
Policies and Roles in Collaborative Applications

W. Keith Edwards1

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

+1-415-812-4405
kedwards@parc.xerox.com

“keep up” with the collaborative endeavor. They must work
to sustain the mechanics of the collaboration, attending to
their tools and other users, in addition to the task at hand.

Examples of work devoted to maintaining collaboration
rather than performing the domain-specific task include
explicit forms of session management (inviting users to a
session or browsing lists of sessions), creating and
maintaining role membership for a collaborative editor,
accepting or rejecting requests for access to data, and
interacting with floor control systems. These are all
“overhead” tasks in the sense that they are required only
because the collaborative environment requires them; not
because of any inherent need in the task itself.

Selectively Limiting Chaos
The presence of unpredictability within a large space of
actions is one of the reasons that collaborative systems can
present such a rich and free-form user experience. For
example, think of the open-ended forms of collaboration
seen in group sketching and mediaspaces. Such chaos also
indicates, however, that there may be a need to “rein in”
some of the “destructive” unpredictability present in
collaborative systems. If a collaborative environment passes
control to the user whenever ambiguity is present, users will
likely be overwhelmed by the task of “baby-sitting” the
environment, rather than getting work done.

In contrast, if we can provide some general guidelines to our
tools and environments about how to support the dynamism
in collaboration, we can relieve users of some of the burden
of maintaining the collaboration; users can be free to attend
to the focus of the collaboration, rather than to their tools.

Intelligence about how to respond to particular occurrences
in collaborative situations is called apolicy. The American
Heritage Dictionary defines policy as “a general principle or
plan that guides the actions taken by a person or group” [1].
In a collaborative environment, policies govern the
particulars of how users and applications interact with one
another. A policy describes a general contingency against
which specific events are evaluated and handled [13]. The
goal of a policy system should be two-fold:

ABSTRACT
Collaborative systems provide a rich but potentially chaotic
environment for their users. This paper presents a system
that allows users to control collaboration by enacting
policies that serve as general guidelines to restrict and define
the behavior of the system in reaction to the state of the
world. Policies are described in terms of access control
rights on data objects, and are assigned to groups of users
called roles. Roles represent not only statically-defined
collections of users, but also dynamic descriptions of users
that are evaluated as applications are run. This run-time
aspect of roles allows them to react flexibly to the dynamism
inherent in collaboration. We present a specification
language for describing roles and policies, as well as a
number of common “real-world” policies that can be applied
to collaborative settings.

KEYWORDS: computer-supported cooperative work,
policies, roles, infrastructure, access control, Intermezzo.

INTRODUCTION
Collaboration and Chaos
Collaborative systems are potentially chaotic environments.
Multiple users create opportunities for collaboration, rich
and potentially unexpected interactions occur between users
and applications—all of these contribute to the dynamic
nature of collaborative software. The dynamism present in
collaborative systems approaches—intentionally—the
fluidity and richness of interactions among people in the
physical world.

Interactions with collaborative systems are not as predictable
as with single-user systems since other users are not always
predictable. Put simply, the presence of other users, with
their own goals and experience levels, introduces the
potential for uncertainty, unpredictability, and surprise into
collaborative work sessions.

Further, as the complexity of the collaborative environment
increases, users may have to contend with an increasing
number of distractions and demands on their attention to

1. This research was conducted by the author while at the
Georgia Tech Graphics, Visualization, and Usability Center.

Copyright © 1996, Association for Computing
Machinery. Published in Proceedings of ACM
Conference on Computer-Supported Cooperative
Work (CSCW’96), Boston, MA. November 16-20,
1996.

• Reduce unpredictability in the system to a “manageable”
level. Allow the system to respond in expected ways to
the actions of users and other applications, and support
the principle of “least surprise.”

• Require less effort from users. Move the burden of
dealing with most user and application actions from the
user to the system.

Additionally, the use of policies in the context of
collaborative systems imposes a potentially competing goal:

• Do not stifle interaction. The policy system should not be
so restrictive that it discourages or artificially limits the
interactions between participants in a collaboration.

In essence a policy scheme is used to selectively limit the
dynamism inherent in a collaborative system. The “trick” is
to strike a balance with a set of policy controls that can make
a rich collaborative system manageable, and yet still
preserve the essential components of dynamism that are
necessary for human-to-human communication and
interaction.

This paper describes a system that can implement a variety
of useful policies in collaborative settings, particularly in the
areas of awareness and coordination. This system is unique
in several regards, first in its use ofaccess control to support
policies. Access control proves to be a powerful tool that is
capable of capturing many of the situations commonly called
“policies,” and we establish several examples of policies
based on access control. A second innovation of this system
is that it supports highly dynamic policies. The mapping of
users to policies that regulate their access can not only be
made statically (at application start time), but also
dynamically (changing as the application runs).

The facilities described in this paper have been implemented
atop the Intermezzo collaboration support environment.
Intermezzo is designed to provide applications with support
for coordination, rendezvous, and awareness [7].

ACCESS CONTROL AS A BASIS FOR POLICY
The notion of policy is broad, even in the non-technical
usage of the word. How can we devise a formal system that
allows us to capture the extremely general set of controls
that users may wish to place on their environments?

At this point, we present some examples of policies to drive
the presentation of the formal policy system. The policies
below are defined in common, everyday language and are
immediately obvious aspolicies in the non-technical sense
of the word. Further, they represent common desires of users
and have obvious utility in collaborative settings. If we can
capture these sorts of common, easy-to-express desires in
our system, then we will be close to supporting the rich
forms of policy usage that we see in the workaday world.

• “I don’t mind people in my workgroup knowing what I’m
working on, but others...”

• “Don’t let anyone bother me when I’m working on my
thesis. Unless it’s my advisor of course.”

• “I need to share my workspace with others during demo
days.”

• “If anyone calls for me, tell them I’m not here unless
they’ve called with the new budget numbers.”

All of the scenarios above are examples of policies that are
common in everyday use. Users want the ability to regulate
access to their information and personal space, and to govern
how the system will respond to events.

This paper postulates thata wide array of policies like the
ones above can be defined in terms of access control rights
on data objects. While perhaps not all policies can be
captured by an access control-based model, many of them
can. Of course, making such a scheme broadly applicable to
policy concerns requires that we wisely choose not only the
access control primitives we will support, but also the data
objects to which we will be restricting access. We shall
require not only an infrastructure that provides
representations for objects and operations in the
collaborative environment, but also conventions for how
applications will access the data objects in the environment.

To effectively support policies like the ones above, we must
provide a system that is (1) expressive enough to capture a
range of policy considerations, (2) flexible enough to not
over-constrain the collaboration, and (3) integrated with
information from and about the “real world” in which
collaboration occurs.

All of the examples above deal with coordination policies:
the information being regulated concerns individuals and
their actions. In other words, it is information useful in
providing awareness of others. The focus of this work is
supporting coordination and awareness, although many of
the ideas presented here could be extended to the domain of
application-specific policies and access control. Examples
include regulating access to paragraphs of text in a shared
editor, or managing a floor control system.

The next sections lay the groundwork for a policy system
based on our three goals of expressiveness, fluidity, and
contextual integration.

The Importance of Expressiveness
What work has been done to-date in policy systems for
collaborative applications? Research on policy can be
broadly divided into “coordination domain” policy—policy
controlling between-application information, such as
awareness and location information—and “application
domain” policy—policy controlling application-specific
data, such as access to text in a shared editor.

In the coordination domain, access control tends to be an all-
or-nothing affair. A common access control metaphor is the
“closed door.” CaveCAT [12], DIVA [19], Montage [21],
Cruiser [17], and others all provide an access control system
in which users can allow or disallow access globally. It is
impossible to specifically grant or refuse access to
individuals or classes of individuals. These systems might be
considered “target-oriented” since access is either granted or
denied based solely on the target of access; the requestor is
not taken into consideration. Some of these mediaspace-like
systems expand incrementally on the door metaphor by
providing several categories of access restrictions such as
door open, door closed, door ajar, and so on. Only recently

have some coordination-oriented systems begun to look at
more novel forms of policy. For example, the ability to
support “low-disturbance” forms of audio/visual interaction
in Smith’s work [20].

In the application domain, many systems use the notion of
roles to define access control groups. A role is a category of
users within the user population of a given application; all
users in a certain role inherit a set of access control rights to
objects within the application. Roles are particularly
common in shared editors such as Quilt [11], which includes
roles for writers (who are allowed only to change their own
work), readers (who are not allowed to modify the
document), and commentators (who can only add “margin
notes” to the document). Roles are also found in other
systems, such as ConversationBuilder [10], MPCAL [9],
SASSE [2], ICICLE [3], SUITE [18], and PREP [15].

Other work in application domain access control approaches
the classical security systems seen in operating system
research. For example, Shen and Dewan present a robust
model of the access control needs of applications [18].

The access control models provided by most of the role-
based systems, as well as that of Shen and Dewan, provide
expressive power beyond that typically found in
mediaspace-like systems. For an access control system to be
able to capture the range of needs expressed by the example
policies discussed earlier, it must go beyond the rudimentary
boolean schemes typically found in coordination systems.

For example, policies such as our first example (“I don’t
mind people in my workgroup knowing what I’m working
on”) require systems with some expressive power. Such
systems would grant access to a set of information (“what
I’m working on”) to a constrained set of users that is long-
lived and statically-defined (“people in my workgroup”),
and disallow access to others.

The Importance of Fluidity
Human activity is a highly dynamic medium, rich in subtle
interaction and constant shifts in the focus, priorities, and
roles of the participants. As Moran and Anderson [14] state,
“fluidity is a fundamental feature of work activity, and we
need to be attuned to how technologies of various kinds can
play a role here.” To be useful (or even usable) in such a
setting, a policy system for collaborative applications must
not only be able to respond to such changing interactions,
but also must not artificially restrict interaction. An overly-
static policy system will serve only to cripple the dynamism
that is inherent and beneficial in unconstrained human
interaction. Policy systems must not only allow, but also
support the fluidity of interaction seen in “real life” human
situations.

A problem with many of the policy systems used in prior
work is that they may be too rigid to support effective
collaboration. For example, Dewan,et al., in [4], point
toward more flexible and fluid specification of roles as being
a requirement for effective collaboration:

...users should be allowed to take multiple roles
simultaneously. For instance, a teaching assistant
should be able to simultaneously take the roles of

“student” and “lecturer.”...It should be possible to
dynamically change collaboration rights, roles,
owners, and ownership semantics. This
requirement allows, for instance, a user of a code
inspection tool to graduate from an “observer” to
an “annotator.”...access control must be performed
flexibly in the ways described above...

Dourish and Bellotti have indicated similar concerns, stating,
“there seems to be justification for arguing that role-
switching in CSCW systems should, therefore, not be a
complex, time consuming operations which hampers [access
to shared work spaces].” [5]

For an access control system to be able to capture the wide
range of needs expressed by the example policies discussed
earlier, it must not only provide expressiveness beyond
simply “on” or “off,” it must be able to support the
ephemeral styles of interaction that make human-to-human
collaboration so rich.

Take as an example the second of our policy scenarios
(“don’t let anyone bother me when I’m working on my
thesis, unless it’s my advisor”). A “classical” system would
be able to identify “advisor” as a privileged user who should
be allowed special access. But traditional schemes typically
support group membership that is changed infrequently if at
all, and would not be able to respond to the instantaneous
condition on which the policy depends: whether the user is
working on the thesis. Such a system would require the user
to explicitly modify the access control settings as the pattern
of work changes.

The Importance of Context
By examining the policy scenarios outlined earlier, we can
see that many share one trait in common: they are based on
information about the context of the user and the task in both
the “real” world and the computer-mediated virtual world.
This should not be surprising: all work, even computer-
based work, takes place in a physical workplace with its own
demands on our time and attention. Collaboration in
particular, with its reliance on “out of band” communication
channels (face-to-face meetings, gestures, eye contact), is
tightly interwoven with and affected by the context in which
the collaboration occurs.

Integrating the computer-based components of collaborative
work with the context in which the work occurs is essential
for useful forms of policy: our computers do not exist in a
vacuum.

The third sample policy (“I need to share my workspace with
others during demo days”) obviously depends on detecting
some “real world” condition of the participants in the
scenario.

The fourth sample policy (“If anyone calls for me, tell them
I’m not here unless they’ve called with the new budget
numbers”) may seem gratuitous, but this is precisely the sort
of thing that occurs regularly in the workplace. A user will
delegate responsibility for access control to another human
being. This delegate (a good assistant typically) must digest
the salient situational variables and decide in real time
whether or not to grant access. Today, users must delegate

tasks such as this to other people since machine-based access
control systems do not have the intelligence or situational
awareness to act properly in such situations.

In all of these cases, we see that we need information about
people (workgroups, advisors, people with budgets), about
tasks (thesis work), and the context or setting of the action
(is it demo day). and that this information must be
dynamically-updated to reflect changes in the state of the
world. In more general terms, the presence of situational
information about the state of the “real world” is essential in
deciding whether or not to grant access to a particular piece
of information. In fact, bringing situational awareness into
the environment goes a long way toward changing a simple,
low-level access control mechanism into a more flexible and
generally-applicable policy system.

The characteristics of these scenarios indicate that a
traditional access control system augmented with
information about situational variables will provide a
powerful infrastructure for describing coordination policy.
More succinctly, policy can be defined as the dynamic
application of access control rights in response to “real
world” situations. This idea is the approach taken by
Intermezzo: we combine the formality and speed of a
classical access control system, specifically, access control
lists on data objects, with a scheme for sampling the
“instantaneous” state of the users’ world. A higher-level
awareness system drives the low-level foundation access
control system. This approach supports forms of policy that
are both light-weight, and responsive to the changing
environment in which the collaboration occurs.

The next section describes the Intermezzo object model, and
how awareness works in the system.

THE INTERMEZZO FRAMEWORK
Our policy system is built atop the Intermezzo collaborative
infrastructure. Intermezzo provides coordination support to
applications in the form of session management, awareness,
and policy control. The system provides a foundation object
model on top of which higher-level collaborative
functionality is based. While this paper does not describe all
the features of the Intermezzo environment, a high-level
view is important for understanding how policy is
implemented in Intermezzo. This section describes some of
the relevant features of the system.

Data Storage and Replication
The Intermezzo framework supports a replicated, consistent,
and serialized object storage facility. The fundamental data
objects manipulated by Intermezzo are calledresources.
Resources are essentially collections of key-value pairs
called attributes (each attribute has a name, called its key,
associated with it, and stores some arbitrary piece of data).
One important data type that attributes can store islinks.
Links are pointers to other resources, and are used to form
resources that contain aggregations of other resources.

Authentication and Authorization
All resources in Intermezzo support the notion of
ownership—thus, some user owns a particular piece of data.

The system provides access control lists (ACLs) to restrict
access to resources and attributes within resources. An ACL
is a mapping that indicates, for any given user, what
operations are allowed on a specific object—either a
resource or an attribute. Allowable operations include
reading an object, writing an object, removing an object, and
testing for the existence of an object. A special NONE right
disallows access. The identity of users of the system is
securely established through digital signatures; identity is
represented by a unique string called acertificate.

Application Development
A toolkit, or code library, is used by Intermezzo client
applications to enable the rapid construction of applications,
and to provide certain conventions for the use of data in the
form of resources. A multithreaded server process
coordinates clients at runtime. This server also supports
remote execution of code downloaded from clients.

Awareness Services
One important service provided by Intermezzo is anactivity-
based awareness monitor. While applications can use
resources as a shared data store for any purposes they
require, most Intermezzo applications will publish a
predefined set of resources to represent the activity of the
user running them. This data model for awareness is
enforced by the toolkit. An activity is explicitly represented
as aActivity resource that contains links to three component
resources.

The first component is called theSubject resource, and
contains information identifying the user. The second
component is called theVerb resource, and represents the
task or application being run. The third component is the
Object resource, and represents the focus of the particular
task—the file or other artifact on which the task is operating.
See Figure 1, below.

Taken together, the set of resources published by Intermezzo
applications provide a view of the distributed collection of
users and their activities that is accessible to applications.

Several fundamental characteristics of this object model are
used to create the policy system provided by Intermezzo: the
basic object storage system, access control lists and
authentication, and conventions for awareness.

FIGURE 1: An Activity Resource.

Activity
Subject

Verb

Name
Location
...

Application
Host
...

Subject
Verb
Object

Object
Filename
...

ROLES IN INTERMEZZO
Policies are typically applied to sets or classifications of
users. As noted earlier, the literature has adopted the term
role to indicate a particular category of users with a set of
access control rights applied to them, and in fact many
collaborative systems have found the notion of roles useful
for specifying how policies are assigned to users [8].

Intermezzo adopts the terminology of roles and applies the
concept in a new direction. This section describes how
policies are applied to roles.

Traditional Roles
Most systems that use roles have a few characteristics in
common:

• The set of roles in use is determineda priori by the
application or environment.

• The membership of those roles is typically determined
early in the lifetime of the session.

• Membership of a role is specified in terms of users.

• There are few (if any) changes to role membership during
the course of the session.

In traditional use, roles are typicallystatic in the sense that
membership of a given role is established early and rarely
changed. Further (and perhaps obviously), a role is defined
in terms of the users who are members of that role.

Such static roles are useful for a broad range of applications;
but, as mentioned before, they lack flexibility and
responsiveness to the environment in which they are used.
Membership is predefined and fixed for certain access rights
and the users themselves are responsible for updating role
membership whenever policy mappings need to be changed.

In essence, users must digest the situational variables that are
salient to coordination and use their world knowledge to
specify a set of access rights. Such a system places a burden
on the users to “model” the state of the collaboration. There
are a number of factors that limit the utility of static roles in
coordination:

• Static role systems require explicit overhead on the part
of the user to set up the role membership. In fact, they
requireanticipation of potential coordination situations
by users.

• Static roles ignore situational dynamics (“the real
world”) in deciding group membership.

• Specification is rigid: there is no flexibility or “slack” in
the system.

• Role membership can only be defined in terms of user
names, not other attributes of users or the environment.

The problems related to predefinition of role membership
have been identified in the literature. Neuwirth,et al., have
commented on the use of roles for collaborative writing [15],

There is a potential problem in systems which
support the definition of social roles: “premature”
definitions of these roles could lead to undesirable
consequences. For example, it is not always clear

at the outset of a project who is going to make a
“significant contribution” and therefore who
should get [the] authorship [role]. But if
authorship is defined at the outset, then it may
reduce the motivation of someone who has been
defined as a “non-author” and the person may not
contribute as much.

Here we see a problem arising from static role definition in
the application domain. And yet, in the PREP editor, early-
defined roles are used, presumably because of the lack of a
role infrastructure to build upon.

We have seen that static roles are useful: they provide a
conceptual model for associating policies to users that is
sufficient in many circumstances. They are well-understood
by developers and users, and are efficiently implemented
atop common access control mechanisms. Intermezzo
provides static roles for applications that can benefit from
them. But static roles are limiting in many collaborative
situations because, as illustrated by the quote above, they
cannot provide the flexibility needed in many situations.

Dynamic Roles
Intermezzo also supports a more flexible (although more
expensive and somewhat harder to manage) form of roles
that do not have the limitations of traditional static roles.
These roles are calleddynamic roles. The defining
characteristic of dynamic roles is thatmembership in the role
is determined at runtime, as requests for access are made.
This characteristic means that dynamic roles have an
important power that static roles do not: instead ofdefining
roles in terms of their members, roles can bedescribed in
terms of their attributes.

Membership in a particular role is not determined by a
membership list: instead it is determined by a predicate
function that is evaluated whenever an access request is
made. The use of potentially arbitrary predicates to
determine membership lends great expressive power to
dynamic roles.

By simply moving the determination of membership from
session startup time to evaluation time, and by the use of
predicate functions rather than membership lists, dynamic
roles acquire several interesting properties:

• Dynamic roles allow role membership to be based on
attributes other than “user name.”

• Potential membership can vary from moment to moment
during the lifetime of a session.

• Access can be granted based on the instantaneous state of
the user’s world.

• By describing role membership, rather than specifying it,
users can be relieved of some of the burden of tracking,
updating, and anticipating role membership explicitly.

As an example, via dynamic roles, you can not only specify
“people who share my lab,” but “people who are in my lab
right now” as a role or category of users.

Dynamic roles extend one of the common threads in this
research: that by bringing information about user awareness

into the collaborative environment, applications and the
environment itself can be made more responsive to subtle
changes in the state of the world. Further, users can be
relieved of some of the burden of “manually” understanding
and responding to situational variables; the system can take
over some of that work when embodied with the required
facilities and intelligence.

It is the dynamism inherent in the system—both in the
dynamic application of users to roles, and in the constantly
refreshed “world view” implemented by Intermezzo—that
transforms a potentially rigid access control scheme into a
more general policy system.

IMPLEMENTATION
This section describes the policy services provided by
Intermezzo in detail. Intermezzo provides mechanisms for
creating both static and dynamic roles, an implementation of
policies on top of the “raw” access control system, and a
specification language for roles and policies that can be used
to control and configure the policy subsystem.

A Specification Language for Roles and Policies
Intermezzo provides a software substrate that implements
static roles, dynamic roles, and policies in terms of access
control. This “view” of this substrate from the perspective of
applications and users is a declarative language that is used
to specify policies and roles. The intent is that this language
will be used by application developers and system
administrators to configure policies and roles for their users.

At startup-time, the Intermezzo client-side code library loads
a set of description files that contain specifications of
policies and roles, and establish role-to-policy mappings.
These specifications govern the access rights that are granted
to resources created by that client. The predicate functions
used to describe membership in a dynamic role are expressed
in an extended version of the Python language [22].

Specifying Roles. The Intermezzo roles specification
language supports three types of role specifications. Each
role has a symbolic name associated with it that is used to
bind the role to policies.

• Simple

• Dynamic

• Aggregate

Simple roles map a certificate name to a symbolic role name.
These simple specifications are used to denote static roles.
Recall that certificates are strings used throughout
Intermezzo to represent users:

role keith = “Keith Edwards
<kedwards@parc.xerox.com>”

Dynamic role declarations bind a predicate function to a
symbolic role name. Predicates are specified by providing a
path name on the client to the location of the code file that
implements the predicate.

role demoday = [~keith/.policy/demoday.py]

Aggregate roles provide a mechanism for grouping other
roles, whether simple, dynamic, or aggregates themselves.
Aggregate roles can be nested arbitrarily deeply in a directed
acyclic graph:

role myProj= {keith, beth, doug, demoday}

There is one role namespace within each parse-unit of the
specification language. Note that inheritance of roles may be
a useful feature. Inheritance would support the definition of
classes of users, with specialization through derivations.
This feature has not been explored in Intermezzo, however.

Specifying Policies. Policies are specified declaratively
and, like roles, are named. A policy specification consists of
a set of access control specifiers that denote the access rights
that will exist for the set of resources and attributes referred
to by that policy.

For purposes of assigning access rights, attributes are named
by their key (the name of the attribute as represented by a
string). Resources are named by type. Each data object
(either resource or attribute) can have default or fallback
access rights associated with it, which will be used if no
more specific access right is provided.

Below is an example of a simple policy specification:

policy Restricted {
resource Subject {

attr Name = READ
attr Location = WRITE
attr * = NONE

} = EXIST
resource Verb = NONE
resource * = EXIST

}

This specification creates a new policy namedRestricted.
The policy provides two by-type resource specifications for
Subject andVerb resources. For any user that belongs to a
role using the Restricted policy, Subjects will have the
EXIST access right (allowing the existence of the resource to
be tested), and Verbs will have the NONE right (denying all
access). The wildcard denotes that the policy associates the
EXIST right with all resources of types not explicitly named.

The policy also provides two access specifiers for attributes
with keysName andLocation. Name attributes have READ
rights (allowing viewing of the data); Location attributes
have WRITE permissions (allowing updates of the data).
Note that since the attribute specifiers are nested within the
specification for resource Subject, these rights will only be
used for Name and Location attributes that are present in
Subject resources. The wild card specifier indicates that any
attributes in Subject resources that are not explicitly named
by the policy inherit the NONE right.

Note that the example here shows a policy that applies
access control to the set of resources used by Intermezzo for
awareness. Hence, this policy restricts access to the
information used to coordinate among groups of users. In
general, however, an access control policy can be applied to
any data object stored by Intermezzo. Hence, if a

collaborative editing system uses resources to store shared
data, access to that data could also be regulated by a policy.

Mapping from Roles to Policies. The language for
specification also provides a means for establishing
mappings between roles and policies. Symbolic role names
are mapped to symbolic policy names; the system supports
many-to-many mappings.

gvu_lab -> RestrictedAccess
animation_lab -> RestrictedAccess
friends -> GeneralAccess
stasko -> AdvisorAccess
* -> Anonymity

Note the use of wildcard specifications for roles: the
language allows a default policy that will be applied to all
users not represented by any of the provided roles.

Many-to-many mappings provide two benefits. First, they
allow several roles to share the same policy, resulting in
reuse of policy descriptions. In the example above, the
policy RestrictedAccess is reused by two different roles:
gvu_lab andanimation_lab.

The second benefit of many-to-many mappings is that they
allow multiple policies to be associated with a given role,
allowing “segmenting” of access rights across multiple
policies. In this case each policy would specify a set of
access rights for a different set of objects. Thus, ideally there
would be no “overlap” between the access rights specified
by multiple policies associated with a particular role.

A static analysis could detect policies that do overlap,
although this facility is not implemented currently. In
practice, however, the presence of dynamic roles means that
the system cannot know until runtime whether an actual
overlap of access rights for a given user exists. Detecting and
disallowing such overlaps late (at runtime) seemed overly
restrictive and cumbersome.

If a user is in multiple roles simultaneously, Intermezzo uses
a liberal policy for assigning effective access rights: the
strongest right allowed by any policy of which the user is a
member is applied. This rule supports “layering” of policies
on a given user, each granting wider access.

Static Role Implementation
The notion of static roles is constructed by aggregating
features found in the Intermezzo foundation layer: static
roles are implemented using simple access control lists. In
fact, the notion of a “role,” whether static or dynamic, is
present only in the higher-level coordination features
provided by Intermezzo (the parser for the specification
language, for example).

When an Intermezzo client is run, the role specifications are
parsed at application startup time. The client-side toolkit
“digests” these specifications into a compiled format that
specifies the access control lists that resources and attributes
will inherit. This processed format is essentially an inverse
of the role (user) to policy (access control) specification
supported by the specification language. The system builds a
list of all of the resources and attributes that are specified in
the policy descriptions. It then “works backwards” to find all

roles that map to policies that mention these resources and
attributes. From this information it is possible to construct a
set of “prototype” access control lists. These prototypes are
mappings from resource types or attribute names to the
access control lists that will be associated with those
resources or attributes when they are created.

This mapping is maintained internally by the client-side
library. Whenever the application creates a resource, or an
attribute on an existing resource, the access prototype
mapping is queried to retrieve an access control list to be
applied to the new data object. Via this scheme, the penalty
of parsing and internalizing the policy descriptions is paid
only once, at application startup time. After startup, the
internalized policy descriptors are used to automatically
generate the access control lists for resources and attributed
created by the application. The “generation” of access
control lists is essentially just a table lookup in the
prototypes mapping, and is thus quite inexpensive.

Since static roles are only manifested as access control lists
at runtime, determination of access rights is trivial. There is
no need to search role membership lists to determine access;
instead, the system merely retrieves the access right
associated with a given user when that user attempts to
access an object. Determination of access at runtime is as
simple as a dictionary lookup to retrieve the right from the
access control list, and then an arithmetic comparison to
determine whether the right will be granted.

Note that the owner of a resource always has full rights to it.
Updates and reads of resources by their owners is the
common case and bypasses the access control mechanisms.
Since ownership is authenticated this poses no security risk.

Dynamic Role Implementation
Whereas static roles are implemented by associating a list of
users with a set of access control rights, dynamic roles are
implemented by associating a predicate function with a set of
access control rights. When a client starts, it generates a
“map” of access rights for the resources and attributes that
are represented by the policies it loads. In dynamic roles,
each resource and attribute keeps a list of access rights and
predicate functions that map onto those rights.

When a request for access is made at runtime, Intermezzo
first evaluates the access control list for the object to see if
the requested right is explicitly granted to the user making
the access. If it is not, then the system scans the list of access
rights associated with predicate functions. For any access
rights that provide the requested access, the system evaluates
the associated predicate functions until either a predicate
returns true or no predicates remain that might be able to
grant the requested access.

In essence, this scheme means that the system first applies
the static roles to see if access may be granted. Only if they
fail does the system apply dynamic roles. Further, only the
predicate functions that have the potential to grant access are
evaluated, and they are only evaluated until the access is
granted. This is consistent with the “liberal” application of
the access control system throughout Intermezzo, and
provides efficient short-circuit evaluation: ifany policy

would grant access to a particular object, then access is
granted.

Predicates are evaluated in the server and execute with the
permissions of the user requesting access. Evaluation occurs
in the server because the alternative, execution within the
client, would be a security risk: rogue clients could claim to
have executed the predicate and return a successful condition
to the server. Predicate execution occurs with the user’s
permissions to ensure that a predicate function cannot be
used as a “Trojan horse” to gain access to resource data that
would otherwise not be accessible to a given user.

Below is an example of a predicate function expressed in the
form of extended Python used by Intermezzo. This predicate
defines a role for the “demo day” scenario discussed earlier
in this paper. There are a number of possible ways to define
a “demo day” predicate; this one considers the following
characteristics salient:

• The day must be demo day.

• Only extend access when the owner (“me”) is in the lab.

• The user must be running the demo application
(“Montage”).

• Access is only extended to those who are themselves in
the lab.

def predicate(subj me context):
if date.today() == “August 28”:

if me.Location = “GVULab”:
if me.Activities(“Montage”):

if subj.Location == “GVULab”:
return TRUE

return FALSE

The predicate consists entirely of a set of conditions to
determine (1) the date, (2) the location of the resource
owner, (3) the current activities of the owner, and (4) the
location of the requesting user.

Note the parameters passed to this function:subj is a
resource of type Subject that represents the user requesting
access. The predicate is free to query the attributes of this
resource, modulo any access constraints placed on it, to
determine information about the requesting user. Theme
argument is also a Subject resource that represents the owner
of the data object to which access is being requested (the
predicate itself is executed with the permissions of this user).
The final context argument represents the world-view
collection of resources that represents the state of the
awareness service. Via this parameter, the predicate is free to
query about any condition in the Intermezzo data model.

While some effort is made to speed dynamic predicate
evaluation (by evaluating static roles first, and by shortcut
evaluation, for example), there are other optimizations that
are possible but are not implemented currently. First,
predicates can be cached on the server; clients would then
only transmit an identifying token for the predicate, rather
than the predicate itself.

Second (and more difficult), we may be able to pre-process a
predicate to determine which objects are examined by it. A

predicate result can only vary between executions if the
“world state” on which it depends has changed.

COMMON POLICIES
While the policy system used by Intermezzo is flexible and
powerful enough to capture a range of specific and complex
“real world” situations, it is also useful for describing a
number of common general policies. This section describes
two general policies which seem to be not only highly
useful, but also “in demand” by users. Again, note that these
are coordination policies, as they regulate access to the
predefined resources used to enable awareness and
coordination among users.

Anonymity
In some collaborative situations it may be useful to prevent
broad access to a set of information about users. For
example, in brainstorming sessions such as those provided
by group decision support systems, research has shown that
often better results are achieved if the participants do not
know who is submitting ideas [16]. By keeping participants
from being able to identify one another, social barriers to
contributing to the session are lowered.

This sort of information restriction is calledanonymity.
There is no information associated with users that could be
used to identify them. Further, it is impossible (or at least
unlikely) to track user data over a long period of time in an
attempt to glean enough information to identify a user.

Intermezzo makes the construction of policies that
correspond to anonymity possible. The precise definition of
such policies will vary from site to site because of the need
to restrict different pieces of information based on common
user behaviors and tasks. For example, at a site where users
are typically mobile, it may be desirable to allow access to
information about location (“I know someone’s in the coffee
room, but I don’t know who it is.”) At a site where users
typically sit at their desks all day, information about location
is in practice equivalent to direct information about user
identity.

Below is one (perhaps overly simple) definition of a policy
to support anonymity.

policy Anonymity {
resource Subject = {

attr * = NONE
} = EXIST
resource Verb = {

attr * = NONE
} = EXIST
resource * = NONE

}

This policy does not allow a user to read or even determine
the existence of any attributes on theSubject or Verb
resources. It does allow the determination of the existence of
these resources as a whole, however, and it does allow
access to resources of types other than Subject and Verb.

The anonymity policy as defined above is not the same as
“invisibility:” invisibility would remove the EXIST rights
from resources, preventing detection of even the presence of

users. Anonymity is weaker in that it permits questions like,
“How many users are logged on now?” and, “What
applications are being run?” while still removing identifying
characteristics from that information. Still, however,
anonymity is so restrictive that it prevents many of the
activity-based interaction features of Intermezzo from
operating. For example, the Intermezzo session management
service uses attributes on the Subject and Verb resources. If
these attributes cannot be read, the session management
system will be unable to rendezvous with a user. (For a more
thorough description of how session management interacts
with the activity service, see [6]).

Pseudonymity
Often, anonymity is too restrictive in collaborative
situations. While it is useful in certain constrained
environments (such as the brainstorming example), it
severely limits the flow of information that may be useful to
coordination.Pseudonymity is a policy that protects privacy
but still allows access to information that can support
coordination between groups of users.

Pseudonymity is similar to anonymity in that it does not
allow information published in the shared information space
to be associated with an actual human user of the system. It
does however allow the use or identifying “handles” that can
be used to track users in the abstract. Pseudonymity allows
questions like, “What is user X’s typical work flow?” and,
“Which users that run Framemaker also run Photoshop?”
Pseudonymity supports the collection of user statistics and
allows the system to track the paths of individual activities,
while preventing those activities from being associated with
an actual person. A common analog in the social sciences is
the use of code numbers or names for experimental subjects.
These codes are typically used over the course of a long-
lived experiment (sometimes over a period of years), but still
provide no information about the true name of “User X.”

Again, like the implementation of anonymity, a policy for
pseudonymity may vary from site to site. At some sites it
may be possible to release certain pieces of information
while preserving pseudonymity; at others, more information
may be restricted.

Below is an example of a policy for pseudonymity:

policy Pseudonymity {
resource Subject {

attr Location = READ
#...other attributes we may wish to
allow access to...
attr * = NONE

} = EXIST
resource Activity {

attr * = READ
} = EXIST

}

This policy varies from anonymity in a number of respects.
First, it selectively allows access to certain attributes of the
Subject resource (Location in this example). Next, it allows
read access to the attributes ofActivity resources. Allowing
reads of Activities allows applications toread the links
(meaning, the actual hashed resource identifier) in the

Activity slots for Subject and so on, yet prevents reading the
actual resources pointed to by these links (since Subject only
supports limited read access).

By allowing applications to read the links, but not the data,
in an Activity resource, applications can detect when several
Activities “point” to the same user, while denying access to
potentially identifying information about that user.

Pseudonymity is useful for the (perhaps very common) case
of access control where a user may say, “I don’t mind people
knowing what I’m doing, as long as they don’t know it’sme
doing it.” Note that users with pseudonymity enabled are
able to interoperate with the Intermezzo session management
services since the policy does allow access to activity and
some user information.

SUMMARY AND FUTURE DIRECTIONS
The ability to describe to a system how it should behave in a
potentially chaotic setting is important for collaborative
work. In this paper, I have used the term policy to denote a
set of access control rights dynamically applied to data
objects, and mediated by the situational context in which the
collaboration occurs. The data objects can represent user
activity and awareness, as well as application-specific data.
This access control-based definition is capable of capturing
many useful policies, from the specific (how to deal with
particular users at particular times of the day) to the general
(anonymity and pseudonymity).

The system uses the notion of roles to associate categories of
users with particular policies. Intermezzo roles can represent
not only groups of users, but also descriptions of users in the
form of predicates evaluated at runtime to determine group
membership.

Dynamic roles, in particular, expand on one of the central
themes in this work: by bringing information about users and
their environments into the system, we can make computer-
augmented collaboration more responsive, and we can free
the users of many of the burdens implicit in working with
today’s collaborative systems.

There are a number of areas for future work. One limitation
of this work is the policy specification language. The
language is powerful, and provides an economical way to
create new policies and roles for applications—previously
developers had to “hard code” support for policies and roles.
The problem is that while the language is much easier than
developing code, it is still not suitable for end-users. Ideally
users should be able to create their own policies and roles as
the need arises. Users should be able to selectively enable or
disable access control without having to learn a new
language, running the risk of inadvertently exposing their
data to unwanted access, or understanding the intricacies of
the resource object model and access control rights.

A “policy manager” tool that interacts with users and emits
policy specifications according to user desires would be an
interesting avenue of research. In fact, the entire issue of
how end-usersthink about policies and roles, and how to
capture those concepts in a tool designed for end users,
would make an interesting area of study.

REFERENCES
[1] The American Heritage Dictionary. Boston, MA:

Houghton Mifflin Company.

[2] Baecker, R.M., Nastos, D., Posner, I.R., and Mawby,
K.L., “The User-centered Iterative Design of Collabo-
rative Writing Software.” InProceedings of the ACM/
InterAct Conference on Human Factors in Computing
Systems. Amsterdam, The Netherlands: ACM. April
24-29, 1993. pp. 399-405.

[3] Brothers, L., Sembugamoorthy, V., Muller, M., “ICI-
CLE: Groupware for Code Inspection.”CSCW 90:
Proceedings of the Conference on Computer-Sup-
ported Cooperative Work, Los Angeles, CA: ACM,
1990, pp. 169-181.

[4] Dewan, Prasun, Choudhary, Rajiv, and Shen, HongHai,
“An Editing-based Characterization of the Design
Space of Collaborative Applications.”Journal of
Organizational Computing, 4:3, pp. 219-240, 1994.

[5] Dourish, Paul, and Bellotti, Victoria. “Awareness and
Coordination in Shared Work Spaces.”Proceedings of
ACM Conference on Computer-Supported Cooperative
Work, Toronto, Canada, November 1992.

[6] Edwards, W. Keith, “Session Management for Collab-
orative Applications.” InProceedings of the ACM Con-
ference on Computer-Supported Cooperative Work,
Chapel Hill, NC: ACM, October 22-26, 1994. pp. 323-
330.

[7] Edwards, W. Keith,Coordination Infrastructure in
Collaborative Systems. Ph.D. Dissertation, Georgia
Institute of Technology, Atlanta, GA. November 22,
1995.

[8] Gintell, John W., and McKenney, Roland F., “CSCW
Infrastructure Requirements Derived from Scrutiny
Project.” Workshop on Distributed Systems, Multime-
dia, and Infrastructure, ACM Conference on Com-
puter-Supported Cooperative Work, Chapel Hill, NC
October 22, 1994

[9] Grief, I., and Sarin, S. “Data Sharing in Group Work,”
Computer-Supported Cooperative Work: A Book of
Readings, Irene Grief, ed. San Mateo, CA: Morgan
Kaufmann, 1988, pp. 477-508.

[10] Kaplan, S.M., Tolone, W.J., Bogia, D.P., and Bignoli,
C., “Flexible, Active Support for Collaborative Work
with ConversationBuilder.”Proceedings of the Confer-
ence on Computer-Supported Cooperative Work, Tor-
onto, Ontario: ACM, pp. 378-385.

[11] Leland, M.D.P., Fish, R.S., and Kraut, R.E., “Collabo-
rative Document Production Using Quilt.”Proceedings
of the Conference on Computer-Supported Coopera-
tive Work, Portland, OR: ACM, 1988, 206-215.

[12] Mantei, M.M, Baecker, R.M., Sellen, A.J., Buxton,
W.A.S., Milligan, T., and Wellman, B. “Experiences in
the Use of a Media Space.”Proceedings of the ACM
Conference on Computer-Human Interaction, April
28-May2, 1991. New Orleans, LA: ACM. pp. 127-138.

[13] Moffett, Jonathan D., and Morris, S. Sloman, “The
Representation of Policies as System Objects.” InPro-
ceedings of the ACM Conference on Organizational
Computing Systems, Atlanta, GA: ACM, November 5-
8, 1991, pp. 171-184.

[14] Moran, Thomas P., and Anderson, R.J., “The Worka-
day World as a Paradigm for CSCW Design.”Proceed-
ings of the Conference on Computer-Supported
Cooperative Work, Los Angeles, CA: ACM, 1990, pp.
381-393.

[15] Neuwirth, C. M., Kaufer, D. S., Chandhok, R., and
Morris, J. “Issues in the Design of Computer Support
for Co-authoring and Commenting.” Proceedings of
the Conference on Computer-Supported Cooperative
Work, Los Angeles, CA: ACM, 1990, 183-195.

[16] Poole, M.S., Holmes, M., and DeSanctis, G., “Conflict
Management and Group Decision Support Systems.”
In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work, Portland, OR: ACM.
September 26-28, 1988, pp. 227-241.

[17] Root, R.W. “Design of a Multi-Media Vehicle for
Social Browsing,”Proceedings of the Conference on
Computer-Supported Cooperative Work, Portland, OR:
ACM, September 26-28, 1988. pp. 25-38.

[18] Shen, H., and Dewan, P. “Access Control for Collabo-
rative Environments,”Proceedings of the Conference
on Computer-Supported Cooperative Work, Toronto,
Ontario: ACM, 1992, 51-58.

[19] Sohlenkamp, Markus, and Chwelos, Greg, “Integrating
Communication, Cooperation, and Awareness: The
DIVA Virtual Office Environment.”Proceedings of the
ACM Conference on Computer Supported Cooperative
Work, Chapel Hill, October 22-26, 1994. pp. 331-343.

[20] Smith, Ian, and Hudson, Scott, “Low Disturbance
Audio For Awareness And Privacy In Media Space
Applications,” Proceedings of ACM Conference On
Multimedia, November, 1995, San Francisco, CA:
ACM.

[21] Tang, J.C., Isaacs, E.A., and Rua, M., “Supporting Dis-
tributed Groups with a Montage of Lightweight Inter-
actions.” Proceedings of the ACM Conference on
Computer Supported Cooperative Work, Chapel Hill,
October 22-26, 1994. pp. 23-34.

[22] Van Rossum, Guido,Python Reference Manual
Release 1.3. October 13, 1995 (available as http://
www.python.org/doc/ref/ref.html).

