
User Interfaces When and Where They are Needed:
An Infrastructure for Recombinant Computing

Mark W. Newman, Shahram Izadi , W. Keith Edwards, Jana Z. Sedivy, Trevor F Smith
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

{mnewman,kedwards,sedivy,tsmith}@parc.com

Mixed Reality Lab
University of Nottingham
Nottingham NG8 1BB UK

sxi@cs.nott.ac.uk

ABSTRACT
Users in ubiquitous computing environments need to be
able to make serendipitous use of resources that they did
not anticipate and of which they have no prior knowledge.
The Speakeasy recombinant computing framework is
designed to support such ad hoc use of resources on a
network. In addition to other facilities, the framework
provides an infrastructure through which device and service
user interfaces can be made available to users on multiple
platforms. The framework enables UIs to be provided for
connections involving multiple entities, allows these UIs to
be delivered asynchronously, and allows them to be
injected by any party participating in a connection.
KEYWORDS
Speakeasy, recombinant computing, ubiquitous computing,
asynchronous user interfaces
INTRODUCTION
Imagine the following scenario: a corporate researcher is
visiting a university to give a talk. She plans on “traveling
light,” with only a minimum of hardware—bringing only a
PDA and leaving her heavy laptop at home. Upon arriving
at the university, our researcher needs to use a number of
locally available resources—including a projector and a
large-screen display—as well as resources back on her
“home” network—notably, her home directory on the file
servers back at her institution, where her slides reside.
The researcher will have to plan a number of steps in
advance in order to give her presentation in this manner,
including ensuring that her slides are accessible from the
site of the talk (by emailing them to a colleague, placing
them on her PDA, or putting them on an external server,
perhaps), making sure that the correct software versions are
in place at the site of the talk, and so on. Once she arrives,
the unforeseen requirements of her audience may require
her to adapt to use new local resources. For example, doing
a video telecast of her talk for her colleagues at home, or
providing printouts for local attendees, may require finding

additional resources, installing drivers, running cables, and
so forth. Overall, the process is likely to be one fraught
with the frustrations of software incompatibility,
communication problems, version mismatches, and driver
installations.
This scenario illustrates the problems with being able to
take advantage of ad hoc resources in our environments: we
are constrained by the lack of fluid interconnection between
devices and services, and by the need for advance planning
in order to overcome obstacles of interoperability.
We believe the solution to these problems lies in an
approach called recombinant computing [3], which enables
devices and services on a network to be fluidly
“recombined” with no advance planning, even when those
devices and services have only very limited advance
knowledge of one another. We have built the Speakeasy
infrastructure for recombinant computing, which allows
end users to easily assemble new combinations of
functionality, based on the resources they find at hand.
Speakeasy addresses several challenges inherent in
allowing devices and services to interoperate with a
minimum of a priori knowledge of each other, such as how
services discover one another and how they transfer data
among themselves. In this paper, we focus specifically on
the UI challenges of such environments, and present the UI
architecture in Speakeasy that addresses them. Speakeasy’s
UI architecture provides an infrastructure in which users
can control arbitrary devices and services on a network,
through custom user interfaces provided by the devices and
services themselves. The mechanisms used by Speakeasy
allow for arbitrary UI code to be delivered, either
synchronously or asynchronously, to a client device.
Further, each party involved in a combination can detect
failures and partitions of the other parties—a requirement
in a distributed networked setting.
The roadmap of this paper is as follows. In the next section,
we present a high-level overview of the Speakeasy
framework as a means of providing the background
necessary to understand the UI architecture. After this, we
investigate the requirements for a UI infrastructure
designed to facilitate user control over highly dynamic
networked environments. Next, we discuss the Speakeasy
UI architecture. The major contribution of this paper is in

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

the design of a protocol for the asynchronous delivery of
user interfaces across a network to an application, without
requiring that the application have any special advance
knowledge of the UI it receives, and in such a way that
connectivity failures are detected and dealt with properly.
We conclude with a discussion of related work, and some
future research directions.
BACKGROUND: THE SPEAKEASY RECOMBINANT
COMPUTING FRAMEWORK
The main goal behind the Speakeasy framework is to
enable a vision that we call recombinant computing [3],
which dictates that devices and services with little or no a
priori knowledge of one another should be able to
interoperate. The recombinant computing vision is based on
three core principles: (1) employing a small, fixed set of
generic interfaces, (2) using mobile code to allow
components to extend one another’s behavior at runtime,
and (3) keeping the user in the loop in deciding when and
how components should interact with each other.
Speakeasy’s approach to accomplishing the recombinant
computing vision is to cast all devices and services on the
network as “components” that implement a small, fixed set
of programmatic interfaces which allow them to be
“snapped together” at runtime by users. These interfaces
describe how clients discover available components, how
data is transferred between components, and (as we discuss
in detail in this paper) how user interfaces are delivered to
clients. These simple, narrow interfaces are made much
more powerful by the fact that components can deliver
mobile code (portable code that can be downloaded over a
network to a client, where it is executed) to extend the
behavior of applications that use them, in order to adapt the
applications to new functionality.
The principle of allowing users to determine when and
where interactions should take place [11] is a key part of
what enables the set of interfaces to remain small and
generic. This is accomplished by focusing the interfaces on
the syntax of inter-component communication while
leaving the determination of semantics to the user. To take
the trivial example of printing a document, a printer
component might appear to other components and to
applications as simply a component that can receive certain
types of data (e.g. Postscript). These clients would not need
to know anything about printers, only about generic data
sinks. A user, on the other hand, would know the semantics
of a “printer”—that it is a type of thing that prints data
when it receives it, and be able to make a decision about
whether or not to use it. Meanwhile the application, and the
components involved, need know nothing more than the
“syntax” of the interaction.
Connections and Data Transfer in Speakeasy
Before embarking on the detailed description of
Speakeasy’s UI framework, which is the focus of this
paper, we will pause to give some background on
Speakeasy’s connection framework, which will be essential
for understanding several aspects of the UI framework.

Speakeasy regards a connection as an association among
two or more components for the purpose of transferring
data. Such a transfer may represent a PDA sending data to a
printer, or a laptop computer sending its display to a
networked video projector. A connection typically involves
a component that is the sender of data (called the source), a
component that is the receiver of data (called the sink), and
an application that initiates the connection.
The Speakeasy connection framework leverages mobile
code to allow components to be extensible in both the data
communication protocols and the data types they can use.
The first of these is accomplished through a mechanism
called session objects; the second through a mechanism
called typehandlers. Together, these two mechanisms
allow, for example, a projector component to be able to
receive and display streaming MPEG video data from a
camera, without having to be expressly written to
understand the streaming protocol, and without having to
be expressly written to understand the MPEG data format.
These two mechanisms are described below, and form the
basis on top of which much of our user interface framework
is built. The remainder of this section briefly describes
these mechanisms, as a basic understanding of them is
necessary for motivating and describing our UI framework.
When an application wishes to connect two components, it
first acquires a session object from the source component.
The session object is a complete, serialized object—
expressed using the Java language, in our
implementation—that implements a known interface but
whose concrete type is provided by the source component
itself. In other words, each source can provide a specialized
session implementation; the code for such specialized
implementations will by dynamically downloaded on
demand from the source by the holder of the session object.
Once an application has acquired a session object from the
source, it can provide a copy of this same session object to
the sink, through serialization and transmission over the
network. This act initiates the connection between the two
components. The sink delegates the fetching of data to the
session object: the session object—since it was provided by
the source—can use whatever data transfer protocol the
source expects or prefers to use. Thus, the session object
effectively extends the behavior of the sink to enable it to
transfer data using a protocol dictated by the source. Once
the connection is started, the application that initiated it is
not directly involved in the connection, although the
session object acts as a capability through which the
application can abort a connection or monitor its status.
For example, in the scenario posed earlier, a video camera
may transmit its data using a streaming protocol, which
adapts to changing transmission rates by varying the level
of compression. The projector need know nothing of this
protocol. By acquiring a session object from the video
camera, it acquires the ability to use this protocol.

Of course, an extensible mechanism for specifying how the
data is obtained is useless if the receiver doesn’t understand
what the data is. Speakeasy’s connection framework
provides extensibility of data type handling, to allow
components to perform certain operations on data types
they may not “natively” understand.
Each Speakeasy component expresses the types of data it
understands as a list of MIME types [1]. Additionally,
components can express that they have knowledge of
certain programmatic types. These are interfaces (in the
programming language sense of the word) that the
component understands. Components can provide concrete
implementations of these interfaces that “wrap” the
underlying raw data with an object that provides a known
interface to using that data. These concrete
implementations are called typehandlers.
For example, a projector component1 may be explicitly
written to understand certain types of data—perhaps JPEG
and GIF images—and be able to display data in such
formats. It might not, however, be written to understand
other data types such as MPEG or PowerPoint. To allow for
the ability to view these other types of data, the projector
could be written to use objects that implement an interface
known to it; this interface would be used by the projector to
obtain a visual representation of data in an otherwise
unknown format. In this case, the projector would advertise
its compatibility as a list containing the standard MIME
types image/jpeg and image/gif, and also a
programmatic type named by its interface, such as
com.parc.speakeasy.Viewer, for example.
A video camera source, then, could be written to provide
not only its native MPEG data, but also a specialized
typehandler implementation of the
com.parc.speakeasy.Viewer interface. The
typehandler will be transparently downloaded by the
projector, where it retrieves the underlying data from the
source in its raw MPEG format and then displays it.
Together, these mechanisms provide Speakeasy
applications with two dimensions of flexibility: the ability
to acquire new data transport protocols at runtime, and the
ability to acquire new type handling behavior at runtime.
Figure 1 illustrates the three main phases of data transfer
(labeled 1, 2 and 3 respectively). In the first an application
acquires a session object from the source component. In the
second, the application keeps a copy of the session object
and passes another copy across the network to the endpoint
of the transfer—the sink—which initiates a connection
directly from source to sink (which the application can

1 We imagine a “projector” component to be a service running on the

network that provides accepts data from other components and displays
it on a projector. In our current implementation, this means that a server
is connected to the projector’s VGA and serial ports and handles the
display and control on behalf of the projector. In the future, we
anticipate the existence of devices that would incorporate processing,
networking, and projection into a single package.

control). In the third, the source returns a typehandler to the
sink (in this case, a typehandler capable of viewing MPEG
data). This portion of the operation occurs using the
“public” Speakeasy interfaces. After this, data is transferred
to the sink through a “private” protocol between the session
and the source.
UI REQUIREMENTS FOR RECOMBINANT COMPUTING
During the initial development of Speakeasy, it became
clear that our model for ad hoc component use would
require a new style of UI infrastructure. While a number of
existing UI infrastructures focus on the needs of ubiquitous
computing applications, we felt that these were not easily
applicable to our model for a number of reasons.
In this section, we discuss the set of requirements that
emerged from our initial investigations, and that drove our
development of Speakeasy’s UI framework.

Requirement #1: Component UIs must be able to find their
way across the network to the user that is using them, even
when that user is only indirectly involved in the operation.
In the Speakeasy model, users largely effect change in the
environment through the connection mechanisms outlined
in the previous section. We envisioned that a user, through
a “browser”-style application, would initiate connections
between components. The application itself would not be
directly involved as an endpoint in the connection, and
would likely be running remotely from the components
involved in the connection. So we required mechanisms for
delivering interfaces from the external components
involved in the operation to the remote client that initiated
it. This is in contrast to the web, where the browser is an
endpoint in the connection with the server. In the
Speakeasy model, the application that initiates a connection
may not itself be an endpoint, but yet must still have the
ability to control the connection.

Figure 1: An example connection in Speakeasy. The
application requests a session object from the source (1) and
passes it to the sink (2). Then the sink uses the session to ask

the source for a typehandler to carry out the transfer (3).

Requirement #2: Applications can be written to have only
general knowledge of component UIs, and cannot be
expected to have specialized knowledge of every type of
component they may encounter.
A key premise of recombinant computing is to move away
from building in a priori support for all conceivable
devices and services into applications. Instead, we wanted
applications to be able to obtain and use UIs for
components they had not been specifically written to know
about. Without this, the opportunistic styles of interaction
envisaged by the project would be difficult to facilitate.
The ideas behind distributed UI approaches such as those
found in the Jini [18] ServiceUI framework [16] lend
themselves well to this requirement. The ServiceUI
framework allows Jini services to provide user interfaces
for a variety of clients across the network. These UIs can be
downloaded on demand, whereupon they are presented to
their users. Dependent upon deployment requirements, the
underlying logic associated with the UI can either be
downloaded alongside the UI and run locally or accessed
remotely using RPC mechanisms such as RMI [19].
Requirement #3: Components must be able to
asynchronously “push” UIs to clients at arbitrary points in
a connection’s lifecycle, while still allowing applications to
“pull” UIs at certain times.

There are problems with approaches such as ServiceUI,
however, most importantly that they present only a pull
model, whereby UIs are explicitly requested by
applications. It was clear to us that many components
would support entirely different UIs that would need to be
presented to the user at different points in the component’s
lifecycle. A printer on a desktop operating system, for
instance, provides a “top level” UI that allows the user (or
an administrator) to configure various defaults, queuing
options, and so forth. But this same printer will typically
provide a different UI that is presented when the user
actually prints something; this UI allows the user to control
number of copies, etc., for the current act of printing.
This dichotomy—of a top level per-component UI, versus
an operation-specific per-connection UI—was present in
many of the scenarios we envisioned, and thus our
framework needed to support both. Frameworks such as
ServiceUI are inappropriate for the rich interactions
envisioned by Speakeasy, since they assume that
applications know to request the right UI at the right time.
In particular, applications—since they are unaware of the
semantics of any particular component—will not know
when that component needs to have a per-connection UI
displayed to the user. A secure filesystem, for example,
may need to present a login panel to the user before any
data is stored in the filesystem. A slideshow component
may need to display controls for slide navigation
throughout the duration of the slideshow. We could also
easily imagine situations where the semantics of a
particular component could dictate that an operation-
specific UI be presented only under some exceptional

condition. For example, a streaming video component
might only present a UI to its user if the channel were
experiencing unusual losses, perhaps allowing the user to
throttle back the frame rate, or increase compression.
Requirement #4: Applications and components must be
able to detect and recover from partial failure situations.
Since these UIs are displayed on machines remote from the
entities they are controlling, applications and components
may be exposed to partial failure situations. Such failures
must be considered in any networked environment, and
particularly in those where resources may be abruptly
disconnected without first being able to inform their peers.
Under these circumstances, a machine hosting the UI logic
could find it difficult to determine if a remote peer has
actually gone down or whether it is just slow in responding
due to network latencies or if it is only momentarily
disconnected. The result is that a large number of “stale”
connections can be accumulated, holding valuable
resources. Because of these problems, we imposed a
requirement on our infrastructure that any party involved in
a connection be able to detect failures in any other party,
without the need for explicit disconnect or ongoing
communication to signal a disconnection.

Requirement #5: The infrastructure must be able to support
“aggregate” UIs, where different pieces of the whole are
provided by different parties in a connection.

Finally, and as we will illustrate in more detail in our
section on per-connection UIs, any party in a connection
may have the need to “inject” a per-connection UI into the
network. Therefore, the framework must support the ability
to create “aggregate” user interfaces, potentially originating
from multiple parties in the connection.
RELATED APPROACHES
A number of architectures satisfy some of the requirements
listed above, but to our knowledge none exist that satisfy
them all.
For example, there exist a set of architectures that allow
applications to obtain UIs for entities about which they
have no advance knowledge. The Web is perhaps the most
successful example, and it succeeds by providing a simple,
universal standard for data transport (HTTP) and
description language for providing user interfaces (HTML).
Effectively, if a user can discover the URL for interacting
with a service, she can obtain its UI. A number of
architectures [8, 9, 17] make use of web technology for
providing a service’s UI to users and applications that have
no prior knowledge of it. Another set of architectures [4, 6,
7, 12, 13] extend this concept by providing abstract
representations of interfaces that can be used to generate
platform- and mode-specific user interfaces at runtime.
These architectures gain many of the advantages of the
web, but also suffer from some of its weaknesses, such as
the inability of users to easily connect two components
when they themselves (or their devices) are not directly
involved in the interaction. In other words, most web-based
approaches implicitly assume that the browser itself, or the

device on which it is running, is one of the endpoints in a
connection. The Speakeasy UI architecture additionally
addresses the case where the device used to initiate and
control a connection is separate from the entities being
connected. In addition, these architectures are largely
bound to the “pull” model of the web, and so are not suited
to “pushing” interfaces towards users when user
intervention is required during an interaction.
A notable example of an architecture that borrows heavily
from the web, but extends its interactive capabilities, is
Olsen, et al.’s XWeb [13, 14]. In addition to leveraging
web-like capabilities to deliver UIs to clients with limited a
priori knowledge of the services they control, it also allows
interface aggregation and a limited form of asynchrony.
XWeb’s asynchronous support is limited to notifications of
changes in a service’s data; clients must be programmed to
know how to deal with these changes. XWeb also has the
notion that multiple parties (services and clients) might be
involved in an interactive session—though it is not clear
whether clients can easily direct the transfer of data among
heterogeneous services, or whether the interactions are
restricted to “control-like” interactions with services. It is
also not clear what mechanisms are built into XWeb for
dealing with partial failures.
Other systems, such as the ICrafter [15] framework for
building interactive workspaces, allow users to obtain UIs
that apply to a specific association among a set of
components. In addition to supporting the generation of
platform-specific UIs, ICrafter provides a notion of
“aggregation” that allows UIs to be written for “patterns” of
interfaces. In other words, a UI can be created that glues
together the functionality of multiple components.
However, this is somewhat different from our goal of
allowing components to provide custom UIs for specific
connections. In addition, the requirement to support
asynchronous delivery of user interfaces to multiple parties
as the needs of a particular connection change is not
addressed by ICrafter.
As noted previously, the ServiceUI framework allows
services to provide mobile code-based user interfaces for
arbitrary “roles” (e.g. “main UI,” “administrative UI,” etc.)
and modes (e.g., speech, GUI). While the use of mobile
code allows virtually arbitrary user interfaces to be created
(not just web forms, for example), these user interfaces are
still limited to the “pull” model, provide no facilities for
partial failure detection, and have no support for aggregate
interfaces in the style of ICrafter.
USER INTERFACES IN SPEAKEASY
We developed the Speakeasy user interface infrastructure
based around these requirements. This infrastructure has
two main pieces to support both per-component and per-
connection UIs. In this section, we present aspects that are
common to both pieces, and briefly introduce each. The
bulk of the remainder of the paper details the per-
connection UI infrastructure, which we believe is the main
contribution of this work.

In much the same way that the Speakeasy exploits mobile
code for runtime protocol and datatype extensibility, the
system also used mobile code to allow user interfaces to be
downloaded on demand by applications where upon they
can be presented to users. Applications need not have built-
in support for explicitly controlling any component.
Instead, this functionality is gained at runtime by
downloading the mobile code for user interfaces associated
with the desired services.
Since applications may be built using different modalities
(e.g. GUI, speech, etc.), they can select from potentially
any number of UIs associated with a given component by
specifying the requirements of the desired UI. For example,
a browser application running on a laptop might request a
UI that uses a full-blown GUI toolkit already present on the
machine, while a web-based browser might request HTML-
based UIs. Much like ServiceUI, this approach allows
multiple UIs, perhaps specialized for different classes of
devices, to be associated with a given component.
A drawback with this approach is that it requires each
component writer to create a separate UI for each type of
device that may be used to present the interface. A possible
solution would be to use some device-independent
representation of an interface, such as those proposed in [4,
6, 7, 12, 13], and construct a client-specific instantiation of
that UI at runtime. We are not currently focusing on
developing such representations ourselves, but rather on the
infrastructure that would be used to deliver such
representations to clients.
UIs for Components
All components in Speakeasy can provide one or more
“per-component” user interfaces. Typically, these are
“administrative” or “configuration” interfaces that govern
the global behavior of the component. For example, a
component representing an LCD display panel might
provide a user interface to allow users to configure
universal settings such as the display resolution, color
depth, and so on.
These interfaces are always “pulled” by the application, at
the demand of the user. Per-component UIs are the simplest
form of UI supported by Speakeasy, in terms of demands
on the infrastructure, and are similar to ServiceUI, although
we do not require that the interface be stored on some
lookup service known to both the provider and consumer of
the interface, as is the case with ServiceUI.
UIs for Connections
Additionally, applications can acquire UIs as a result of
connections between components. Unlike per-component
UIs, these interfaces are pushed asynchronously to the
client, wherever the client happens to be, even if the client
machine isn’t itself one of the endpoints in a connection.
This use allows components to present UIs to users, who
are likely sitting at a remote machine somewhere on the
network, at the point that the component needs to interact
with the user. For example, a video camera component

could asynchronously send a control UI to an application at
the point it is connected to a display. This UI may provide
controls to pause the video stream, rewind, and so forth.
Rather than controlling the overall behavior of the camera,
this UI controls only aspects of that particular data transfer.
In a recombinant world, where devices and services are
often interconnected rather than used in isolation, we have
found that these operation-specific UIs, termed Controllers,
play a particularly important role. Most importantly, they
allow users to shape the interaction during connections
between components, and provide the necessary feedback
regarding the state of the connection.
THE CONTROLLER UI INFRASTRUCTURE
At a high level, the controller infrastructure can be seen as
a way in which a loosely-coupled set of applications and
components can share user interfaces, without requiring
that applications that receive those UIs have either advance
knowledge about the types of UIs that will be received, or
where those UIs may come from. This section describes the
mechanics of the Speakeasy controller infrastructure.
Consider two or more Speakeasy components on a network
that are interconnected for the purposes of data exchange.
Typically, these components will be on different machines,
and the connection between them will be initiated by a user
working with a “browser” application on a third machine.
In our implementation, the browser initiates the connection
by requesting a session object from the component that will
be the sender of data, and then transmitting this session
object to the component that will be the receiver, as
described earlier. Thus, all parties involved have copies of
the session object. The session object is used to knit
together the set of applications and components that either
are directly involved in the connection (i.e., as an
endpoint), or are “interested” in the connection (i.e., can
control the connection). The session object acts essentially
as a “capability” [2] for controlling or receiving updates
about the connection. All parties that hold the session are
eligible to perform certain operations on the connection
(such as stopping it), and can solicit notifications about
changes in the state of the connection.
For the purposes of our discussion on the controller
framework, any party that holds the session also has the
capability to add a controller UI to the session. The act of
adding a controller means that the party wishes UI to be
displayed to the user. The party that adds a controller to a
session becomes the master for that controller. This means
that, in addition to receiving events about the state of the
connection, it will also be eligible to receive events about
the state of the controller it has added—whether a browser
has displayed it, whether the controller has crashed,
whether the user has dismissed the, whether the controller
has finished naturally, or whether the computer displaying
the controller has crashed or lost contact with the network.
This step is illustrated in Figure 2.

When a controller is added, a notification is sent to all other
holders of the session. This notification is in the form of a
controller event that contains the serialized user interface,
as well as details about the user interface platform on which
it runs, and so on. An interested party, such as a browser,
can then take the controller, which again notifies all
interested parties about the change in state. By “taking” a
controller, a browser is agreeing to display the controller to
the user. A browser that takes a controller from a session is
called the controller’s host. Code in the host will notify the
controller’s master if the controller fails, is dismissed, etc.
This step is illustrated in Figure 3.
The details of how events are propagated are transparent to
components and applications themselves—all copies of the
session object register to receive updates about the state of
the session upon deserialization; this mechanism provides
weak consistency among all copies of the session. Events
are tagged with sequence numbers to facilitate duplicate
and missed event detection.
More importantly for the purposes of the controller
infrastructure, this mechanism allows any program that
holds the session—even if it is not itself one of the
components involved in a connection—to add or receive a
user interface, no matter where it is on the network. The
mechanism described here addresses our first requirement,
that UIs be deliverable to “third party” applications that are
not themselves endpoints in a communication.
Further, controllers can be added at any point during the
lifetime of the session, not just at the start of the session, or
before data transfer begins. Imagine a video camera that is
connected to a viewer. If network congestion occurs, the
camera may need to present controls to the user during the
course of data transfer to allow the user to change buffering
characteristics and so on. The protocol outlined here allows
fully asynchronous delivery of UIs to support this style of
interaction, addressing our third requirement, that UIs be
deliverable at the time they are needed.
An application that “takes” a controller can specify the
general contract that it requires of the controller—what the
platform requirements of the controller are, and what
interfaces the serialized user interface will implement. As
long as there is agreement on these general details, a
browser can take and use a controller without having to
know the specifics of it. For example, a browser can simply
know that a received controller creates a window using a
particular GUI toolkit, without having any more particular
knowledge of it. This approach addresses our second
requirement, that applications have only generic knowledge
of the UIs they may receive.
Further, any taken controller is leased by the host from its
master. Leasing is a technique whereby the host must
demonstrate continued proof of interest to continue using a
resource (in this case, a controller) [5]. If a browser does
not do this—because it has crashed, or became
disconnected from the network, or does not follow the
proper protocol for hosting a controller—the lease on the

controller will expire, and the master will terminate the
controller. This mechanism allows all involved parties to
know if a controller’s host has lost contact with the network
for some reason, so that they can clean up after it. Further,
it allows these parties to mutually know this fact without
further communication with one another. For example, if a
user is controlling a presentation on a projector from a
laptop, then simply turns off the laptop without first
disconnecting from the projector, the system will detect
this, terminate the connection, and allow the projector to be
used once again. The use of such “soft state” satisfies our
fourth requirement, that all parties in a connection be able
to determine if a failure has occurred, without the need for
any further communication between components.
Since sessions act as capabilities, any party that holds the
session can add a controller to it. When multiple parties add
controllers to a session, the browser assembles these into an
“aggregate” UI, as described previously in our fifth
requirement, which presents all UIs organized into a single
window. In our current implementation, library code
automatically handles the aggregation and presentation of
controllers, as they are received by an application. Figure 5
shows one example of this, with two controllers on separate
tabbed panes; other organizations are of course possible.
Design Discussion
In practice, all of the steps of the protocol are codified in
libraries that reside in components, and in browsers, and
take care of the details of implementing the controller
infrastructure. The end result is that any party in a session
can request that a user interface be displayed to a user
sitting at a browser anywhere on the network. This user
interface will be “pushed” to the browser at runtime.
Further, when the browser actually displays the user
interface, all interested parties can be aware of this fact, and
can follow the state of the controller (whether it’s still
active, and so on), and perhaps take action accordingly.
The notification and leasing mechanisms together provide

components with information about whether their user
interfaces have failed to be displayed to a user, and allows
components to adapt their behavior accordingly. For
example, a component may require that its user interface be
displayed to the user, if the component is to be used; if no
browser takes the controller, or if the user dismisses the
controller, the component can detect this and drop the
user’s connection. This protocol also supports multiple
simultaneous controllers being displayed or used by
different browsers, and multiple simultaneous controllers
being added by different parties involved in the session.
The requirement that any party be able to add controllers
has proved crucial to Speakeasy. In a setting in which
applications do not have specialized knowledge about the
parties that may be involved in a session, we need
mechanisms in which a range of parties can add user
interface elements without increasing application
programming overhead. In particular, the Speakeasy data
transfer model, with its multiple components, downloaded
typehandlers, and so forth, requires that any of these
entities be able to add user interfaces when appropriate.
A source component may add a controller to allow a user to
parameterize data transmission; for example, a camera may
allows the user to alter frame rate, compression, and so
forth. Likewise, a sink component may add controllers to a
session; for example, a printer may display a dialog box
giving control over various print options. Also, mobile code
elements such as typehandlers may add controllers; for
example, we have built a generic “viewer” component that
can view arbitrary media types for which a typehandler is
available. If a sender transmits a PowerPoint file to the
viewer, the PowerPoint typehandler adds a controller with
buttons to navigate through the slides. If a sender transmits
a video file, the video typehandler adds a controller to
allow pausing, stopping, etc., the video. This style of
aggregate UI, built dynamically using the entities involved
in a data transfer, is used ubiquitously in Speakeasy.

Figure 2: Two initial steps in the controller protocol. In 1, all parties gain references to a “session” object, which provides a
capability to control a connection. In 2, one party (in this case the projector), “adds” a controller to the session. This causes

“controller added” events to be sent to all other parties that have expressed interest in such events. The projector becomes the
“master” for that particular controller.

EXPERIENCES WITH THE CONTROLLER FRAMEWORK
The architecture described in this paper has been fully
implemented, along with a wide range of components and
controllers that allow us to realize not only the scenario
posed at the first of the paper, but also a number of other
interesting uses.
Realizing The “Travel Light” Scenario Using Speakeasy
The scenario described at the first of this paper has been
implemented through the use of a Speakeasy-aware
browser application that runs on a PDA. Upon starting, the
browser begins a discovery process to find all available
components (as described in [3], Speakeasy is able to take
advantage of a variety of discovery protocols, for example
Jini or Bluetooth). This process reveals a number of
components, including those that represent the local
projector and the user’s remote file space. The user can
“open” the remote file space to locate the desired file. Once
located, this file can be connected to the component
representing the projector.
During the connection, the projector requests the
typehandler for the application/powerpoint type
from the source, since it does not understand PowerPoint
data natively. This causes the typehandler code to be
transmitted to the projector, where it is executed. The
typehandler then retrieves the data from the source file in
its “raw” format as PowerPoint data, and makes a local
copy of it. It then opens and renders the file.
Upon establishing the connection, the remote filespace adds
a controller to the session. This first controller is an
example of a “passive” controller that simply presents the
user with the progress of the data transfer using a progress
bar UI widget. It does not directly provide the user with any
control over the transfer operation–although the user can
still terminate the transfer session by dismissing the
controller. The controller is only active while the file is
being copied over the network, after which time it is

removed from the session, resulting in the UI disappearing
from the user’s PDA.
After the file transfer completes, the projector component
adds a controller to the session. Again, as this controller is
added, the browser (and all other interested parties) will
receive an asynchronous event that encapsulates the
controller’s UI object. This UI provides controls for setting
up the projector—powering it up, setting video mode,
brightness etc (see Figure 5)—and is rendered on the
PDA’s display. The UI communicates over the network
with the projector component. Any actions invoked on the
UI will be relayed to the component, which will change the
state of the actual hardware projector.
After this, another controller is added to the session by the
PowerPoint typehandler. This controller provides the user
with features for navigating through the slides, using the
controller’s host device (in this case the user’s PDA).
During navigation, a small preview of the slide appears on
the controllers UI, along with any notes associated with that
particular slide. The controller allows the user to gesture
with the pen to “draw” over the slide displayed on the
projector—the controller receives input events from the
PDA and relays those to the backend component running
on the projector.
This simple example demonstrates the utility and flexibility
of using mobile code to deliver user interfaces, and extend
clients with new data transfer capabilities. The PDA shown
in Figure 4 not only does not have the PowerPoint
application installed on it, but also is running a generic
browser application that knows nothing about projectors,
slide shows, or PowerPoint. The controller code
downloaded from the various components in the session
extends the UI behavior of the client dynamically, however.
During this transfer session, there are often occasions when
more than one controller is active at a single point in time.

Figure 3: Two subsequent steps in the controller protocol. In 3, one party (in this case the browser) “takes” the controller
from the session and displays it. The browser then becomes the “host” for the controller. The host leases the controller

from the master, and both arrange to receive events from one another. In 4, Events communicate the state of the
controller to the master; leases insure that a failed controller will be noticed by the master. Here, the master receives an

event when the user closes the controller.

For a device with a small display it can be problematic to
display several controller UIs at the same time. To deal
with this issue, the controller toolkit automatically manages
controller UIs as they are received by client applications,
and automatically places the controls on separate tabbed
panels as shown in Figure 5. This mechanism allows users
to be aware as controllers come and go, and also provides
mechanisms to quickly switch between UIs.
Of course, this particular scenario could have been realized
in a number of different ways, either with or without
Speakeasy. Numerous solutions to the problem of remotely
controlling a presentation have been described in the
literature, for example in Pebbles [10]. However, each of
these represents a custom solution to this problem and
involves specific software to be written for the client
platform (PDA or laptop), whereas the Speakeasy solution
requires only that a generic Speakeasy-aware browser be
installed on the client. All other functionality, such as the
ability to control the projector and the slide presentation, is

discovered at runtime. Because of this, the same simple
browser can be extended at runtime to perform a whole
host of other operations that it was not explicitly written to
do, such as capture whiteboard images; use the projector to
display images, web pages, or MPEG movies; print
documents; transfer data from one file system to another;
and so on.
Other Components and Controllers
The “travel light” scenario only touches on a small subset
of the components and controllers that we have built to
date. Other examples include a screen capture component
that can export a computer’s standard display to any other
component on the network (such as a projector);
multimedia components that represent speakers,
microphone and video cameras. Most of these support their
own custom controllers and type handlers.
We have built controllers that can grab keyboard and
mouse events from the user’s machine and pipe them to a
component on the network. The combination of these
controllers and a display component allows an application
to take complete control of a remote machine’s desktop and
view it locally.
CONCLUSIONS AND FUTURE WORK
We have presented the Speakeasy UI infrastructure for
delivering user interfaces to users in ubiquitous computing
environments. This framework not only provides access to
user interfaces for services about which the user’s
application has no prior knowledge, but also allows
components in a connection to provide connection-specific
user interfaces at precisely the moment when they are
needed. Further, the framework provides facilities for
providing user interfaces to users on multiple platforms.
We are exploring a number of avenues for future work to
address questions that this framework raises. First is the
difficulty inherent in creating meaningful and usable
aggregate interfaces, when neither the browser nor any of
the involved components are expected to have knowledge
of each other’s semantics.

Figure 4: A PDA displaying the controller for a PowerPoint

viewer running on a projector (shown in the background). The
PDA in this example knows nothing about PowerPoint.

Figure 5: Two controllers for the connection between a remote file and a projector. The controller on the left was added by the

PPT Viewer typehandler, and provides controls for the presentation itself. The controller on the right was added by the projector
and provides controls for turning the projector on and off, switching the input source, and so on.

In the simple example of displaying a video stream on a
projector, for example, a case could be made for any of the
involved parties adding a controller to pause the video. The
approaches we have explored do not address these issues—
there is no higher-level “model” of the capabilities of the
individual UIs added by the parties in a connection. Model-
based user interfaces may hold promise here; others,
including ICrafter, have begun to investigate ways to create
such aggregate UIs flexibly.
Second, while we have been pleased that the controller
framework has proved flexible enough to be used for a
range of situations (including relaying a user’s mouse and
keyboard events over a network), it is not clear to us that
controllers are necessarily the right model for such low-
level I/O. We have begun to explore new approaches to
recombination that allow such low-level I/O streams to be
“snapped together,” in the same way that our connection
framework allows components to be snapped together.
Finally, the controller framework described here illustrates
one (and, currently, our only) use of operation-specific user
interfaces in Speakeasy. Controllers are the user interfaces
to connections, in our model. There are, however, other
operations that Speakeasy affords, including discovery of
remote components, and examination of contextual
metadata on components. We believe that parallel
frameworks may exist for these operations also, and have
begun to explore these.
REFERENCES
1. Borenstein, N. and Freed, N. MIME (Multipurpose

Internet Mail Extensions): Mechanisms for Specifying
and Describing the Format of Internet Messages. June,
1992.

2. Dennis, J.B. and Horn, E.C.V. Programming Semantics
for Multiprogrammed Computations. Communications
of the ACM, 9 (3). 1966. 143-155.

3. Edwards, W.K., Newman, M.W., Sedivy, J.Z., Smith,
T.F. and Izadi, S., Challenge: Recombinant Computing
and the Speakeasy Approach. In Proceedings of The
Eighth ACM International Conference on Mobile
Computing and Networking (Mobicom 2002), (Atlanta,
GA USA, 2002).

4. Eustice, K.F., Lehman, T.J., Morales, A., Munson,
M.C., Edlund, S. and Guillen, M. A universal
information appliance. IBM Systems Journal, 38 (4).
1999. 575-601.

5. Gray, C.G. and Cheriton, D.R., Leases: An Efficient
Fault-Tolerant Mechanism for Distributed File Cache
Consistency. In Proceedings of 12th ACM Symposium
on Operating Systems Principles (SOSP), (1989), 202-
210.

6. Harmonia Inc.,
http://www.uiml.org/specs/uiml2/index.htm.

7. Hodes, T. and Katz, R.H., A Document-based
Framework for Internet Application Control. In

Proceedings of the Second USENIX Symposium on
Internet Technologies and Systems (USITS '99),
(Boulder, CO, USA, 1999), 59-70.

8. Kindberg, T. and Barton, J. A Web-based Nomadic
Computing System. Computer Networks, 35. 2001. 443-
456.

9. Microsoft Corp. Understanding Universal Plug and
Play. June, 2000.
http://www.upnp.org/download/UPNP_UnderstandingU
PNP.doc.

10. Myers, B.A., Miller, R.C., Bostwick, B. and
Evankovich, C., Extending the Windows Desktop
Interface With Connected Handheld Computers. In
Proceedings of 4th USENIX Windows Systems
Symposium, (Seattle, WA, 2000), USENIX Association,
79-88.

11. Newman, M.W., Sedivy, J.Z., Edwards, W.K., Smith,
T.F., Marcelo, K., Neuwirth, C.M., Hong, J.I. and Izadi,
S., Designing for Serendipity: Supporting End-User
Configuration of Ubiquitous Computing Environments.
In Proceedings of Designing Interactive Systems (DIS
'02), (London, UK, 2002), To Appear.

12. Nichols, J., Informing Automatic Generation of Remote
Control Interfaces with Human Designs. In Proceedings
of Conference on Human Factors in Computing (CHI
'02) Extended Abstracts (To Appear), (Minneapolis,
MN, 2002).

13. Olsen, D., Jefferies, S., Nielsen, T., Moyes, W. and
Fredrickson, P., Cross-Modal Interaction Using Xweb.
In Proceedings of 13th Annual ACM Symposium on
User Interface Software and Technology (UIST '00),
(San Diego, CA, 2000), 191-200.

14. Olsen, D.R.J., Nielsen, S.T. and Parslow, D., Join and
Capture: A Model for Nomadic Interaction. In
Proceedings of 14th Annual ACM Symposium on User
Interface Software and Technology, (Orlando, FL,
2001), 131-140.

15. Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P. and
Winograd, T., A Service Framework for Ubiquitous
Computing Environments. In Proceedings of Ubicomp
2001, (Atlanta, GA USA, 2001), 56-75.

16. Venners, B. The ServiceUI API Specification, Version
1.1beta3, 2002.

17. Wakikawa, R., Trevor, J., Schilit, B.N. and Boreczky,
J., Roomotes: Ubiquitous room-based remote control
from cell phones. In Proceedings of Human Factors in
Computing Systems (CHI '01) Extended Abstracts,
(Seattle, WA, 2001), 239-240.

18. Waldo, J. The Jini Architecture for Network-centric
Computing Communications of the ACM, 1999, 76-82.

19. Wollrath, A., Riggs, R. and Waldo, J. A Distributed
Object Model for the Java System. USENIX Computing
Systems, 9. 1996.

