
they occupy the same space at the same time—the
offending pieces of furniture are displayed as partially
transparent.

In this example, all of the objects in the office—including
tables, chairs, walls, and so on—are subArctic interactors,
as are the “typical” interactors found in the interface—
scrollbars, buttons, and the like. The axonometric
interactors change the semantics of position and size to
work in their pseudo-3D world. These interactors maintain
a “floor location” and “floor size,” which indicate the
“virtual” position of the furniture on the floor. But to work
in the subArctic 2D world, they also maintain “real”
location and size information, which indicates the absolute
location of the interactor in the subArctic interface.

FIGURE 3: An Example of a Complex Output
Modification

Essentially, the “real” coordinates represent the bounding
box of the projection of the furniture, while the “floor”
coordinates represent the bounding box of the plan of the
furniture.

Floor coordinates and dimensions are universally used to
position these interactors, and to detect spatial conflicts
among them. subArctic coordinates and dimensions are
computed “on the fly” as needed, by a special axonometric
drawable. The drawing code for the furniture interactors
knows how to draw a given piece of furniture. For a chair,
for example, the code understands how to draw a back,
seat, and four legs. It colludes with the axonometric
drawable to position, scale, and project the drawing
operations it performs on it.

When the drawing for a scene is started, the top-level
parent of the scene creates an axonometric drawable, and
sets scaling and projection angle values for it. These
values will hold for all children drawn in the scene. Next,
when each child interactor draws, it begins by establishing
its floor bounding box with the axonometric drawable.
Next, as it draws the features of its particular piece of
furniture, the axonometric drawable transforms the
coordinates and angle of drawing, based on floor bounding
box information, to create the projected drawing at the
angle and size specified by the overall scene.

This pseudo-3D effect was created easily and efficiently in
a toolkit that was primarily written for 2D interfaces.

Likewise, the transparency effect used for conflicts is
accomplished by using a special transparent drawable
subclass. This drawable can easily be used to render any
object in the interface with a given opacity value.
Interactors in the interface are unaware of this
transformation.

Both of these modifications are examples of the kinds of
output effects that applications can easily achieve using
the flexible drawing approach outlined here.

INPUT WITH OUTPUT MODIFICATION
The primary challenge with modifying the output of
interactors—principally via parents modifying their
childrens’ output—is that the interactor being modified is
unaware of these changes and thus may make assumptions
about its size or position that are not valid. (Again, this
problem does not occur with glyphs, since glyphs partially
delegate the computation of their area and position to their
parents.) We have implemented one solution to this
problem and have devised two other possible approaches
that may be useful. It should be clear that the problems of
interactors having invalid local notions about their position
and size is only a problem for positional input (such as
mouse clicks) and is not relevant for focus-based input
(such as keyboard input).

This problem primarily occurs in situations where a parent
interactor knows about a transformation being applied to
its childrens’ output. To address this case, we have
implemented a parent/child solution that is related to
Linton’s glyphs. In subArctic, direct access to instance

variables is generally not allowed, but rather access is
always through a method (function) call. This insulation
provides us with an opportunity to add a “hook” to several
key methods so that these methods could be “updated” to
understand that output is being transformed. When a
parent object is using an output transformation, it provides
each of its children with a “hook object” that is the reverse
of the output transformation in use. Methods that are used
in the calculation of interactor boundary or position call
through the hook object before the normal computation is
performed. This mechanism gives the hook object an
opportunity to manipulate the coordinate systems
appropriately to “reverse” the effects of the output
transformation. Effectively, we have allowed the parent
object to become involved in the size and position
calculation of its children.

An alternative to this approach is to manipulate the
coordinates of input events explicitly with a tree walk.
Under this scheme, before any input is provided to an
interactor the X and Y coordinates of the input are
“walked” down the tree allowing each level to perform a
transformation on the values. Since most interactors don’t
modify the coordinate systems of their children, in the
common case this transformation would simply be the
identity transformation. However, a parent that was
manipulating its childrens’ output could reverse the effects
of its transformation by modifying the coordinates as
needed.

The reason we did not choose this approach was the
possibility that an interactor might cache the coordinate
values for use at a later time. If some parent interactor
decided to change its transformation (without telling the
interactor doing the caching) after the cached values were
stored, the cached coordinates would no longer correct In
practice, it is not yet clear how often this case will occur.

Another alternative we considered was a layer of
translation between the input dispatch system and the
interactors that receive the input. Under this approach,
input would no longer be dispatched directly to
interactors, but would be indirected through a table of
“input filters.” When an interactor was to receive a
particular type of input, the table entry for that type of
input would be consulted and the input would be
dispatched to the filter found in the table. The handler then
is given the responsibility for transmitting the input the
interactor. This would permit users to introduce new filters
into the table that were aware of the output
transformations and to perform the correction on the input
values “early” in the process—before the interactor tree
even became aware of the input.

Our primary objection to this approach is that for each new
input protocol [7] the user code must be concerned with all
possible output modifications and adjusted accordingly. In
practice, we have found that subArctic’s users do construct
new input protocols for their own uses, and we were
concerned about requiring additional effort for them to
work with custom input protocols.

IMPLEMENATION STATUS
All of the simple techniques shown in Figure 1 are
implemented and have either already been released as part
of the toolkit or will be available soon in forthcoming
releases of subArctic. Most new drawable effects are fairly
simple to implement. As an example the shadow drawable
is 500 lines of Java code and the blur interactor is 160 lines
of code. One of the authors (Marinacci) estimates that the
blur interactor took 5-6 hours to successfully implement
and many simple drawable modifications can probably be
done in substantially less time.

The more advanced technique for axonometric drawing
discussed in the text is currently being integrated with the
toolkit. The original implementation of this technique was
not done with a drawable.

FUTURE WORK
Our approach to modifying output has at its core the
difficulty that interactors “know” their position and size.
While this is good for performance, since computing a
position or size requires simply retrieving a stored value, it
has created many challenges for our system. Glyphs are at
the other end of this design spectrum of caching versus
computing position—glyphs are always required to
compute their size and position. While this requirement
makes output modifications easier, performance can be a
question. There may be a middle ground in this spectrum,
an approach we are investigating with an object we are
calling asemiglyph. A semiglyph is an object that could
have some numberN of sizes and positions. Its “current”
size and position would be selected from this set, or
perhaps even computed on-the-fly, by a parent. This
technique incurs some storage overhead, but gives objects
the capability to perform complex output manipulations
transparently.

CONCLUSIONS
In this paper, we have presented our approach to adding
complex output modifications to a 2D user interface
toolkit. The techniques described here allow a set of
complex, arbitrary output transformations to be created
and composed. Further, drawing effects can be added after
the fact to existing interactor libraries and applications.

We have also discussed our approach to adapting
positional input to work correctly in the face of output
modifications that may transform an interactor’s position,
size, or bounding shape.

We believe that the techniques described here provide a
convenient and systematic way to provide more realistic
displays and effects to any interactor.

The strongest evidence of the utility of this approach may
be found in the fact that many people outside of the
subArctic research group have constructed output effects
using this approach. From their experiences, we believe
that the using the output techniques presented here does
not require an understanding of the entire toolkit—the
handling of output, and the construction of new output
effects, is largely separable from the rest of toolkit. As an

example, the affine drawable presented here was one of the
authors’ (Marinacci) first project using subArctic

REFERENCES
[1] Abstract Window Toolkit APIAvailable from http://

www.javasoft.com/products/JDK/1.1/docs/api/
packages.html

[2] BeOS Interface Kit Available from http://
www.be.com/documentation/be_book/InterfaceKit/
ikit.html

[3] Calder, Paul, and Linton, Mark. “Glyphs: Flyweight
Objects for User Interfaces,” inProceedings of the
ACM Symposium on User Interface Software and
Technology(UIST’90), Snowbird, Utah: ACM, pp.
92-100.

[4] Edwards, W.K., and Mynatt, E.D., “Timewarp: Tech-
niques for Autonomous Collaboration.”Proceedings
of the ACM Conference on Human Factors in Com-
puting Systems (CHI’97), Atlanta, GA: ACM, pp.
218-225.

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,
Design Patterns: Elements of Reusable Object-Ori-
ented Software. Addison-Wesley, 1995. Reading,
Mass.

[6] Gosling, James.The Java Programming Language.
SunSoft Press, 1996.

[7] Henry, Tyson., Hudson, Scott., and Gary Newell.,
“Integrating Snapping And Gesture in a User Inter-
face Toolkit,”Proceedings of the ACM Symposium on
User Interface Software and Technology(UIST’90),
Snowbird, Utah: ACM, pp. 112-122.

[8] Hudson, Scott, and Smith, Ian. “Ultra-Lightweight
Constraints.”Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST’96),
Seattle, WA, 1996.

[9] Linton, M., and Price, C., “Building Distributed User
Interfaces with Fresco,”Proceedings of the Seventh X
Technical Conference,Boston, Mass., January 1993,
pp. 77-87.

[10] Myers, Brad A., “A New Model for Handling Input,”
ACM Transactions on Information Systems, 8, 3 (July
1990), pp. 289-320.

[11] Myers, B.A., McDaniel, R., Miller, R., Ferrency, A.,
Doane, P., Faulring, A., Borison, E., Mickish, A., and
Klimovitski, A., “The Amulet Environment: New
Models for Effective User Interface Software Devel-
opment,” Carnegie Mellon University Technical
Report CMU-CS-96-189, November, 1996.

[12] Mynatt, E.D., and Edwards W.K., “Mapping GUIs To
Auditory Interfaces,” inProceedings of the ACM
Symposium on User Interface Software and Technol-
ogy (UIST’92), Hilton Head, South Carolina: ACM,
pp. 61-70.

