Policies and Roles in Collaborative Applications

W. Keith Edwards

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
+1-415-812-4405
kedwards@parc.xerox.com

ABSTRACT “keep up” with the collaborative endeavor. They must work
Collaborative systems provide a rich but potentially chaoti¢o sustain the mechanics of the collaboration, attending to
environment for their users. This paper presents a systetheir tools and other users, in addition to the task at hand.

that allows users to control collaboration by enactingzyamples of work devoted to maintaining collaboration

policiesthat serve as general guidelines to restrict and defingar than performing the domain-specific task include

the behavior of the system in reaction to the state of thg,jicit forms of session management (inviting users to a
world. Policies are described in terms of access contr

iah q bi q ned ¢ ession or browsing lists of sessions), creating and
rights on data objects, and are assigned 10 groups of USe{siiniaining role membership for a collaborative editor,

called roles Roles represent not only statlcally—defmedaccepﬂngI or rejecting requests for access to data, and

collections of users, but also dynamic descriptions of useriﬁteracting with floor control systems. These are all

that are evaluated as applications are run. This run-time) o head” tasks in the sense that they are required only

aspect of roles allows them to react flexibly to the dynamismye 5 ise the collaborative environment requires them; not
inherent in collaboration. We present a specification,,.quse of any inherent need in the task itself
language for describing roles and policies, as well as a '

number of common “real-world” policies that can be appliedSelectively Limiting Chaos
to collaborative settings. The presence of unpredictability within a large space of
actions is one of the reasons that collaborative systems can
KEYWORDS: computer-supported cooperative work, present such a rich and free-form user experience. For
policies, roles, infrastructure, access control, Intermezzo. example, think of the open-ended forms of collaboration
seen in group sketching and mediaspaces. Such chaos also
INTRODUCTION indicates, however, that there may be a need to “rein in”
Collaboration and Chaos some of the “destructive” unpredictability present in
Collaborative systems are potentially chaotic environmentgollaborative systems. If a collaborative environment passes
Multiple users create opportunities for collaboration, richcontrol to the user whenever ambiguity is present, users will
and potentially unexpected interactions occur between usefely be overwhelmed by the task of “baby-sitting” the
and applications—all of these contribute to the dynami@nvironment, rather than getting work done.

nature of collaborative software. The dynamism present if, contrast, if we can provide some general guidelines to our
collaborative systems approaches—intentionally—theqols and environments about how to support the dynamism
fluidity and richness of interactions among people in then collaboration, we can relieve users of some of the burden
physical world. of maintaining the collaboration; users can be free to attend

Interactions with collaborative systems are not as predictabl@ the focus of the collaboration, rather than to their tools.

as with single-user systems since other users are not alwayge|ligence about how to respond to particular occurrences
predictable. Put simply, the presence of other users, witl collaborative situations is calledpalicy. The American
their own goals and experience levels, introduces theieritage Dictionary defines policy as “a general principle or
potential for uncertainty, unpredictability, and surprise intop|an that guides the actions taken by a person or group” [1].
collaborative work sessions. In a collaborative environment, policies govern the

Further, as the complexity of the collaborative environmenparticulars of how users and applications interact with one

increases, users may have to contend with an increasifgother. A policy describes a general contingency against

number of distractions and demands on their attention té/hich specific events are evaluated and handled [13]. The
goal of a policy system should be two-fold:

Copyright © 1996, Association for Computing

i PUTOT D o PO oA T e gy e autor e e

Work (CSCW'96), Boston, MA. November 16-20, Georgia Tech Graphics, Visualization, and Usability Center.

1996.

* Reduce unpredictability in the system to a “manageable™ “If anyone calls for me, tell them I'm not here unless
level. Allow the system to respond in expected ways to they've called with the new budget numbers.”
the actions of users and other applications, and supp

o " o OKil of the scenarios above are examples of policies that are
the principle of “least surprise.

common in everyday use. Users want the ability to regulate
* Require less effort from userddove the burden of access to their information and personal space, and to govern
dealing with most user and application actions from thdow the system will respond to events.

user to the system. This paper postulates thatwide array of policies like the

Additionally, the use of policies in the context of ones above can be defined in terms of access control rights
collaborative systems imposes a potentially competing goalbn data objects.While perhaps not all policies can be
captured by an access control-based model, many of them
can. Of course, making such a scheme broadly applicable to
policy concerns requires that we wisely choose not only the
access control primitives we will support, but also the data
In essence a policy scheme is used to selectively limit thebjects to which we will be restricting access. We shall
dynamism inherent in a collaborative system. The “trick” isrequire not only an infrastructure that provides
to strike a balance with a set of policy controls that can makepresentations for objects and operations in the
a rich collaborative system manageable, and yet stiltollaborative environment, but also conventions for how
preserve the essential components of dynamism that agpplications will access the data objects in the environment.
necessary for human-to-human communication
interaction.

* Do not stifle interactionThe policy system should not be
so restrictive that it discourages or artificially limits the
interactions between participants in a collaboration.

anq.o effectively support policies like the ones above, we must
provide a system that is (1) expressive enough to capture a

This paper describes a system that can implement a variatynge of policy considerations, (2) flexible enough to not

of useful policies in collaborative settings, particularly in theover-constrain the collaboration, and (3) integrated with

areas of awareness and coordination. This system is uniqifformation from and about the “real world” in which

in several regards, first in its useaafcess contraio support collaboration occurs.

policies. Access control proves to be a powerful tool that i

capable of capturing many of the situations commonly calle

“policies,” and we establish several examples of policie

based on access control. A second innovation of this syste

is that it supports highly dynamic policies. The mapping of : o
users to policies that regulate their access can not only pporting coordination and awareness, although many of

made statically (at application start time), but also € ;.dea.s preser!]E_ed hel're_ coulddbe extended to tlhe domalln of

dynamically (changing as the application runs). application-specific policies and access control. Examples
include regulating access to paragraphs of text in a shared

The facilities described in this paper have been implementestiitor, or managing a floor control system.

atop the Intermezzo collaboration support environmen

Intermezzo is designed to provide applications with suppo

for coordination, rendezvous, and awareness [7].

Il of the examples above deal with coordination policies:
e information being regulated concerns individuals and
eir actions. In other words, it is information useful in
roviding awarenessof others. The focus of this work is

; he next sections lay the groundwork for a policy system
based on our three goals of expressiveness, fluidity, and
contextual integration.

ACCESS CONTROL AS A BASIS FOR POLICY The |mportance of ExpressivenESs

The notion of policy is broad, even in the non-technicalwhat work has been done to-date in policy systems for
usage of the word. How can we devise a formal system thgbllaborative applications? Research on policy can be
allows us to capture the extremely general set of controlsroadly divided into “coordination domain” policy—policy

that users may wish to place on their environments? controlling between-application information, such as

At this point, we present some examples of policies to drivéwareness and location information—and “application
the presentation of the formal policy system. The policie§lomain” policy—policy ~controlling application-specific
below are defined in common, everyday language and afta, such as access to text in a shared editor.
immediately obvious apoliciesin the non-technical sense |n the coordination domain, access control tends to be an all-
of the word. Further, they represent common desires of use-nothing affair. A common access control metaphor is the
and have obvious utility in collaborative settings. If we carclosed door.” CaveCAT [12], DIVA [19], Montage [21],
capture these sorts of common, easy-to-express desires@fuiser [17], and others all provide an access control system
our system, then we will be close to supporting the richn which users can allow or disallow access globally. It is
forms of policy usage that we see in the workaday world. impossible to specifically grant or refuse access to
* “I don’t mind people in my workgroup knowing what 'm individuals or classes of individuals. These systems might be
working on, but others...” considered “target-oriented” since access is either granted or
) denied based solely on the target of access; the requestor is
* “Don't let anyone bother me when I'm working on my not taken into consideration. Some of these mediaspace-like
thesis. Unless it's my advisor of course.” systems expand incrementally on the door metaphor by

* “l need to share my workspace with others during dem®roviding several categories of access restrictions such as
days.” door open, door closed, door ajar, and so on. Only recently

have some coordination-oriented systems begun to look at “student” and “lecturer.”...It should be possible to
more novel forms of policy. For example, the ability to dynamically change collaboration rights, roles,
support “low-disturbance” forms of audio/visual interaction owners, and ownership semantics. This
in Smith’s work [20]. requirement allows, for instance, a user of a code
inspection tool to graduate from an “observer” to
an “annotator.”...access control must be performed
flexibly in the ways described above...

In the application domain, many systems use the notion of
rolesto define access control groups. A role is a category of
users within the user population of a given application; all
users in a certain role inherit a set of access control rights f@ourish and Bellotti have indicated similar concerns, stating,
objects within the application. Roles are particularly“there seems to be justification for arguing that role-
common in shared editors such as Quilt [11], which includeswitching in CSCW systems should, therefore, not be a
roles for writers (who are allowed only to change their owrcomplex, time consuming operations which hampers [access
work), readers (who are not allowed to modify theto shared work spaces].” [5]

docurpent), and commentators (who can only add Margig,, an access control system to be able to capture the wide
notes” to the document). Roles are also found in othe

systems, such as ConversationBuilder [10], MPCAL [9] |range of needs expressed by the example policies discussed

'earlier, it must not onl rovide expressiveness beyond
SASSE [2], ICICLE [3], SUITE [18], and PREP [15]. Simply “on” or “0ff, o be e o Support o

Other work in application domain access control approachesphemeral styles of interaction that make human-to-human
the classical security systems seen in operating systeoollaboration so rich.
research. For example, Shen and Dewan present a I’ObL,%t

model of the access control needs of applications [18]. ke as an example the second of our policy scenarios

(“don’t let anyone bother me when I'm working on my
The access control models provided by most of the rolethesis, unless it's my advisor”). A “classical” system would
based systems, as well as that of Shen and Dewan, provilde able to identify “advisor” as a privileged user who should
expressive power beyond that typically found inbe allowed special access. But traditional schemes typically
mediaspace-like systems. For an access control system to dagport group membership that is changed infrequently if at
able to capture the range of needs expressed by the examale and would not be able to respond to the instantaneous
policies discussed earlier, it must go beyond the rudimentaigondition on which the policy depends: whether the user is
boolean schemes typically found in coordination systems. working on the thesis. Such a system would require the user
| don'f® explicitly modify the access control settings as the pattern

For example, policies such as our first example (of work changes

mind people in my workgroup knowing what I’'m working
on”) require systems with some expressive power. Sucihe importance of Context

systems would grant access to a set of information (“whasy examining the policy scenarios outlined earlier, we can
I'm working on”) to a constrained set of users that is longsee that many share one trait in common: they are based on
lived and statically-defined (“people in my workgroup”), jnformation about the context of the user and the task in both
and disallow access to others. the “real” world and the computer-mediated virtual world.
This should not be surprising: all work, even computer-
based work, takes place in a physical workplace with its own

interaction and constant shifts in the focus, priorities, an&lemands on our time and attention. Collaboration in

roles of the participants. As Moran and Anderson [14] stategﬁ;thcnu;?sr' (\al';::r:eltt?)-z%lclzaen(rjr?ezgnogt Ofez?l?risczménucgﬁgg)n is
“fluidity is a fundamental feature of work activity, and we 9s, g » &Y '

need to be attuned to how technologies of various kinds ca&ghﬂy interwoven with and affected by the context in which

play a role here.” To be useful (or even usable) in such e collaboration occurs.

setting, a policy system for collaborative applications musintegrating the computer-based components of collaborative
not only be able to respond to such changing interactionsyork with the context in which the work occurs is essential

but also must not artificially restrict interaction. An overly- for useful forms of policy: our computers do not exist in a

static policy system will serve only to cripple the dynamismvacuum.

that is inherent and beneficial in unconstrained humaq.he third sample policy (“I need to share my workspace with

interaction. Policy systems must not only allow, but alsg : " ; :
supportthe fluidity of interaction seen in “real life” human others during demo days") obviously depends on detecting

situations some _“real world” condition of the participants in the
' scenario.

A problem with many of the policy systems used in priorT

work is that they may be too rigid to support eﬁectivel,

collaboration. For example, Dewart al, in [4], point

toward more flexible and fluid specification of roles as bein

a requirement for effective collaboration:

The Importance of Fluidity
Human activity is a highly dynamic medium, rich in subtle

he fourth sample policy (“If anyone calls for me, tell them

m not here unless they've called with the new budget
numbers”) may seem gratuitous, but this is precisely the sort
%t thing that occurs regularly in the workplace. A user will
delegate responsibility for access control to another human
...users should be allowed to take multiple roles being. This delegate (a good assistant typically) must digest
simultaneously. For instance, a teaching assistant the salient situational variables and decide in real time
should be able to simultaneously take the roles of whether or not to grant access. Today, users must delegate

tasks such as this to other people since machine-based accele system provides access control lists (ACLs) to restrict
control systems do not have the intelligence or situationaccess to resources and attributes within resources. An ACL
awareness to act properly in such situations. is a mapping that indicates, for any given user, what

In all of these cases, we see that we need information abgpperations are aIIovyed on a specific objgct—e!ther a
gsource or an attribute. Allowable operations include

. . r
people (workgroups, advisors, people with budgets), aboy ading an object, writing an object, removing an object, and

tasks (thesis work), and the context or setting of the acno@sting for the existence of an object. A special NONE right

(is it demo day). and that this information must be sallows aceess. The identity of users of the svstem is
dynamically-updated to reflect changes in the state of th@I w . ! Ity u Y :

world. In more general terms, the presence of situationdlccurely established through digital signatures; identity is
information about the state of the “real world” is essential il epresented by a unique string callezbatificate

deciding whether or not to grant access to a particular pieggypjication Development

of information. In fact, bringing situational awareness intoa toolkit, or code library, is used by Intermezzo client
the environment goes a long way toward changing a simplegplications to enable the rapid construction of applications,
low-level access control mechanism into a more flexible angnd to provide certain conventions for the use of data in the
generally-applicable policy system. form of resources. A multithreaded server process
The characteristics of these scenarios indicate that @oordinates clients at runtime. This server also supports
traditional access control System augmented witlfemote execution of code downloaded from clients.
information about situational variables will provide a
powerful infrastructure for describing coordination policy.

More succinctly, policy can be defined as the dynami ased awareness monitoWhile applications can use
application of access control rights in response to “red PP

world” situations. This idea is the approach taken b);esources as a shared data store for any purposes they

Intermezzo: we combine the formality and speed of éequ"e’ most Intermezzo - applications will publish a
classical access control system, specifically, access contr%li?e?gﬁgmset tﬁ‘;rrﬁso_?gfses dgarerpnrggtealmfé?e a?/t/:g;/étr):egfs tri]se
lists on data objects, with a scheme for sampling thé! 9 . LS o
“instantaneous” state of the users world. A higher—levelenforced by the toolkit. An activity is explicitly represented

awareness system drives the low-level foundation accedS aActivity resource that contains links to three component

control system. This approach supports forms of policy thadSources.

are both light-weight, and responsive to the changinghe first component is called th®ubjectresource, and
environment in which the collaboration occurs. contains information identifying the user. The second
§gmponent is called theerb resource, and represents the
task or application being run. The third component is the
Object resource, and represents the focus of the particular
task—the file or other artifact on which the task is operating.
eSee Figure 1, below.

Awareness Services
One important service provided by Intermezzo iaectivity-

The next section describes the Intermezzo object model, al
how awareness works in the system.

THE INTERMEZZO FRAMEWORK

Our policy system is built atop the Intermezzo collaborativ
infrastructure. Intermezzo provides coordination support to
applications in the form of session management, awareness,
and policy control. The system provides a foundation object
model on top of which higher-level collaborative
functionality is based. While this paper does not describe all
the features of the Intermezzo environment, a high-level
view is important for understanding how policy is
implemented in Intermezzo. This section describes some of
the relevant features of the system.

Subject
Verb

Object Location

Object
Filename

Application

Data Storage and Replication Host

The Intermezzo framework supports a replicated, consistent,
and serialized object storage facility. The fundamental data \. /
objects manipulated by Intermezzo are caltedources

Resources are essentially collections of key-value pairs FIGURE 1: An Activity Resource.

called attributes (each attribute has a name, called its key,

associated with it, and stores some arbitrary piece of data)aken together, the set of resources published by Intermezzo
One important data type that attributes can storinks. applications provide a view of the distributed collection of
Links are pointers to other resources, and are used to forusers and their activities that is accessible to applications.
resources that contain aggregations of other resources.

Several fundamental characteristics of this object model are
Authentication and Authorization used to create the policy system provided by Intermezzo: the
All resources in Intermezzo support the notion ofbasic (_)bje_ct storage system, access control lists and
ownership—thus, some user owns a particular piece of datgVthentication, and conventions for awareness.

ROLES IN INTERMEZZO at the outset of a project who is going to make a
Policies are typically applied to sets or classifications of “significant contribution” and therefore who
users. As noted earlier, the literature has adopted the term should get [the] authorship [role]. But if
role to indicate a particular category of users with a set of authorship is defined at the outset, then it may
access control rights applied to them, and in fact many reduce the motivation of someone who has been
collaborative systems have found the notion of roles useful defined as a “non-author” and the person may not
for specifying how policies are assigned to users [8]. contribute as much.

Intermezzo adopts the terminology of roles and applies thidere we see a problem arising from static role definition in
concept in a new direction. This section describes howhe application domain. And yet, in the PREP editor, early-
policies are applied to roles. defined roles are used, presumably because of the lack of a

. role infrastructure to build upon.
Traditional Roles

Most systems that use roles have a few characteristics Y{& have seen that static roles are useful: they provide a
common: conceptual model for associating policies to users that is

))) o sufficient in many circumstances. They are well-understood
* The set of roles in use is determinadpriori by the py developers and users, and are efficiently implemented

application or environment. atop common access control mechanisms. Intermezzo
e The membership of those roles is typically determinedrovides static roles for applications that can benefit from
early in the lifetime of the session. them. But static roles are limiting in many collaborative

. bershio of lei ifiod i ¢ situations because, as illustrated by the quote above, they
Membership of a role is specified in terms of Users. 3ot provide the flexibility needed in many situations.
* There are few (if any) changes to role membership durin

the course of the session. %ynam'c Roles

N) o Intermezzo also supports a more flexible (although more
In traditional use, roles are typicaliyatic in the sense that expensive and somewhat harder to manage) form of roles
membership of a given role is established early and rareffyat do not have the limitations of traditional static roles.
changed. Further (and perhaps obviously), a role is definethese roles are calledlynamic roles The defining
in terms of the users who are members of that role. characteristic of dynamic roles is tmaémbership in the role
Such static roles are useful for a broad range of applicationt§ determined at runtime, as requests for access are.made
but, as mentioned before, they lack flexibility and Th|s characteristic means that dynam]c roles hgve an
responsiveness to the environment in which they are uselfiportant power that static roles do not: insteadedfning
Membership is predefined and fixed for certain access right®les in terms of their members, roles candescribedin
and the users themselves are responsible for updating rdfms of their attributes.
membership whenever policy mappings need to be changefiembership in a particular role is not determined by a

In essence, users must digest the situational variables that &/&mbership list: instead it is determined by a predicate
salient to coordination and use their world knowledge tdunction that is evaluated whenever an access request is
specify a set of access rights. Such a system places a burdBgde. The use of potentially arbitrary predicates to
on the users to “model” the state of the collaboration. Ther@€termineé membership lends great expressive power to

are a number of factors that limit the utility of static roles indynamic roles.
coordination: By simply moving the determination of membership from

* Static role systems require explicit overhead on the paf€ssion startup time to evaluation time, and by the use of
of the user to set up the role membership. In fact, thepredlcate functions rather than membership lists, dynamic

require anticipation of potential coordination situations Toles acquire several interesting properties:

by users. ¢ Dynamic roles allow role membership to be based on
 Static roles ignore situational dynamics (‘the real Aattributes other than “user name.”

world”) in deciding group membership. * Potential membership can vary from moment to moment
e Specification is rigid: there is no flexibility or “slack” in during the lifetime of a session.

the system. * Access can be granted based on the instantaneous state of

 Role membership can only be defined in terms of user the user’s world.
names, not other attributes of users or the environment.« By describing role membership, rather than specifying it,

The problems related to predefinition of role membership USers can be relieved of some of the burden of tracking,
have been identified in the literature. Neuwigthal, have updating, and anticipating role membership explicitly.

commented on the use of roles for collaborative writing [15]As an example, via dynamic roles, you can not only specify
There is a potential problem in systems which People who share my lab,” bupéople who are in my lab
support the definition of social roles: “premature” right now’ as a role or category of users.

definitions of these roles could lead to undesirable Dynamic roles extend one of the common threads in this
consequences. For example, it is not always clear research: that by bringing information about user awareness

into the collaborative environment, applications and theAggregate roles provide a mechanism for grouping other
environment itself can be made more responsive to subtteles, whether simple, dynamic, or aggregates themselves.
changes in the state of the world. Further, users can leggregate roles can be nested arbitrarily deeply in a directed
relieved of some of the burden of “manually” understandingacyclic graph:

and responding to situational variables; the system can take _ _

over some of that work when embodied with the required!e myProj={keith, beth, doug, demoday}

facilities and intelligence. There is one role namespace within each parse-unit of the
It is the dynamism inherent in the system—both in thespecification language. Note that inheritance of roles may be
dynamic application of users to roles, and in the constantlg useful feature. Inheritance would support the definition of
refreshed “world view” implemented by Intermezzo—thatclasses of users, with specialization through derivations.
transforms a potentially rigid access control scheme into &his feature has not been explored in Intermezzo, however.

more general policy system. . - . o .
9 policy sy Specifying Policies. Policies are specified declaratively

IMPLEMENTATION and, like roles, are named. A_pollcy specification consists of
This section describes the policy services provided b set Qf access control specifiers that denote t_he access rights
. . . . ¥hat will exist for the set of resources and attributes referred
Intermezzo in detail. Intermezzo provides mechanisms fotr b :
; ; : . . y that policy.
creating both static and dynamic roles, an implementation of
policies on top of the “raw” access control system, and &or purposes of assigning access rights, attributes are named

specification language for roles and policies that can be usdyy their key (the name of the attribute as represented by a

to control and configure the policy subsystem. string). Resources are named by type. Each data object
o o (either resource or attribute) can have default or fallback
A Specification Language for Roles and Policies access rights associated with it, which will be used if no

Intermezzo provides a software substrate that implementggore specific access right is provided.

static roles, dynamic roles, and policies in terms of access . : , e
control. This “view” of this substrate from the perspective of5€/0W is an example of a simple policy specification:
applications and users is a declarative language that is “S%licy Restricted {

to specify policies and roles. The intent is that this language resource Subject {

will be used by application developers and system attr Name = READ

administrators to configure policies and roles for their users. attr Location = WRITE
* —

At startup-time, the Intermezzo client-side code library loads }= E?(tltrST_ NONE

a set of description files that contain specifications of resource Verb = NONE

policies and roles, and establish role-to-policy mappings. resource * = EXIST

These specifications govern the access rights that are grantgd

to resources created by that client. The predicate functions

used to describe membership in a dynamic role are expresskis specification creates a new policy nanfestricted

in an extended version of the Python language [22]. The policy provides two by-type resource specifications for
Subjectand Verb resources. For any user that belongs to a

Specifying Roles. The Intermezzo roles specification role using the Restricted policy, Subjects will have the

language supports three types of role specifications. Ea@X|ST access right (allowing the existence of the resource to

role has a symbolic name associated with it that is used e tested), and Verbs will have the NONE right (denying all

bind the role to policies. access). The wildcard denotes that the policy associates the

e Simple EXIST right with all resources of types not explicitly named.

 Dynamic The policy also provides two access specifiers for attributes
with keysNameandLocation Name attributes have READ

* Aggregate rights (allowing viewing of the data); Location attributes

Simple roles map a certificate name to a symbolic role naméave WRITE permissions (allowing updates of the data).
These simple specifications are used to denote static rolddote that since the attribute specifiers are nested within the
Recall that certificates are strings used throughougpPecification for resource Subject, these rights will only be

Intermezzo to represent users: used for Name and Location attributes that are present in

Subject resources. The wild card specifier indicates that any

role keith = “Keith Edwards attributes in Subject resources that are not explicitly named
<kedwards@parc.xerox.com>" by the policy inherit the NONE right.

Dynamic role declarations bind a predicate function to &ote that the example here shows a policy that applies
symbolic role name. Predicates are specified by providing access control to the set of resources used by Intermezzo for
path name on the client to the location of the code file theawareness. Hence, this policy restricts access to the
implements the predicate. information used to coordinate among groups of users. In
_ _ general, however, an access control policy can be applied to
role demoday = [~keith/.policy/demoday.py] any data object stored by Intermezzo. Hence, if a

collaborative editing system uses resources to store sharemles that map to policies that mention these resources and
data, access to that data could also be regulated by a policwttributes. From this information it is possible to construct a

_ . set of “prototype” access control lists. These prototypes are
Mapping from Roles to Policies. The language for mannings from resource types or attribute names to the
specification also provides a means for establishing cess control lists that will be associated with those

mappings between roles and policies. Symbolic role namggsqyrces or attributes when they are created.
are mapped to symbolic policy names; the system supports

many-to-many mappings. This mapping is maintained internally by the client-side

library. Whenever the application creates a resource, or an
gvu_lab -> RestrictedAccess attribute on an existing resource, the access prototype
animation_lab -> RestrictedAccess mapping is queried to retrieve an access control list to be
friends -> GeneralAccess applied to the new data object. Via this scheme, the penalty
stasko -> AdvisorAccess

of parsing and internalizing the policy descriptions is paid
only once, at application startup time. After startup, the

Note the use of wildcard specifications for roles: thelnternalized policy descriptors are used to automatically
language allows a default policy that will be applied to allgenerate the access control lists for resources and attributed

users not represented by any of the provided roles. created by the application. The “generation” of access
. . i . control lists is essentially just a table lookup in the
Many-to-many mappings provide two bene_ﬂts. Flrst,.they rototypes mapping, and is thus quite inexpensive.
allow several roles to share the same policy, resulting |R_ i .)
reuse of policy descriptions. In the example above, th&ince static roles are only manifested as access control lists
policy RestrictedAccesss reused by two different roles: at runtime, determination of access Ughts is tr|V|aI.. There is
gvu_labandanimation_lab no need to search role membership lists to determine access;
- L . . instead, the system merely retrieves the access right
The second benefit of many-to-many mappings is that theysgociated with a given user when that user attempts to
allow multiple policies to be associated with a given roleyccess an object. Determination of access at runtime is as
allowing “segmenting” of access rights across multiplegimple as a dictionary lookup to retrieve the right from the

policies. In this case each policy would specify a set 0fccess control list, and then an arithmetic comparison to
access rights for a different set of objects. Thus, ideally thergetermine whether the right will be granted.

would be no “overlap” between the access rights specifie

by multiple policies associated with a particular role. Note that the owner of a resource always has full rights to it.
Updates and reads of resources by their owners is the

A static analysis could detect policies that do overlapcommon case and bypasses the access control mechanisms.

although this facility is not implemented currently. In gince ownership is authenticated this poses no security risk.
practice, however, the presence of dynamic roles means that

the system cannot know until runtime whether an actuabynamic Role Implementation

overlap of access rights for a given user exists. Detecting aMlhereas static roles are implemented by associating a list of
disallowing such overlaps late (at runtime) seemed overlysers with a set of access control rights, dynamic roles are
restrictive and cumbersome. implemented by associating a predicate function with a set of

If a user is in multiple roles simultaneously, Intermezzo usegccefs control rlg_hts. When a client starts, it generates a
a liberal policy for assigning effective access rights: theMmap” of access rights for the resources and attributes that

strongest right allowed by any policy of which the user is are represented by the policies it loads. In dynamic roles,

member is applied. This rule supports “lavering” of oIicieseaCh. resource .and attribute keeps a list _of access rights and
bp bp yering P predicate functions that map onto those rights.

on a given user, each granting wider access.

* -> Anonymity

) _ When a request for access is made at runtime, Intermezzo
Static Role Implementation _ first evaluates the access control list for the object to see if
The notion of static roles is constructed by aggregating,e requested right is explicitly granted to the user making
features found in the Intermezzo foundation layer: stalighe gecess. If it is not, then the system scans the list of access
roles are implemented using simple access control lists. lfynts associated with predicate functions. For any access
fact, the notion of a “role,” whether static or dynamic, iSgjghs that provide the requested access, the system evaluates
present only in the higher-level coordination featurespe associated predicate functions until either a predicate
provided by Intermezzo (the parser for the specificationeyms true or no predicates remain that might be able to
language, for example). grant the requested access.

When an Intermezzo client is run, the role specifications arg, essence, this scheme means that the system first applies
parsed at application startup time. The client-side toolkithe static roles to see if access may be granted. Only if they
“digests” these specifications into a compiled format that,i| qoes the system apply dynamic roles. Further, only the
specifies the access control lists that resources and attributes.qicate functions that have the potential to grant access are
will inherit. This processed format is essentially an invers valuated, and they are only evaluated until the access is
of the role (user) to policy (access control) specificationyanted. This is consistent with the “liberal” application of

supported by the specification language. The system buildsige access control system throughout Intermezzo, and
list of all of the resources and attributes that are specified Brovides efficient short-circuit evaluation: #ny policy

the policy descriptions. It then “works backwards” to find all

would grant access to a particular object, then access |sedicate result can only vary between executions if the
granted. “world state” on which it depends has changed.

Predicates are evaluated in the server and execute with t
permissions of the user requesting access. Evaluation OCC@MMON POLICIES . :

in the server because the alternative, execution within th&/Nile the policy system used by Intermezzo is flexible and
client, would be a security risk: rogue clients could claim td‘)owerful erylyou.gh to capture a range of specific and complex
have executed the predicate and return a successful conditigfé world” situations, it is also useful for describing a
to the server. Predicate execution occurs with the user’dimber of common general policies. This section describes
permissions to ensure that a predicate function cannot B&¥C_general policies which seem to be not only highly
used as a “Trojan horse” to gain access to resource data thg€ful: but also “in demand” by users. Again, note that these
would otherwise not be accessible to a given user. are coordination policies, as they regulate access to the

_]) ~ predefined resources used to enable awareness and
Below is an example of a predicate function expressed in th&ordination among users.

form of extended Python used by Intermezzo. This predicate

defines a role for the “demo day” scenario discussed earli¢mnonymity

in this paper. There are a number of possible ways to defilg some collaborative situations it may be useful to prevent
a “demo day” predicate; this one considers the followingoroad access to a set of information about users. For
characteristics salient: example, in brainstorming sessions such as those provided
by group decision support systems, research has shown that
often better results are achieved if the participants do not
¢ Only extend access when the owner (“me”) is in the lab. know who is submitting ideas [16]. By keeping participants
r{rom being able to identify one another, social barriers to
contributing to the session are lowered.

* The day must be demo day.

e The user must be running the demo applicatio

(“Montage”).
* Access is only extended to those who are themselves ﬂl's sort of information restriction is calleanonymity
the lab. ere is no |r_1format|on assoma;eq vylth users that could be
used to identify them. Further, it is impossible (or at least
def predicate(subj me context): unlikely) to track user data over a long period of time in an
if date.today() == “August 28™: attempt to glean enough information to identify a user.
if me.Location = “GVULab": . .
- i " Intermezzo makes the construction of policies that
if me.Activities(“Montage”):
if subj.Location == “GVULab": correspond to anonymity possible. The precise definition of
return TRUE such policies will vary from site to site because of the need
to restrict different pieces of information based on common
return FALSE user behaviors and tasks. For example, at a site where users

The predicate consists entirely of a set of conditions t&"e typlqally mobile, it may be desirable to allqw access 1o
.) $hformation about location (“ know someone'’s in the coffee
determine (1) the date, (2) .the location of the resourcgoom, but | don't know who it is.”) At a site where users
mgggn@ tthh:rgurrer}t. activities of the owner, and (4) thG‘Eypically sit at their desks all day, information about location
questing user. is in practice equivalent to direct information about user
Note the parameters passed to this functij is a identity.
resource of type Subject that represents the user requesti
access. The predicate is free to query the attributes of t
resource, modulo any access constraints placed on it, t0
determine information about the requesting user. ke policy Anonymity {
argument is also a Subject resource that represents the owner resource Subject = {

Bllow is one (perhaps overly simple) definition of a policy
support anonymity.

of the data object to which access is being requested (the attr * = NONE
predicate itself is executed with the permissions of this user). } = EXIST

The final context argument represents the world-view resource Verb = {
collection of resources that represents the state of the attr * = NONE

} = EXIST

awareness service. Via this parameter, the predicate is free to resource * = NONE

guery about any condition in the Intermezzo data model. }

While some effort is made to speed dynamic predicate, . . .
evaluation (by evaluating static roles first, and by ShOI’tCL;hIS policy does not allow a user to read or even determine
evaluation, for example), there are other optimizations thdf'® €xistence of any attributes on tSebject or Verb

are possible but are not implemented currently. Firsti€SOUces. It does allow the determination of thg existence of
predicates can be cached on the server; clients would thi}fSe resources as a whole, however, and it does allow
only transmit an identifying token for the predicate, ratheCCeSS 10 resources of types other than Subject and Verb.

than the predicate itself. The anonymity policy as defined above is not the same as

Second (and more difficult), we may be able to pre-process 4VisiPility:™ invisibility would remove the EXIST rights
predicate to determine which objects are examined by it. JArom resources, preventing detection of even the presence of

users. Anonymity is weaker in that it permits questions likeActivity slots for Subject and so on, yet prevents reading the
“How many users are logged on now?” and, “Whatactual resources pointed to by these links (since Subject only
applications are being run?” while still removing identifying supports limited read access).

characteristics from that information. Still, however, By allowing applications to read the links, but not the data,

anonymity is so restrictive that it prevents many of thein an Activity resource, applications can detect when several
activity-based interaction features of Intermezzo from

operating. For example, the Intermezzo session managem%??flvm-es “point” to the same user, while denying access to
! : : ' : entially identifying information about that user.

service uses attributes on the Subject and Verb resources.

these attributes cannot be read, the session managem@seudonymity is useful for the (perhaps very common) case

system will be unable to rendezvous with a user. (For a mo@f access control where a user may say, “| don’t mind people

thorough description of how session management interacksiowing what I'm doing, as long as they don't know itie

with the activity service, see [6]). doing it.” Note that users with pseudonymity enabled are
. able to interoperate with the Intermezzo session management
Pseudonymity services since the policy does allow access to activity and

Often, anonymity is too restrictive in collaborative some user information.
situations. While it is useful in certain constrained

environments (such as the brainstorming example), EUMMARY AND FUTURE DIRECTIONS

severely limits the flow of information that may be useful toThe ability to describe to a system how it should behave in a
coordination.Pseudonymitys a policy that protects privacy potentially chaotic setting is important for collaborative
but still allows access to information that can supporiyork. In this paper, | have used the term policy to denote a
coordination between groups of users. set of access control rights dynamically applied to data

Pseudonymity is similar to anonymity in that it does notobjects, and mediated by the situational context in which the
allow information published in the shared information spac&ollaboration occurs. The data objects can represent user
to be associated with an actual human user of the system agtivity and awareness, as well as application-specific data.
doeshowever allow the use or identifying “handles” that canThis access control-based definition is capable of capturing
be used to track users in the abstract. Pseudonymity allowany useful policies, from the specific (how to deal with
questions like, “What is user X’s typical work flow?” and, particular users at particular times of the day) to the general
“Which users that run Framemaker also run PhotoshopZanonymity and pseudonymity).

Pseudonymity supports the collection of user statistics anflhe system uses the notion of roles to associate categories of
allows the system to track the paths of individual activitiessers with particular policies. Intermezzo roles can represent
while preventing those activities from being associated with, ¢ only groups of users, but also descriptions of users in the

an actual person. A common analog in the social sciencesfisym of predicates evaluated at runtime to determine group
the use of code numbers or names for experimental subjectgempership.

These codes are typically used over the course of a Ion(ﬁ)—) , .
lived experiment (sometimes over a period of years), but stilPynamic roles, in particular, expand on one of the central

provide no information about the true name of “User X.” themes in this work: by bringing information about users and
their environments into the system, we can make computer-

Again, like the implementation of anonymity, a policy for 53ygmented collaboration more responsive, and we can free

pseudonymity may vary from site to site. At some sites ithe users of many of the burdens implicit in working with
may be possible to release certain pieces of informatiogygay's collaborative systems.

while preserving pseudonymity; at others, more information

may be restricted. There are a number of areas for future work. One limitation
.)) of this work is the policy specification language. The
Below is an example of a policy for pseudonymity: language is powerful, and provides an economical way to
policy Pseudonymity { create new policief, and role"s for applications_—previously
resource Subject { developers ha}d to hard_ code” support fo_r policies anq roles.
attr Location = READ The problem is that while the language is much easier than
#...other attributes we may wish to developing code, it is still not suitable for end-users. Ideally
allow access to... users should be able to create their own policies and roles as
attr * = NONE the need arises. Users should be able to selectively enable or
}=EXIST disable access control without having to learn a new
resogifre*ACg\g%’é language, running the risk of inadvertently exposing their

data to unwanted access, or understanding the intricacies of

} = EXIST the resource object model and access control rights.

}

))) o A “policy manager” tool that interacts with users and emits
This policy varies from anonymity in a number of respectspgjicy specifications according to user desires would be an
First, it selectively allows access to certain attributes of thﬁhteresting avenue of research. In fact, the entire issue of
Subjectresource l{ocationin this example). Next, it allows pow end-usershink about policies and roles, and how to

read access to the attributesAdftivity resources. Allowing capture those concepts in a tool designed for end users,
reads of Activities allows applications tead the links \youid make an interesting area of study.

(meaning, the actual hashed resource identifier) in the

REFERENCES

[1]
(2]

3]

[4]

[5]

[6]

[7]

[8]

9]

(10]

(11]

The American HeritageDictionary. Boston, MA:
Houghton Mifflin Company.

Baecker, R.M., Nastos, D., Posner, I.R., and Mawby,
K.L., “The User-centered lterative Design of Collabo-
rative Writing Software.” IlProceedings of the ACM/
InterAct Conference on Human Factors in Computing
Systems Amsterdam, The Netherlands: ACM. April
24-29, 1993. pp. 399-405.

Brothers, L., Sembugamoorthy, V., Muller, M., “ICI-
CLE: Groupware for Code InspectionCSCW 90:
Proceedings of the Conference on Computer-Sup-
ported Cooperative WorkLos Angeles, CA: ACM,
1990, pp. 169-181.

Dewan, Prasun, Choudhary, Rajiv, and Shen, HongHai,

“An Editing-based Characterization of the Design [15]

Space of Collaborative ApplicationsJournal of
Organizational Computing4:3, pp. 219-240, 1994.
Dourish, Paul, and Bellotti, Victoria. “Awareness and
Coordination in Shared Work SpaceBrbceedings of

ACM Conference on Computer-Supported Cooperative[ls]

Work Toronto, Canada, November 1992.

Edwards, W. Keith, “Session Management for Collab-
orative Applications.” IrProceedings of the ACM Con-
ference on Computer-Supported Cooperative Work

Chapel Hill, NC: ACM, October 22-26, 1994. pp. 323- [17]

330.

Edwards, W. Keith,Coordination Infrastructure in
Collaborative SystemsPh.D. Dissertation, Georgia

[12] Mantei, M.M, Baecker, R.M., Sellen, A.J., Buxton,

W.A.S., Milligan, T., and Wellman, B. “Experiences in
the Use of a Media Space?roceedings of the ACM
Conference on Computer-Human Interactiofpril
28-May2, 1991. New Orleans, LA: ACM. pp. 127-138.

Moffett, Jonathan D., and Morris, S. Sloman, “The
Representation of Policies as System ObjectsPrtr
ceedings of the ACM Conference on Organizational
Computing Systematlanta, GA: ACM, November 5-

8, 1991, pp. 171-184.

] Moran, Thomas P., and Anderson, R.J., “The Worka-

day World as a Paradigm for CSCW Desigerdceed-
ings of the Conference on Computer-Supported
Cooperative Workl.os Angeles, CA: ACM, 1990, pp.
381-393.

Neuwirth, C. M., Kaufer, D. S., Chandhok, R., and
Morris, J. “Issues in the Design of Computer Support
for Co-authoring and CommentingProceedings of
the Conference on Computer-Supported Cooperative
Work, Los Angeles, CA: ACM, 1990, 183-195.

Poole, M.S., Holmes, M., and DeSanctis, G., “Conflict
Management and Group Decision Support Systems.”
In Proceedings of the ACM Conference on Computer-
Supported Cooperative WorlPortland, OR: ACM.
September 26-28, 1988, pp. 227-241.

Root, R.W. “Design of a Multi-Media Vehicle for
Social Browsing,"Proceedings of the Conference on
Computer-Supported Cooperative Wdplortland, OR:
ACM, September 26-28, 1988. pp. 25-38.

Institute of Technology, Atlanta, GA. November 22, [1g] Shen, H., and Dewan, P. “Access Control for Collabo-

1995.

Gintell, John W., and McKenney, Roland F., “CSCW
Infrastructure Requirements Derived from Scrutiny

rative Environments,’Proceedings of the Conference
on Computer-Supported Cooperative Wofkronto,
Ontario: ACM, 1992, 51-58.

Project.” Workshop on Distributed Systems, Multime- [19] Sohlenkamp, Markus, and Chwelos, Greg, “Integrating

dia, and Infrastructure, ACM Conference on Com-
puter-Supported Cooperative Work, Chapel Hill, NC
October 22, 1994

Grief, I., and Sarin, S. “Data Sharing in Group Work,”

Communication, Cooperation, and Awareness: The
DIVA Virtual Office Environment.”Proceedings of the
ACM Conference on Computer Supported Cooperative
Work Chapel Hill, October 22-26, 1994. pp. 331-343.

Computer-Supported Cooperative Work: A Book 0of[20] Smith, lan, and Hudson, Scott, “Low Disturbance

Readings Irene Grief, ed. San Mateo, CA: Morgan
Kaufmann, 1988, pp. 477-508.

Kaplan, S.M., Tolone, W.J., Bogia, D.P., and Bignoli,
C., “Flexible, Active Support for Collaborative Work
with ConversationBuilder.Proceedings of the Confer-
ence on Computer-Supported Cooperative \Wook-
onto, Ontario: ACM, pp. 378-385.

Leland, M.D.P., Fish, R.S., and Kraut, R.E., “Collabo-
rative Document Production Using QuilPfoceedings

Audio For Awareness And Privacy In Media Space
Applications,” Proceedings of ACM Conference On
Multimedig November, 1995, San Francisco, CA:
ACM.

[21] Tang, J.C., Isaacs, E.A., and Rua, M., “Supporting Dis-

tributed Groups with a Montage of Lightweight Inter-
actions.” Proceedings of the ACM Conference on
Computer Supported Cooperative Woekhapel Hill,
October 22-26, 1994. pp. 23-34.

of the Conference on Computer-Supported Coopera{22] van Rossum, Guido,Python Reference Manual

tive Work Portland, OR: ACM, 1988, 206-215.

Release 1.30ctober 13, 1995 (available as http://
www.python.org/doc/ref/ref.html).

