
A Temporal Model for Multi-Level Undo and Redo

W. Keith Edwards
Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

kedwards@parc.xerox.com

Takeo Igarashi1

Brown University
CS Dept., Box 1910

Providence, RI 02912
takeo@cs.brown.edu

Anthony LaMarca1

Yahoo, Inc.
3420 Central Expwy

Santa Clara, CA 95051
lamarca@yahoo-inc.com

Elizabeth D. Mynatt1

College of Computing
Georgia Tech

Atlanta, GA 30332
mynatt@cc.gatech.edu

divergent and convergent timelines as a way to support
collaboration, and provides facilities for conflict resolution.
Even in systems without such rich models of history, time is
often an explicit—and directly manipulable—part of the user
interface, and user experience. Systems such as Time-
Machine Computing [15] and Lifestreams [6] are exemplars
of this trend.

All of these systems rely on an explicit model of history,
which can be scanned to support search or “navigation” over
a timeline, and all allow their timelines to be “traversed” to
move the application’s state to other points in its history.
However, as powerful as these applications are, their
timeline representations are for the most part exceedingly
simple. They typically support only linear, not branching
timelines (GINA and Timewarp are exceptions, however);
the “nodes” in a timeline must represent atomic operations
with side effects that are well understood at the time the
application is created; and, typically, the timeline of the
entire application must be navigated or traversed as a
whole—it is impossible to have a portion of the timeline
exist in a “bubble” that can be manipulated separately.

While we don’t commonly encounter such rich models of
time in our day to day experience, they can be extremely
useful nonetheless. Divergent timelines, for example, can be
employed to allow users to interact with different but related
versions of an artifact, and then reconcile those differences
later. The ability to expand the representation of time in
ways that better accommodate side effects can make
applications easier to write. And being able to separate the
history of one nested artifact from the history of the
application as a whole can allow users to work locally on a
document, project source code, et cetera, and still integrate
their changes globally.

This paper presents an expansion of the most traditional
representation of timelines, which is based on the command
object idiom. The research here makes two contributions.
First it extends this traditional model of history to better
support the causality effects often found in “real”
applications. This first extension works for both linear and
divergent timelines. Second, this new causal model is then
extended to support multi-level or “interleaved” timelines, in
which the various components of an artifact can exist at

ABSTRACT
A number of recent systems have provided rich facilities for
manipulating the timelines of applications. Such timelines
represent the history of an application’s use in some session,
and captures the effects of the user’s interactions with that
application. Applications can use timeline manipulation
techniques prosaically as a way to provide undo and redo
within an application context; more interestingly, they can
use these same techniques to make an application’s history
directly manipulable in richer ways by users. This paper
presents a number of extensions to current techniques for
representing and managing application timelines. The first
extension captures causal relationships in timelines via a
nested transaction mechanism. This extension addresses a
common problem in history-based applications, namely,
how to represent application state as a set of atomic,
incremental operations. The second extension presents a
model for “multi-level” time, in which the histories of a set
of inter-related artifacts can be represented by both “local”
and “global” timelines. This extension allows the histories of
related objects in an application to be manipulated
independently from one another.
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INTRODUCTION
Many applications provide facilities for interacting with their
past states. The most common expression of such facilities is
as a way to support undo and redo of user operations.
Applications as commonplace as Microsoft Word support
such features, allowing users to effectively “roll back” the
history of their interaction with the application.

More recently, a number of systems in the research literature
have explored richer models of application history. These
include such tools as GINA [1] and Amulet [13], which use a
complex branching model of time for undo and redo
operations; Chimera [12], which provides a history model
which preserves dependency relationships between
operations; WeMet [16], which provides tools for rapidly
scanning shared timelines; and Timewarp [4], which uses
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different points in the overall global timeline. This second
contribution only addresses interleaving in the context of
linear timelines, not divergent timelines.

BACKGROUND: HISTORY MODELS FOR SINGLE-LEVEL 
UNDO/REDO
As mentioned, many desktop applications provide a general-
purpose undo/redo mechanism. One common approach to
implementing such a facility is based on the “command
object” idiom [7]. Command objects are objects—in the
object-oriented sense of the word—that encapsulate a
change in the state of an application. Typically, each type of
operation that can be performed in the application is
represented as a discrete class of command object. Instances
of these commands are “invoked” by calling a well-known
method on them that causes them to perform their operation,
updating the state of the application. In other words,
instances of these command classes represent particular
invocations of these operations by the user, and also contain
the code necessary to perform the operation in the context of
the application.

In applications that use the command pattern, typically all
user-initiated application functions are made manifest by
such objects. For example, in a drawing program, command
object classes might exist for operations to draw figures,
resize, delete, or otherwise modify figures, and to cut, copy,
or paste figures.

An ordered sequence of instances of these objects is called a
command history, because it represents each operation
performed by the application during a session. Since each
operation is captured, the history also represents the sum
total of all of the states of the application during a session, up
to and including the “present” state. Given a command
history and an “uninitialized” application, the system can
“replay” the operations in the history, and return the
application to any state represented by the history.

To support generalizable undo and redo, the command
pattern is extended so that operations can be run “forward”
or “backward”—that is, they provide behavior that can
invoke and reverse the operations they represent. Once this
ability is added to the base command object pattern,
command objects can be connected together in graphs to
form complex histories that represent all of the possible
states in which the application has existed. (See Thomas
Berlage’s excellent review of the command object pattern
applied to history in [2].)

In most applications (including examples in the literature
such as [12] and [16]), history is represented by a graph with
a maximal vertex degree of one (more commonly known as a
“line”), as in Figure 1. 

Other systems [4] have a more complex model of time, in
which history is represented as an arbitrary directed acyclic
graph with a single root, as shown in Figure 2. Divergence in
the timelines of such applications represent multiple
plausible “alternate histories” that may coexist in the state of
the application. Such applications must deal with issues of
conflict detection and resolution, which do not occur in the
simpler time models [5]. In both cases—linear and divergent

histories—sequential sets of operations can be done or
undone by traversing the graph.  

All of this material has been covered by previous research,
but is necessary background for the next section. While prior
work has explored timeline management in the context of
traditional single-history applications, and even divergent
multiple-history settings, it has not fully explored what
might be called interleaved or multi-level histories. 

The rest of this paper is organized as follows. The next
section expands the rather simplistic “atomic” model of time
presented here—in which each node in a history completely
captures the results of some operation—with a more realistic
model that accounts for operations with side effects by
representing causal relationships in the timeline. This
refinement of the simple history model has not been
explored in the literature, and is a necessary extension for a
wide class of “real” applications. 

After this, the paper introduces the notion of multi-level
timelines. These are timelines in which history is represented
as a hierarchical decomposition of interrelated time streams.
The work here unifies the more robust, causal representation
of operations with this multi-level model of time.

Finally, the paper concludes with a discussion of several
additional related topics—in particular, how applications can
make such complex models of time efficiently searchable—
and a set of conclusions and possible future work.

FIGURE 1: A Simple Timeline Represented as a 
Linear Graph

FIGURE 2: A Divergent Timeline
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CAUSALITY AND SIDE EFFECTS
The simple history model described above is appropriate for
applications in which the nodes in a timeline do, in fact, fully
capture the state of the application, and can be invoked and
reversed atomically. But is this always the case in “real
world” applications?

Often, and as we shall see, the effects of a particular
operation cannot be known a priori, and therefore the
expression of such operations in the command idiom of time
raises problems. This is best illustrated through an example.

A Case Study: Flatland
The impetus for much of the work described in this paper
was a computer augmented whiteboard system, called
Flatland [8][14]. Flatland presents a user model in which a
whiteboard is loosely subdivided into regions of activity
called segments; each segment represents some task on
which the user is working. 

In Flatland, segments can contain simple “raw” strokes that
are unprocessed by the computer, or they can have
application-specific behaviors added to them that can
process the strokes. These behaviors can modify the
interpretation and display of strokes in a domain-specific
manner, and they can be flexibly added to and removed from
a collection of strokes as desired. For example, a user may
begin jotting notes in a “raw” segment, and then later decide
to treat the information there as a to do list. By applying a “to
do” behavior, the system will reinterpret the strokes as a
structured list that allows the user to easily reorder and delete
items. Figure 3 shows an image of a Flatland whiteboard
containing a few segments.

Behaviors have complete control over the state of the
segment, and can even remove user strokes and add new
strokes as needed. For example, a “map drawing” behavior
lets the user draw strokes that correspond to streets. After the
user draws a single stroke, the map behavior removes the
original input, replacing it with two parallel strokes that
represent the street. Intersections between streets are handled
appropriately. Figure 4 shows an example of this map

For the purposes of this discussion, the key point about the
Flatland architecture is that the system allows arbitrary,
pluggable bits of application code to be dynamically bound
to particular regions of the whiteboard. The actual
operations that take place in a segment are not dependent just
on user input, but also the behaviors associated with the
segment, and their respective states.

The Problem of Side Effects
The Flatland design presented some problems that prevented
its state from being accurately represented as a linear graph
of command objects. In “traditional” uses of the command
object idiom, each command is atomic—that is, it can
reliably and completely do or undo its operation, and has no
side effects that aren’t represented by the state in the
command object itself. As an example, when a command
object in a drawing program is rolled forward, it must take
care to store all information needed to completely reset the
state of the application if it is rolled back. 

In simple terms, no operation may make changes that would
be impossible for it to undo, and thus each command object
must be fully “aware” of the semantics and implications of
the updates that it performs on the state of the application.
To revisit the drawing program example, if performing the
operation causes some change to be made to the graphics
context of the application, the creator of the command object
must be aware of this side effect, and must account for it
when performing the corresponding undo. All of these
possible side effects must be known at the time the set of
command classes are written. 

This situation is in contrast to the basic architecture of
Flatland, and to many other applications in which side
effects can not always be known or computed a priori
(including, for example, Kramer’s Translucent Patch system
[11]). In Flatland, the use of extensible, pluggable behaviors
means that essentially every interesting update to the state of
the application does occur as a side effect to user input. The
set of operations that can occur when a user draws a stroke
on the board is dependent on the set of behaviors installed,
and the current state of each of those behaviors.

Likewise, other applications—whether because of difficulty
of implementation or core design issues—may not be able to
fully know and express the consequences of each operation
at the time the set of command objects is created. This leads

FIGURE 3: The Flatland Whiteboard Application

FIGURE 4: An Example of a Complex Behavior
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to problems in applying the command object idiom in the
face of unknowable side effects.

Two Approaches
One approach to solving this problem would be to represent
only the original user input in the command history. So, to
use Flatland as an example, if a user made a stroke, and then
the map behavior erased this stroke and replaced it with two
parallel ones, only the original stroke (which doesn’t even
appear on the screen, after the map behavior is finished with
it) would be present. 

The benefit of this solution is that only “known” types of
commands are stored in the history. The downside is that the
history no longer represents the complete state of the
application—in other words, the history is no longer a “self
describing” representation of the application’s state, since
the command objects themselves do not fully capture the
updates to the application. To jump to a different node in the
history graph involves essentially “replaying” the user input
to the individual behaviors, causing them to perform all of
the same operations that they would in response to “fresh”
user input. The computations done by behaviors can be
arbitrarily complex, which means that jumping to distant
points in the timeline can be arbitrarily expensive. (And the
state changes of the behaviors themselves aren’t represented
in the timeline, so there is no way to search for them using
the techniques presented later in this paper.)

An alternate approach would be to require that any behavior
that updates the application’s state express its updates in
terms of new command objects. So in the example of the
map behavior, the history would contain a draw of the
original stroke (added by the user), followed by a removal of
that same stroke, and draws of two additional strokes (added
by the map behavior). This approach has a big advantage:
changes based on user input are “pre-computed” by the
behaviors, and only their final outputs are represented in the
history. Essentially the “side effects” of the input are turned
into “foreground effects” and represented as first-class
citizens in the history. In this model, the history is once again
a complete, self-describing representation of the states of the
application.

Flatland follows this second approach. We believed that the
benefits of a self-describing representation of history were
apparent. First, by pre-computing as much state as possible
we could allow efficient navigation along the timeline.
Second, by representing all “user visible” output in the
timeline, we could more efficiently support search over the
timeline (see later in this paper for the details of search). 

Of course, such a model subtly changes the atomicity
constraints of the timeline. While individual nodes are still
atomic, many of these nodes exist in the timeline solely
because of causal effects and, in essence, cannot “stand on
their own” independently of the operations that caused them.
This means that a stepwise navigation of the timeline can
move the application to states in which the necessary causal
effects of some operation are not fully realized. The next
section explains this in more depth, and presents a model for
representing causality in the timeline.

A Transaction Model for State Changes
As mentioned before, in an application without side effects
such as those that arise from the extensible behaviors in
Flatland, each command object represents an atomic
operation. You can redo or undo individual commands, and
set the application to a known and sensible state. But if
operations exist in the timeline solely because of the side
effects of other operations, then this is not the case.

Consider once again the map behavior example from
Flatland. Suppose that a user has drawn a stroke that
corresponds to a new road, and then needs to roll time back.
The original stroke command is actually turned into four
separate command objects by the behavior—the original
draw, a removal, and then two draws to render the road.
Clearly, rolling back atomically is probably not what the
user wants to see: a roll back would reveal the individual
low-level operations of the map behavior, rather than the
semantic “chunk” containing the whole set of operations
associated with drawing a street.

For this reason, we developed a transaction model for the
command objects in our histories. Sets of commands are
grouped together into transactions that reflect causality, and
transactions can be nested to an arbitrary depth to represent
nested causality. In the classic database model, transactions
provide a way to group related operations and provided the
so-called ACID properties (atomicity, consistency, integrity,
and durability) [9]. Flatland transactions are considerably
lighter weight, and we do not want to imply that they
maintain all of the rigorous consistency and durability
guarantees of database-style transactions. Instead, Flatland
transactions provide a mechanism for grouping operations
into cause and effect relationships.

Each original user-level input begins a new top-level
transaction. As the Flatland event dispatch machinery begins
its invocation of any attached behaviors, a new nested
transaction is started to “collect” the results of the behaviors.
The behaviors perform their operations by adding new
command objects to the history; these command objects are
grouped into this new transaction. If they in turn call out to
other behaviors, or other behaviors are implicitly invoked by
the operations they perform, a new nesting scope is created.

From this model, causality relationships are clearly
indicated: each nested transaction is executed as a result of
the operation in the immediately higher scope. Transactions
are represented explicitly in the history by
OpenTransaction and CloseTransaction command
pairs, and the history roll-forward and roll-back machinery is
augmented to process transactions in whole, atomic,
increments. 

Figure 5 shows an example of the use of nested transactions
to represent causality in the timeline. In this example, a roll-
forward or roll-backward would “consume” the entire top-
level transaction TA, and all of the “side effect” operations
represented by TB and TC. (Any other top-level operations
that might exist at nesting depth zero—that is, stand-alone
operations not a part of a transaction—would be consumed
on a per-operation basis, as before). 



The model presented here has some similarities with
hierarchical event systems [10], but there are a number of
key differences. First, hierarchical events systems provide a
bottom-up aggregation of multiple low-level events into
more semantically meaningful high-level events (a sequence
of mouse clicks and keypresses might become a “Save File”
event, for example). In contrast, systems like Flatland are
top-down: a single user input has rippling side effects that
aren’t—and can’t—be known at the time the command
object representing the input is created. Transactions in our
case are used to preserve causality; hierarchical events serve
to impose interpretation. 

A second difference is that hierarchical events, in
implementations such as Kosbie’s and Myers’, can fruitfully
allow users to undo operations at a number of levels
(undoing the last character typed in a Save File dialog,
versus undoing the entire high-level Save File operation, for
example). This ability to undo fine-grained operations within
a hierarchy is appropriate for such systems, because at each
granularity, nodes in the history still represent operations
explicitly performed by the user. Contrast this to Flatland-
like systems in which only the initial operation corresponds
to an input made by the user, and the other operations are
generated as a part of the system’s implementation. We felt
that, given our model, preservation of causality during undo
was essential.

Consequences of Side Effects on Timelines
But what are the implications of such nested transactions on
the basic timeline representations, and the operations
available for operating on timelines? As it turns out, for all
of the cases discussed so far—essentially simple, linear
timelines—transactions do not alter the basic logic of
timeline manipulations.

In all of these cases, a transaction still represents what is
logically an atomic operation—even though it may comprise
multiple constituent operations, these cannot be executed
independently of their transaction-mates, and the operations
in a transaction must still complete as a whole, if they
complete at all. The transaction machinery described here is
necessary to capture and correlate the causal relationships of

side effects in the applications that may exhibit them. But the
presence of these transactions does not fundamentally
change the basic temporal model; essentially you can think
of a set of operations within a transaction as reducing to a
single logical operation, and the fundamental model holds.

Figure 6 shows a logical transformation from a simple, linear
timeline which uses transactions to represent causality to an
isomorphic one in which transactions are “collapsed” into a
timeline basically identical to the one in Figure 1. As long as
the roll-forward and roll-backward machinery is augmented
to move through the timeline on transaction boundaries
(which become essentially the “new” representation of
atomicity in the system), then nothing else need change and
the basic model holds.

As we shall see, however, this is not the case in more
complex timelines, including the “multi-level” timelines
described in the next section.

MULTI-LEVEL TIMELINES
The previous section presented an extension to the simple
timeline model that can accommodate applications in which
the side effects of operations may not be known when the
command objects representing those operations are created.
As you saw, while the use of transactions makes it possible
to extend the timeline model to such applications, it does not
fundamentally alter the logic of these simple timelines.

The presence of transactions does, however, have
consequences in more complex models of time. The
previous section addressed only the use of transactions in
linear (non-divergent) timelines that have a single level of
temporality. This section presents the notion of multi-level or
interleaved linear timelines, and shows how the transaction
model can be extended to accommodate it.

An Example of Multi-Level Time in Flatland
Once again, the notion of multi-level time was motivated by
our experiences with Flatland, so we shall use that
application as an example. One final timeline management
issue we had to deal with in Flatland was the distinction
between the “local” timelines of individual segments and the
“global” timeline of the entire board. We wanted the ability
for users to interact with the timelines of individual

FIGURE 5: Nested Transactions Represent 
Causality in a Timeline
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segments, as we felt that this would be the most common
style of history management: undoing and redoing changes
in a single region of the board. By “local” timeline, we mean
that we wanted to give the illusion that each segment had its
own separate timeline. So if a user operated on segment A,
went to a different segment, and then came back to working
with segment A, undo operations in A should “skip” any
operations done in other segments. For the purposes of local
rollback, the entire history of A should appear logically
continuous, even though in “real” time, operations on other
segments may be interspersed with operations on A.

But we also needed the ability to roll forwards and
backwards in global (whole board) time. Global undo and
redo means that operations are undone and redone in their
global, real time order, no matter which local segment they
may be associated with. Such traversal of the global history
is useful for reverting the entire board to an earlier state, say,
to recover the context from a previous meeting. 

In terms of the user interface, local undo and redo are
performed by making particular marking menu strokes on
individual segments; global undo and redo are performed by
making these same strokes on the “root” segment (the
whiteboard’s background area).

Recall that segment histories can be arbitrarily interleaved
from the global perspective: users can visit and leave
segments as often as needed, causing the “real-time” history
to jump from segment to segment. Because of this, the global
history can be thought of as portions of the individual
segment histories “packed” or “interleaved” together. In the
Flatland implementation, each segment does, in fact,
maintain its own contiguous, “segment logical” history; the
global history timeline is an illusion created by stitching
these individual segment histories together.1 The particular
representation used by the Flatland implementation is that
the global history is stored as a list of “chunks.” Each chunk
represents one portion of the global history that occurs in one
segment. The chunks contain a reference to a particular
segment, as well as start and end indices for the range of
commands within a segment history that fall into this
particular place in the global history.

This example illustrates the use of a complex, multi-level
model of time. The model presented to the user is a two-tier
arrangement in which segments are contained within a larger
surface, any of which can be manipulated independently.
The histories at each level are separate from the perspective

of user interaction, but yet still logically interrelated.
Figure 7 shows such an example. Here you see three local
timelines; a global timeline stitches these local timelines
together, producing a representation of the “real-time”
history of the entire artifact.

In general, such a model of multi-level time is appropriate
for any application in which there are nested artifacts that—
while they are related—users may wish to manipulate
independently. In a source code control system, for example,
users may wish to have fine-grained control over individual
subprojects, and yet still be able to traverse the timeline of
the entire source base, say, to look at an earlier release
snapshot. In such an application, the individual histories of
the subprojects are, of course, related to the larger history
(and vice versa). But by allowing them to be manipulated
independently, we allow users the freedom to contextualize
the artifacts in the application appropriately. They can, for
example, freely traverse the timeline of a particular
subproject while keeping the rest of the global timeline in its
most recent state.

Interleaving in the Simple Case
In applications that can support timeline models with simple
atomicity—that is, without the need for transactions to
indicate causality—the interleaving of timelines from
different levels of a hierarchical history does not present
significant problems. Since each node in any timeline is
atomic, a plausible global history can jump from local
timeline to local timeline without affecting consistency.

To put it another way, there is no point within a local
timeline at which it is “illegal” to jump to another timeline.
In the context of Figure 7 above, segment histories can be
“mixed and matched” in any way to achieve a global history,
since in a purely atomic system no operation may have side
effects not completely expressed by the command object that
represents the operation.

Interleaving and Transactions
Unfortunately, in a system without simple atomicity—that is,
one that requires transactions to indicate causal effects—this
is not always the case. Recall that when transactions are used
to group related operations, transactions must complete

1.  In the Flatland implementation, local segment histories are
stored directly and the global history is maintained as a
“shadow” data structure that references those histories. Other
applications could take the opposite approach however, by
maintaining the global history as the “real” representation
and deriving local histories from it as needed. We took the
former approach in Flatland because such an arrangement
allowed us to “fault in” individual segments from persistent
storage, without having to bring in the entire timeline. So,
while Flatland creates the illusion of a global history timeline
by composing individual segment histories together, this
implementation feature is not dictated by the model.

FIGURE 7: A Global Timeline Comprises 
Multiple Local Timelines
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A local history comprises only the operations
from a single timeline.

The global history comprises all operations
from all local timelines.



atomically. Thus, a global history cannot be constructed by
“jumping” from one local history to another at any point that
is inside a transaction. Consistency can be maintained only if
such jumps happen on even transaction boundaries.

In the context of the Flatland implementation, some
operations naturally have effects in multiple segments. For
example, split and join operations, which necessarily affect
more than one segment at a time, produce operations in the
timelines of two involved segments. In essence, an operation
in one local timeline can produce operations in other local
timelines and, hence, the global timeline as a whole.1

Problems arise when a transaction is in effect in the original
timeline while modifications are made to other affected
timelines. For example, suppose a Flatland user working in a
segment makes a gesture that means that the system should
“promote” any selected strokes in the segment to their own,
new segment.2 This is analogous to copying and pasting a set
of strokes into their own window, created to hold them. 

The initial operation begins a new toplevel transaction in the
original segment. The “promote” operation is added to its
timeline to indicate the start of the operation. After this a
new segment is created as a result of the operation, and its
timeline is initialized by a “drawStroke” operation that
renders in it a set of initial strokes. The creation of the
segment and drawing of the strokes occur as side effects of
the execution of the promotion operation. 

In this case, the timeline of the original segment is modified,
and the promotion behavior causes the timelines of other
segments to be modified as a result of its processing. In the
“real-time” history—meaning the actual ordering of
operations that occur on the whiteboard—a transition
between the two segments occurs during an open transaction
on the original segment. Figure 8 shows an example of this.
Here, there is a top-level transaction in timeline T2 that
occurs during (realtime-wise) an open top-level transaction
in timeline T1. Clearly, there is a question here of how to
piece the global history back together when the local
histories don’t cleanly separate on transaction boundaries.

From the local perspective, the operations in T2 constitute a
toplevel transaction, since there are no enclosing operations
in that timeline that bracket them. But these same operations,
seen from the global perspective, are enclosed in a
transaction, since they were caused by the operations in the
original timeline, T1.

Before considering how to traverse the global timeline,
though, it is important to first note a property of the local
timelines. Even though the real timeline leaves one segment
and visits another during an open transaction, transaction
boundaries are still intact from the perspective of the
individual segment histories. That is, the histories of both the
original segment T1 and the newly created segment T2,
viewed on their own, present an uninterrupted and
contiguous sequence of transactions. These local timelines
can be traversed, exactly as before.

The difficulty comes with reconstructing the global timeline.
In all of the examples presented so far, the global timeline
essentially is the real-time timeline. That is, the stitching
together of individual, local histories produces a global
history that is exactly the same as “what really happened” in
real-time.

In this case, however, “what really happened” does not
correspond to a logical, transactionally-correct global
history. Two local histories contain top-level transactions
that do not align with each other evenly. The global series of
operations opens a transaction in one timeline and then visits
another before the transaction is completed. Only after
returning to the original timeline is the transaction closed
and the entire operation finished.

The problem is that, in such cases, causality spans timelines.
A cause in one timeline has effects in others, all of which
must complete before the initial causal event can said to be
completed. In other words, our simplistic model of
transactions occurring—and completing—solely within
single timelines, is over-simplistic. It cannot accurately
represent side effects that span timelines.

Such timeline-spanning side effects, while difficult perhaps
to envision, are actually fairly common. In a source code
control system, an operation that moves a source file from
one subproject to another has effects in the timelines of each.
And, just like in the Flatland example, causality in this case
spans across a timeline boundary.

1.  Actually, it is the combination of transactions with the use of
operations that can have effects in other timelines that causes
problems with interleaving. Applications that do not provide
multi-timeline operations do not see the problems described
in this section, even though they may use transactions to
represent causality.

2.  This is a hypothetical example based on Flatland. While
Flatland does support a number of operations that have side
effects in multiple segments, these operations (including
splitting and joining segments) are more complex than the
example given here and would require a more intimate
knowledge of the Flatland architecture to explain.

FIGURE 8: Operations Can Have Effects in Other 
Timelines
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A Possible Approach
One possible approach to this problem is to essentially
situate transactions in the global timeline, rather than the
individual local timelines. That is, transactions would be
global entities, and could span across multiple local
timelines. In essence, this would turn the case illustrated in
Figure 8 on its head. The global timeline would contain a
toplevel transaction, and the operations that constitute that
transaction would be interspersed across both local
timelines.

The problem is that such an arrangement destroys the
semantics for local timeline navigation. The causal
relationships in the global structure are repaired, but at the
cost of sacrificing causality in local timelines—local
transaction boundaries are completely lost, and the history
traversal machinery cannot determine where to start or stop
during a roll forward or roll back to reflect causal
relationships. Well-formed transactions, in this model, do
not exist in the local timelines, because the operations in a
transaction skip across the various local histories. 

Instead, what is needed is an arrangement that preserves
causal relationships in local timelines by ensuring that local
timelines consist only of sequences of complete, well-
formed, top-level transactions (and the nested transactions
contained within them). This must happen while ensuring
that the global history can be constructed in a way that is
“transactionally-correct”—meaning that it consists of
ordered sequences of the top-level transactions from the
individual local histories.

A Solution
The question here is really one of semantics. Either
transactions span timelines or they don’t, but in either case
we need to ensure that both global and local traversal act as
expected and preserve the necessary causal relationships—
that is, by hiding side effects that show up merely as a result
of the way the application is architected.

When traversing time in a local timeline, the existing
transaction boundaries should be preserved. So, in the
promotion example, traversing the timeline of the original
segment T1 should cause the undo or redo of all operations in
that timeline contained within the promotion transaction.
Operations in other timelines should not be invoked since,
after all, the point of doing local undo and redo is to not
affect other timelines. In essence, the traversal of the local
timeline happens “outside” of the global history.

The second timeline in this example, T2 (the one belonging
to the newly-created segment) should likewise experience
“normal” traversal of its local timeline on transaction
boundaries. Even though the initial transaction in this
segment was caused by an operation in another timeline, it is
entirely conceivable that users may wish to roll back the
operations in the new timeline, independently of the timeline
of the original segment. Again, local traversal is defined to
only “see” operations in the local timeline, and traversal
happens on toplevel transaction boundaries.

For the global case, the operations in the two local timelines
cannot be logically separated. That is, to roll back the global
timeline necessarily requires that the undo of the promotion
operation undo its effects in both timelines. This is, after all,

FIGURE 9: A “Push” Transformation Moves a Toplevel Local Transaction 
to a Different Global Nesting Level
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the definition of global traversal—that the effects of a roll
forward or roll back span the local timelines, and therefore
should effect changes across all local timelines.

The desired behavior can be achieved by a transformation on
the global timeline, to “repair” the damage caused by non-
aligned transactions. First, the system can identify toplevel
transactions from a local history that are globally nested
within a transaction from another local timeline (such as the
transaction in T2 in Figure 8). In the global timeline, these
transactions are then “pushed” to a higher nesting order.
Essentially, what is a toplevel transaction in a local timeline
becomes a nested transaction globally. 

Figure 9 illustrates this transformation. Here you see what
happens both in the absence of the push transformation, and
with the push transformation. On the left, without
transformation, the two local histories are assembled into a
misaligned global history—two toplevel transactions from
different histories are interleaved. On the right, the
transaction from T2, even though it is “toplevel” from the
perspective of its local history, is causally related to the
transaction in T1. So it is pushed to a greater nesting depth
when the global history is assembled.

This gives us the desired behavior in cases like the one
illustrated in this section, where causal effects across
timelines cause transaction boundaries to misalign globally.
Local timelines still consist of a continuous stream of
toplevel transactions, as they did before. This allows roll
forward and roll back to occur in a local timeline while
preserving all causal relationships that originate in that
timeline. And yet the transformation establishes causality
across timelines, necessary for global traversal; global roll
forward and roll back may undo or redo operations that
logically span local timelines.

In the Flatland implementation, there is no change in
representation to accommodate these new semantics.
Instead, an ex post facto transformation is executed during
reconstruction of the global history that identifies and
“pushes” toplevel transactions from a local history that are
globally nested within a transaction from another local
timeline to a higher nesting order. This change isn’t
represented directly in the local timelines (in our
implementation), but is produced on the fly as needed when
the global history “chunked” data structure is produced.

Local versus Global Timeline Management
As mentioned before, multi-level timelines allow users to
alter the state of a portion or region of some artifact,
independently of the global timeline of the artifact. In
essence, it allows users to make local changes in a “bubble”
that is isolated from the larger global timeline. It does this by
providing separate, but related, timelines for the artifact as a
whole (the global history), and for the various parts of the
artifact (represented as local histories). This ability is
supported because local histories can be made logically and
causally independent of each other, and of the global history
as a whole. 

We have not, however, yet investigated the inverse
mechanism—holding one local history fixed while

manipulating the rest of the global history. Such an operation
may be useful as a tool for recontextualization. A user could
keep one bit of an artifact fixed in time, and “scroll” the rest
of the artifact forward and back to locate desired states. This
would allow a user to focus on a particular subcomponent of
a larger artifact, say for editing, while freely browsing earlier
states of the remainder of the artifact.

In the Flatland design, in which these ideas were
implemented, a change to the global timeline “snaps” all
local timelines to the current global state. That is, while a
local timeline can be freely manipulated independently of
the global timeline, manipulations of the global timeline
carries all local timelines with it.

Fully investigating isolation in both local and global
timelines is an area for future research.

SEARCH OVER TIMELINES
At several points, this paper has mentioned the utility of
being able to not only traverse the history of an application,
but also to search it. Search is the ability to quickly scan the
timeline to produce likely matches for some query. A
number of user interfaces could be imagined for such a
facility, ranging from textual query to visual matching. 

The Flatland implementation uses two primary mechanisms
for search. The first is efficient visual scan. This means that
users can very quickly (in real time) “scroll” the
application’s state back and forth. The visual scrolling is
supported by animation, and by “semantic snapping” in the
time domain. That is, certain points in the timeline deemed
to be “interesting” are flagged, and are somewhat easier to
reach. Points when the user switches working from one
segment to another are so flagged, for example.

Whereas the first search mechanism is more a tool for on-
line browsing than off-line search, Flatland provides a
second mechanism that “lets the system do the work.” Users
can graphically specify attributes of desired segments—it
contained a map, it was mostly blue, it was on the left hand
side of the board, and so on—and the system will produce a
set of thumbnail snapshots of the segments that matched the
search criteria at any point in their histories.

These are only two examples; clearly, other application
domains will have other mechanisms for search. But the key
to effectively supporting such operations is that the
command objects in the timelines must contain very efficient
representations of application state. As mentioned in the
section on causality, one approach to providing a history
system would be to “replay” the command objects to
application code that then reinterprets the operations. But
since application code may make arbitrarily complex (and
expensive) responses to such commands, such an approach
does not lend fast, deterministic searching.

Instead, in Flatland, command objects contain largely
“primitive” operations which can be executed quickly to
create a visual representation of the state of a segment. The
search thumbnails are created by quickly scanning the
history to only draw out those operations that affect the
graphical presentation—and hence, are needed to create the



thumbnail. If a user selects a thumbnail, then the full history
traversal machinery can be brought to bear to completely
move the application to a new state.

One approach—which we did not take but would be a
requirement in more scalable systems, or systems with
longer histories—would be to periodically create a
“checkpoint” of application state at various points in the
history. Then, to move between distant points in the history
would not require evaluating every command object in
between the source and the destination, which is an O(n)
operation for histories of n nodes. Clearly, we’d like better
than linear performance for traversal and search.

To traverse to a different state in a checkpointed application,
the system would load the checkpoint state from the node
nearest the destination, and then do “normal” traversal the
rest of the way to the destination. If checkpoints are
produced regularly, say, every 10 nodes in the history, then
any traversal or search is a constant time operation.

Again, we have not explored such an implementation in our
work, but feel that the architecture is straightforward, and
does not break or the basic timeline model presented here.

CONCLUSIONS AND SUMMARY
This paper has presented two extensions to the command
object paradigm for representing and manipulating
application histories. First, we have explored a mechanism to
more fully capture causality in histories. Such a mechanism
is essential for applications that cannot fully know the side
effects of all possible operations a priori. Flatland and
Translucent Patches are exemplars of this style of
application, although any number of systems can use the
mechanism presented here to relieve the burden of having to
produce fully atomic and isolated sets of command classes.

Second, this paper has explored the notion of multi-level
timelines. Such timelines are useful when an application
presents an artifact that can be decomposed into constituent
pieces. Multi-level timelines allow users to interact with the
history of the complete artifact, or with the histories of the
individual pieces. Essentially, it provides a model for being
able to traverse the timelines of subregions of an artifact
independently of the artifact as a whole.

More fundamentally, this work begins to flesh out the space
of timeline manipulation systems described in the literature.
Current systems can be described along three dimensions:

• Linear histories versus divergent histories.

• Simple atomicity versus causal atomicity.

• Single-level versus multi-level timelines.

Prior art has focused primarily on the first dimension, linear
versus divergent histories. This previous work has assumed
the existence of simple atomicity and single-level timelines.

The work here expands on the prior art to include causal
atomicity in either linear or divergent histories. It also
introduces the notion of single- versus multi-level timelines,
and presents a model for multi-level timelines in the
presence of either simple or causal atomicity. This work,
however, only focuses on multi-level timelines for linear

histories. The use of non-linear multi-level timelines has yet
to be explored, in either the simple or causal settings, and is a
topic for future research.
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