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ABSTRACT 
Users in ubiquitous computing environments need to be 
able to make serendipitous use of resources that they did 
not anticipate and of which they have no prior knowledge. 
The Speakeasy recombinant computing framework is 
designed to support such ad hoc use of resources on a 
network. In addition to other facilities, the framework 
provides an infrastructure through which device and service 
user interfaces can be made available to users on multiple 
platforms. The framework enables UIs to be provided for 
connections involving multiple entities, allows these UIs to 
be delivered asynchronously, and allows them to be 
injected by any party participating in a connection. 
KEYWORDS 
Speakeasy, recombinant computing, ubiquitous computing, 
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INTRODUCTION 
Imagine the following scenario: a corporate researcher is 
visiting a university to give a talk. She plans on “traveling 
light,” with only a minimum of hardware—bringing only a 
PDA and leaving her heavy laptop at home. Upon arriving 
at the university, our researcher needs to use a number of 
locally available resources—including a projector and a 
large-screen display—as well as resources back on her 
“home” network—notably, her home directory on the file 
servers back at her institution, where her slides reside. 
The researcher will have to plan a number of steps in 
advance in order to give her presentation in this manner, 
including ensuring that her slides are accessible from the 
site of the talk (by emailing them to a colleague, placing 
them on her PDA, or putting them on an external server, 
perhaps), making sure that the correct software versions are 
in place at the site of the talk, and so on. Once she arrives, 
the unforeseen requirements of her audience may require 
her to adapt to use new local resources. For example, doing 
a video telecast of her talk for her colleagues at home, or 
providing printouts for local attendees, may require finding 

additional resources, installing drivers, running cables, and 
so forth. Overall, the process is likely to be one fraught 
with the frustrations of software incompatibility, 
communication problems, version mismatches, and driver 
installations. 
This scenario illustrates the problems with being able to 
take advantage of ad hoc resources in our environments: we 
are constrained by the lack of fluid interconnection between 
devices and services, and by the need for advance planning 
in order to overcome obstacles of interoperability.  
We believe the solution to these problems lies in an 
approach called recombinant computing [3], which enables 
devices and services on a network to be fluidly 
“recombined” with no advance planning, even when those 
devices and services have only very limited advance 
knowledge of one another. We have built the Speakeasy 
infrastructure for recombinant computing, which allows 
end users to easily assemble new combinations of 
functionality, based on the resources they find at hand. 
Speakeasy addresses several challenges inherent in 
allowing devices and services to interoperate with a 
minimum of a priori knowledge of each other, such as how 
services discover one another and how they transfer data 
among themselves. In this paper, we focus specifically on 
the UI challenges of such environments, and present the UI 
architecture in Speakeasy that addresses them. Speakeasy’s 
UI architecture provides an infrastructure in which users 
can control arbitrary devices and services on a network, 
through custom user interfaces provided by the devices and 
services themselves. The mechanisms used by Speakeasy 
allow for arbitrary UI code to be delivered, either 
synchronously or asynchronously, to a client device. 
Further, each party involved in a combination can detect 
failures and partitions of the other parties—a requirement 
in a distributed networked setting. 
The roadmap of this paper is as follows. In the next section, 
we present a high-level overview of the Speakeasy 
framework as a means of providing the background  
necessary to understand the UI architecture. After this, we 
investigate the requirements for a UI infrastructure 
designed to facilitate user control over highly dynamic 
networked environments. Next, we discuss the Speakeasy 
UI architecture. The major contribution of this paper is in 
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the design of a protocol for the asynchronous delivery of 
user interfaces across a network to an application, without 
requiring that the application have any special advance 
knowledge of the UI it receives, and in such a way that 
connectivity failures are detected and dealt with properly. 
We conclude with a discussion of related work, and some 
future research directions. 
BACKGROUND: THE SPEAKEASY RECOMBINANT 
COMPUTING FRAMEWORK 
The main goal behind the Speakeasy framework is to 
enable a vision that we call recombinant computing [3], 
which dictates that devices and services with little or no a 
priori knowledge of one another should be able to 
interoperate. The recombinant computing vision is based on 
three core principles: (1) employing a small, fixed set of 
generic interfaces, (2) using mobile code to allow 
components to extend one another’s behavior at runtime, 
and (3) keeping the user in the loop in deciding when and 
how components should interact with each other.  
Speakeasy’s approach to accomplishing the recombinant 
computing vision is to cast all devices and services on the 
network as “components” that implement a small, fixed set 
of programmatic interfaces which allow them to be 
“snapped together” at runtime by users. These interfaces 
describe how clients discover available components, how 
data is transferred between components, and (as we discuss 
in detail in this paper) how user interfaces are delivered to 
clients. These simple, narrow interfaces are made much 
more powerful by the fact that components can deliver 
mobile code (portable code that can be downloaded over a 
network to a client, where it is executed) to extend the 
behavior of applications that use them, in order to adapt the 
applications to new functionality.  
The principle of allowing users to determine when and 
where interactions should take place [11] is a key part of 
what enables the set of interfaces to remain small and 
generic. This is accomplished by focusing the interfaces on 
the syntax of inter-component communication while 
leaving the determination of semantics to the user. To take 
the trivial example of printing a document, a printer 
component might appear to other components and to 
applications as simply a component that can receive certain 
types of data (e.g. Postscript). These clients would not need 
to know anything about printers, only about generic data 
sinks. A user, on the other hand, would know the semantics 
of a “printer”—that it is a type of thing that prints data 
when it receives it, and be able to make a decision about 
whether or not to use it. Meanwhile the application, and the 
components involved, need know nothing more than the 
“syntax” of the interaction.  
Connections and Data Transfer in Speakeasy 
Before embarking on the detailed description of 
Speakeasy’s UI framework, which is the focus of this 
paper, we will pause to give some background on 
Speakeasy’s connection framework, which will be essential 
for understanding several aspects of the UI framework. 

Speakeasy regards a connection as an association among 
two or more components for the purpose of transferring 
data. Such a transfer may represent a PDA sending data to a 
printer, or a laptop computer sending its display to a 
networked video projector. A connection typically involves 
a component that is the sender of data (called the source), a 
component that is the receiver of data (called the sink), and 
an application that initiates the connection.  
The Speakeasy connection framework leverages mobile 
code to allow components to be extensible in both the data 
communication protocols and the data types they can use. 
The first of these is accomplished through a mechanism 
called session objects; the second through a mechanism 
called typehandlers. Together, these two mechanisms 
allow, for example, a projector component to be able to 
receive and display streaming MPEG video data from a 
camera, without having to be expressly written to 
understand the streaming protocol, and without having to 
be expressly written to understand the MPEG data format. 
These two mechanisms are described below, and form the 
basis on top of which much of our user interface framework 
is built. The remainder of this section briefly describes 
these mechanisms, as a basic understanding of them is 
necessary for motivating and describing our UI framework. 
When an application wishes to connect two components, it 
first acquires a session object from the source component. 
The session object is a complete, serialized object—
expressed using the Java language, in our 
implementation—that implements a known interface but 
whose concrete type is provided by the source component 
itself. In other words, each source can provide a specialized 
session implementation; the code for such specialized 
implementations will by dynamically downloaded on 
demand from the source by the holder of the session object. 
Once an application has acquired a session object from the 
source, it can provide a copy of this same session object to 
the sink, through serialization and transmission over the 
network. This act initiates the connection between the two 
components. The sink delegates the fetching of data to the 
session object: the session object—since it was provided by 
the source—can use whatever data transfer protocol the 
source expects or prefers to use. Thus, the session object 
effectively extends the behavior of the sink to enable it to 
transfer data using a protocol dictated by the source. Once 
the connection is started, the application that initiated it is 
not directly involved in the connection, although the 
session object acts as a capability through which the 
application can abort a connection or monitor its status. 
For example, in the scenario posed earlier, a video camera 
may transmit its data using a streaming protocol, which 
adapts to changing transmission rates by varying the level 
of compression. The projector need know nothing of this 
protocol. By acquiring a session object from the video 
camera, it acquires the ability to use this protocol. 



Of course, an extensible mechanism for specifying how the 
data is obtained is useless if the receiver doesn’t understand 
what the data is. Speakeasy’s connection framework 
provides extensibility of data type handling, to allow 
components to perform certain operations on data types 
they may not “natively” understand. 
Each Speakeasy component expresses the types of data it 
understands as a list of MIME types [1]. Additionally, 
components can express that they have knowledge of 
certain programmatic types. These are interfaces (in the 
programming language sense of the word) that the 
component understands. Components can provide concrete 
implementations of these interfaces that “wrap” the 
underlying raw data with an object that provides a known 
interface to using that data. These concrete 
implementations are called typehandlers. 
For example, a projector component1 may be explicitly 
written to understand certain types of data—perhaps JPEG 
and GIF images—and be able to display data in such  
formats. It might not, however, be written to understand 
other data types such as MPEG or PowerPoint. To allow for 
the ability to view these other types of data, the projector 
could be written to use objects that implement an interface 
known to it; this interface would be used by the projector to 
obtain a visual representation of data in an otherwise 
unknown format. In this case, the projector would advertise 
its compatibility as a list containing the standard MIME 
types image/jpeg and image/gif, and also a 
programmatic type named by its interface, such as 
com.parc.speakeasy.Viewer, for example. 
A video camera source, then, could be written to provide 
not only its native MPEG data, but also a specialized 
typehandler implementation of the 
com.parc.speakeasy.Viewer interface. The 
typehandler will be transparently downloaded by the 
projector, where it retrieves the underlying data from the 
source in its raw MPEG format and then displays it.  
Together, these mechanisms provide Speakeasy 
applications with two dimensions of flexibility: the ability 
to acquire new data transport protocols at runtime, and the 
ability to acquire new type handling behavior at runtime. 
Figure 1 illustrates the three main phases of data transfer 
(labeled 1, 2 and 3 respectively). In the first an application 
acquires a session object from the source component. In the 
second, the application keeps a copy of the session object 
and passes another copy across the network to the endpoint 
of the transfer—the sink—which initiates a connection 
directly from source to sink (which the application can 

                                                           
1 We imagine a “projector” component to be a service running on the 

network that provides accepts data from other components and displays 
it on a projector. In our current implementation, this means that a server 
is connected to the projector’s VGA and serial ports and handles the 
display and control on behalf of the projector. In the future, we 
anticipate the existence of devices that would incorporate processing, 
networking, and projection into a single package. 

control). In the third, the source returns a typehandler to the 
sink (in this case, a typehandler capable of viewing MPEG 
data). This portion of the operation occurs using the 
“public” Speakeasy interfaces. After this, data is transferred 
to the sink through a “private” protocol between the session 
and the source. 
UI REQUIREMENTS FOR RECOMBINANT COMPUTING 
During the initial development of Speakeasy, it became 
clear that our model for ad hoc component use would 
require a new style of UI infrastructure. While a number of 
existing UI infrastructures focus on the needs of ubiquitous 
computing applications, we felt that these were not easily 
applicable to our model for a number of reasons. 
In this section, we discuss the set of requirements that 
emerged from our initial investigations, and that drove our 
development of Speakeasy’s UI framework.  

Requirement #1: Component UIs must be able to find their 
way across the network to the user that is using them, even 
when that user is only indirectly involved in the operation. 
In the Speakeasy model, users largely effect change in the 
environment through the connection mechanisms outlined 
in the previous section. We envisioned that a user, through 
a “browser”-style application, would initiate connections 
between components. The application itself would not be 
directly involved as an endpoint in the connection, and 
would likely be running remotely from the components 
involved in the connection. So we required mechanisms for 
delivering interfaces from the external components 
involved in the operation to the remote client that initiated 
it. This is in contrast to the web, where the browser is an 
endpoint in the connection with the server. In the 
Speakeasy model, the application that initiates a connection 
may not itself be an endpoint, but yet must still have the 
ability to control the connection. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: An example connection in Speakeasy. The 
application requests a session object from the source (1) and 
passes it to the sink (2). Then the sink uses the session to ask 

the source for a typehandler to carry out the transfer (3). 



Requirement #2: Applications can be written to have only 
general knowledge of component UIs, and cannot be 
expected to have specialized knowledge of every type of 
component they may encounter. 
A key premise of recombinant computing is to move away 
from building in a priori support for all conceivable 
devices and services into applications. Instead, we wanted 
applications to be able to obtain and use UIs for 
components they had not been specifically written to know 
about. Without this, the opportunistic styles of interaction 
envisaged by the project would be difficult to facilitate.  
The ideas behind distributed UI approaches such as those 
found in the Jini [18] ServiceUI framework [16] lend 
themselves well to this requirement. The ServiceUI 
framework allows Jini services to provide user interfaces 
for a variety of clients across the network. These UIs can be 
downloaded on demand, whereupon they are presented to 
their users. Dependent upon deployment requirements, the 
underlying logic associated with the UI can either be 
downloaded alongside the UI and run locally or accessed 
remotely using RPC mechanisms such as RMI [19]. 
Requirement #3: Components must be able to 
asynchronously “push” UIs to clients at arbitrary points in 
a connection’s lifecycle, while still allowing applications to 
“pull” UIs at certain times. 

There are problems with approaches such as ServiceUI, 
however, most importantly that they present only a pull 
model, whereby UIs are explicitly requested by 
applications. It was clear to us that many components 
would support entirely different UIs that would need to be 
presented to the user at different points in the component’s 
lifecycle. A printer on a desktop operating system, for 
instance, provides a “top level” UI that allows the user (or 
an administrator) to configure various defaults, queuing 
options, and so forth. But this same printer will typically 
provide a different UI that is presented when the user 
actually prints something; this UI allows the user to control 
number of copies, etc., for the current act of printing.  
This dichotomy—of a top level per-component UI, versus 
an operation-specific per-connection UI—was present in 
many of the scenarios we envisioned, and thus our 
framework needed to support both. Frameworks such as 
ServiceUI are inappropriate for the rich interactions 
envisioned by Speakeasy, since they assume that 
applications know to request the right UI at the right time. 
In particular, applications—since they are unaware of the 
semantics of any particular component—will not know 
when that component needs to have a per-connection UI 
displayed to the user. A secure filesystem, for example, 
may need to present a login panel to the user before any 
data is stored in the filesystem. A slideshow component 
may need to display controls for slide navigation 
throughout the duration of the slideshow. We could also 
easily imagine situations where the semantics of a 
particular component could dictate that an operation-
specific UI be presented only under some exceptional 

condition. For example, a streaming video component 
might only present a UI to its user if the channel were 
experiencing unusual losses, perhaps allowing the user to 
throttle back the frame rate, or increase compression. 
Requirement #4: Applications and components must be 
able to detect and recover from partial failure situations. 
Since these UIs are displayed on machines remote from the 
entities they are controlling, applications and components 
may be exposed to partial failure situations. Such failures 
must be considered in any networked environment, and 
particularly in those where resources may be abruptly 
disconnected without first being able to inform their peers. 
Under these circumstances, a machine hosting the UI logic 
could find it difficult to determine if a remote peer has 
actually gone down or whether it is just slow in responding 
due to network latencies or if it is only momentarily 
disconnected. The result is that a large number of “stale” 
connections can be accumulated, holding valuable 
resources. Because of these problems, we imposed a 
requirement on our infrastructure that any party involved in 
a connection be able to detect failures in any other party, 
without the need for explicit disconnect or ongoing 
communication to signal a disconnection. 

Requirement #5: The infrastructure must be able to support 
“aggregate” UIs, where different pieces of the whole are 
provided by different parties in a connection. 

Finally, and as we will illustrate in more detail in our 
section on per-connection UIs, any party in a connection 
may have the need to “inject” a per-connection UI into the 
network. Therefore, the framework must support the ability 
to create “aggregate” user interfaces, potentially originating 
from multiple parties in the connection. 
RELATED APPROACHES 
A number of architectures satisfy some of the requirements 
listed above, but to our knowledge none exist that satisfy 
them all.  
For example, there exist a set of architectures that allow 
applications to obtain UIs for entities about which they 
have no advance knowledge. The Web is perhaps the most 
successful example, and it succeeds by providing a simple, 
universal standard for data transport (HTTP) and 
description language for providing user interfaces (HTML). 
Effectively, if a user can discover the URL for interacting 
with a service, she can obtain its UI. A number of 
architectures [8, 9, 17] make use of web technology for 
providing a service’s UI to users and applications that have 
no prior knowledge of it. Another set of architectures [4, 6, 
7, 12, 13] extend this concept by providing abstract 
representations of interfaces that can be used to generate 
platform- and mode-specific user interfaces at runtime.  
These architectures gain many of the advantages of the 
web, but also suffer from some of its weaknesses, such as 
the inability of users to easily connect two components 
when they themselves (or their devices) are not directly 
involved in the interaction. In other words, most web-based 
approaches implicitly assume that the browser itself, or the 



device on which it is running, is one of the endpoints in a 
connection. The Speakeasy UI architecture additionally 
addresses the case where the device used to initiate and 
control a connection is separate from the entities being 
connected. In addition, these architectures are largely 
bound to the “pull” model of the web, and so are not suited 
to “pushing” interfaces towards users when user 
intervention is required during an interaction. 
A notable example of an architecture that borrows heavily 
from the web, but extends its interactive capabilities, is 
Olsen, et al.’s XWeb [13, 14]. In addition to leveraging 
web-like capabilities to deliver UIs to clients with limited a 
priori knowledge of the services they control, it also allows 
interface aggregation and a limited form of asynchrony. 
XWeb’s asynchronous support is limited to notifications of 
changes in a service’s data; clients must be programmed to 
know how to deal with these changes. XWeb also has the 
notion that multiple parties (services and clients) might be 
involved in an interactive session—though it is not clear 
whether clients can easily direct the transfer of data among 
heterogeneous services, or whether the interactions are 
restricted to “control-like” interactions with services. It is 
also not clear what mechanisms are built into XWeb for 
dealing with partial failures.  
Other systems, such as the ICrafter [15] framework for 
building interactive workspaces, allow users to obtain UIs 
that apply to a specific association among a set of 
components. In addition to supporting the generation of 
platform-specific UIs, ICrafter provides a notion of 
“aggregation” that allows UIs to be written for “patterns” of 
interfaces. In other words, a UI can be created that glues 
together the functionality of multiple components. 
However, this is somewhat different from our goal of 
allowing components to provide custom UIs for specific 
connections. In addition, the requirement to support 
asynchronous delivery of user interfaces to multiple parties 
as the needs of a particular connection change is not 
addressed by ICrafter. 
As noted previously, the ServiceUI framework allows 
services to provide mobile code-based user interfaces for 
arbitrary “roles” (e.g. “main UI,” “administrative UI,” etc.) 
and modes (e.g., speech, GUI). While the use of mobile 
code allows virtually arbitrary user interfaces to be created 
(not just web forms, for example), these user interfaces are 
still limited to the “pull” model, provide no facilities for 
partial failure detection, and have no support for aggregate 
interfaces in the style of ICrafter. 
USER INTERFACES IN SPEAKEASY 
We developed the Speakeasy user interface infrastructure 
based around these requirements. This infrastructure has 
two main pieces to support both per-component and per-
connection UIs. In this section, we present aspects that are 
common to both pieces, and briefly introduce each. The 
bulk of the remainder of the paper details the per-
connection UI infrastructure, which we believe is the main 
contribution of this work. 

In much the same way that the Speakeasy exploits mobile 
code for runtime protocol and datatype extensibility, the 
system also used mobile code to allow user interfaces to be 
downloaded on demand by applications where upon they 
can be presented to users. Applications need not have built-
in support for explicitly controlling any component. 
Instead, this functionality is gained at runtime by 
downloading the mobile code for user interfaces associated 
with the desired services.  
Since applications may be built using different modalities 
(e.g. GUI, speech, etc.), they can select from potentially 
any number of UIs associated with a given component by 
specifying the requirements of the desired UI. For example, 
a browser application running on a laptop might request a 
UI that uses a full-blown GUI toolkit already present on the 
machine, while a web-based browser might request HTML-
based UIs. Much like ServiceUI, this approach allows 
multiple UIs, perhaps specialized for different classes of 
devices, to be associated with a given component. 
A drawback with this approach is that it requires each 
component writer to create a separate UI for each type of 
device that may be used to present the interface. A possible 
solution would be to use some device-independent 
representation of an interface, such as those proposed in [4, 
6, 7, 12, 13], and construct a client-specific instantiation of 
that UI at runtime. We are not currently focusing on 
developing such representations ourselves, but rather on the 
infrastructure that would be used to deliver such 
representations to clients. 
UIs for Components 
All components in Speakeasy can provide one or more 
“per-component” user interfaces. Typically, these are 
“administrative” or “configuration” interfaces that govern 
the global behavior of the component. For example, a 
component representing an LCD display panel might 
provide a user interface to allow users to configure 
universal settings such as the display resolution, color 
depth, and so on.  
These interfaces are always “pulled” by the application, at 
the demand of the user. Per-component UIs are the simplest 
form of UI supported by Speakeasy, in terms of demands 
on the infrastructure, and are similar to ServiceUI, although 
we do not require that the interface be stored on some 
lookup service known to both the provider and consumer of 
the interface, as is the case with ServiceUI. 
UIs for Connections 
Additionally, applications can acquire UIs as a result of 
connections between components. Unlike per-component 
UIs, these interfaces are pushed asynchronously to the 
client, wherever the client happens to be, even if the client 
machine isn’t itself one of the endpoints in a connection.  
This use allows components to present UIs to users, who 
are likely sitting at a remote machine somewhere on the 
network, at the point that the component needs to interact 
with the user. For example, a video camera component 



could asynchronously send a control UI to an application at 
the point it is connected to a display. This UI may provide 
controls to pause the video stream, rewind, and so forth. 
Rather than controlling the overall behavior of the camera, 
this UI controls only aspects of that particular data transfer. 
In a recombinant world, where devices and services are 
often interconnected rather than used in isolation, we have 
found that these operation-specific UIs, termed Controllers, 
play a particularly important role. Most importantly, they 
allow users to shape the interaction during connections 
between components, and provide the necessary feedback 
regarding the state of the connection.  
THE CONTROLLER UI INFRASTRUCTURE 
At a high level, the controller infrastructure can be seen as 
a way in which a loosely-coupled set of applications and 
components can share user interfaces, without requiring 
that applications that receive those UIs have either advance 
knowledge about the types of UIs that will be received, or 
where those UIs may come from. This section describes the 
mechanics of the Speakeasy controller infrastructure. 
Consider two or more Speakeasy components on a network 
that are interconnected for the purposes of data exchange. 
Typically, these components will be on different machines, 
and the connection between them will be initiated by a user 
working with a “browser” application on a third machine. 
In our implementation, the browser initiates the connection 
by requesting a session object from the component that will 
be the sender of data, and then transmitting this session 
object to the component that will be the receiver, as 
described earlier. Thus, all parties involved have copies of 
the session object. The session object is used to knit 
together the set of applications and components that either 
are directly involved in the connection (i.e., as an 
endpoint), or are “interested” in the connection (i.e., can 
control the connection). The session object acts essentially 
as a “capability” [2] for controlling or receiving updates 
about the connection. All parties that hold the session are 
eligible to perform certain operations on the connection 
(such as stopping it), and can solicit notifications about 
changes in the state of the connection.  
For the purposes of our discussion on the controller 
framework, any party that holds the session also has the 
capability to add a controller UI to the session. The act of 
adding a controller means that the party wishes UI to be 
displayed to the user. The party that adds a controller to a 
session becomes the master for that controller. This means 
that, in addition to receiving events about the state of the 
connection, it will also be eligible to receive events about 
the state of the controller it has added—whether a browser 
has displayed it, whether the controller has crashed, 
whether the user has dismissed the, whether the controller 
has finished naturally, or whether the computer displaying 
the controller has crashed or lost contact with the network. 
This step is illustrated in Figure 2. 

When a controller is added, a notification is sent to all other 
holders of the session. This notification is in the form of a 
controller event that contains the serialized user interface, 
as well as details about the user interface platform on which 
it runs, and so on. An interested party, such as a browser, 
can then take the controller, which again notifies all 
interested parties about the change in state. By “taking” a 
controller, a browser is agreeing to display the controller to 
the user. A browser that takes a controller from a session is 
called the controller’s host. Code in the host will notify the 
controller’s master if the controller fails, is dismissed, etc. 
This step is illustrated in Figure 3. 
The details of how events are propagated are transparent to 
components and applications themselves—all copies of the 
session object register to receive updates about the state of 
the session upon deserialization; this mechanism provides 
weak consistency among all copies of the session. Events 
are tagged with sequence numbers to facilitate duplicate 
and missed event detection. 
More importantly for the purposes of the controller 
infrastructure, this mechanism allows any program that 
holds the session—even if it is not itself one of the 
components involved in a connection—to add or receive a 
user interface, no matter where it is on the network. The 
mechanism described here addresses our first requirement, 
that UIs be deliverable to “third party” applications that are 
not themselves endpoints in a communication. 
Further, controllers can be added at any point during the 
lifetime of the session, not just at the start of the session, or 
before data transfer begins. Imagine a video camera that is 
connected to a viewer. If network congestion occurs, the 
camera may need to present controls to the user during the 
course of data transfer to allow the user to change buffering 
characteristics and so on. The protocol outlined here allows 
fully asynchronous delivery of UIs to support this style of 
interaction, addressing our third requirement, that UIs be 
deliverable at the time they are needed. 
An application that “takes” a controller can specify the 
general contract that it requires of the controller—what the 
platform requirements of the controller are, and what 
interfaces the serialized user interface will implement. As 
long as there is agreement on these general details, a 
browser can take and use a controller without having to 
know the specifics of it. For example, a browser can simply 
know that a received controller creates a window using a 
particular GUI toolkit, without having any more particular 
knowledge of it. This approach addresses our second 
requirement, that applications have only generic knowledge 
of the UIs they may receive. 
Further, any taken controller is leased by the host from its 
master. Leasing is a technique whereby the host must 
demonstrate continued proof of interest to continue using a 
resource (in this case, a controller) [5]. If a browser does 
not do this—because it has crashed, or became 
disconnected from the network, or does not follow the 
proper protocol for hosting a controller—the lease on the 



controller will expire, and the master will terminate the 
controller. This mechanism allows all involved parties to 
know if a controller’s host has lost contact with the network 
for some reason, so that they can clean up after it. Further, 
it allows these parties to mutually know this fact without 
further communication with one another. For example, if a 
user is controlling a presentation on a projector from a 
laptop, then simply turns off the laptop without first 
disconnecting from the projector, the system will detect 
this, terminate the connection, and allow the projector to be 
used once again. The use of such “soft state” satisfies our 
fourth requirement, that all parties in a connection be able 
to determine if a failure has occurred, without the need for 
any further communication between components. 
Since sessions act as capabilities, any party that holds the 
session can add a controller to it. When multiple parties add 
controllers to a session, the browser assembles these into an 
“aggregate” UI, as described previously in our fifth 
requirement, which presents all UIs organized into a single 
window. In our current implementation, library code 
automatically handles the aggregation and presentation of 
controllers, as they are received by an application. Figure 5 
shows one example of this, with two controllers on separate 
tabbed panes; other organizations are of course possible. 
Design Discussion 
In practice, all of the steps of the protocol are codified in 
libraries that reside in components, and in browsers, and 
take care of the details of implementing the controller 
infrastructure. The end result is that any party in a session 
can request that a user interface be displayed to a user 
sitting at a browser anywhere on the network. This user 
interface will be “pushed” to the browser at runtime. 
Further, when the browser actually displays the user 
interface, all interested parties can be aware of this fact, and 
can follow the state of the controller (whether it’s still 
active, and so on), and perhaps take action accordingly. 
The notification and leasing mechanisms together provide 

components with information about whether their user 
interfaces have failed to be displayed to a user, and allows 
components to adapt their behavior accordingly. For 
example, a component may require that its user interface be 
displayed to the user, if the component is to be used; if no 
browser takes the controller, or if the user dismisses the 
controller, the component can detect this and drop the 
user’s connection. This protocol also supports multiple 
simultaneous controllers being displayed or used by 
different browsers, and multiple simultaneous controllers 
being added by different parties involved in the session.  
The requirement that any party be able to add controllers 
has proved crucial to Speakeasy. In a setting in which 
applications do not have specialized knowledge about the 
parties that may be involved in a session, we need 
mechanisms in which a range of parties can add user 
interface elements without increasing application 
programming overhead. In particular, the Speakeasy data 
transfer model, with its multiple components, downloaded 
typehandlers, and so forth, requires that any of these 
entities be able to add user interfaces when appropriate. 
A source component may add a controller to allow a user to 
parameterize data transmission; for example, a camera may 
allows the user to alter frame rate, compression, and so 
forth. Likewise, a sink component may add controllers to a 
session; for example, a printer may display a dialog box 
giving control over various print options. Also, mobile code 
elements such as typehandlers may add controllers; for 
example, we have built a generic “viewer” component that 
can view arbitrary media types for which a typehandler is 
available. If a sender transmits a PowerPoint file to the 
viewer, the PowerPoint typehandler adds a controller with 
buttons to navigate through the slides. If a sender transmits 
a video file, the video typehandler adds a controller to 
allow pausing, stopping, etc., the video. This style of 
aggregate UI, built dynamically using the entities involved 
in a data transfer, is used ubiquitously in Speakeasy. 

 

Figure 2: Two initial steps in the controller protocol. In 1, all parties gain references to a “session” object, which provides a 
capability to control a connection. In 2, one party (in this case the projector), “adds” a controller to the session. This causes 

“controller added” events to be sent to all other parties that have expressed interest in such events. The projector becomes the 
“master” for that particular controller. 



EXPERIENCES WITH THE CONTROLLER FRAMEWORK 
The architecture described in this paper has been fully 
implemented, along with a wide range of components and 
controllers that allow us to realize not only the scenario 
posed at the first of the paper, but also a number of other 
interesting uses. 
Realizing The “Travel Light” Scenario Using Speakeasy 
The scenario described at the first of this paper has been 
implemented through the use of a Speakeasy-aware 
browser application that runs on a PDA. Upon starting, the 
browser begins a discovery process to find all available 
components (as described in [3], Speakeasy is able to take 
advantage of a variety of discovery protocols, for example 
Jini or Bluetooth). This process reveals a number of 
components, including those that represent the local 
projector and the user’s remote file space. The user can 
“open” the remote file space to locate the desired file. Once 
located, this file can be connected to the component 
representing the projector.  
During the connection, the projector requests the 
typehandler for the application/powerpoint type 
from the source, since it does not understand PowerPoint 
data natively. This causes the typehandler code to be 
transmitted to the projector, where it is executed. The 
typehandler then retrieves the data from the source file in 
its “raw” format as PowerPoint data, and makes a local 
copy of it. It then opens and renders the file. 
Upon establishing the connection, the remote filespace adds 
a controller to the session. This first controller is an 
example of a “passive” controller that simply presents the 
user with the progress of the data transfer using a progress 
bar UI widget. It does not directly provide the user with any 
control over the transfer operation–although the user can 
still terminate the transfer session by dismissing the 
controller. The controller is only active while the file is 
being copied over the network, after which time it is 

removed from the session, resulting in the UI disappearing 
from the user’s PDA. 
After the file transfer completes, the projector component 
adds a controller to the session. Again, as this controller is 
added, the browser (and all other interested parties) will 
receive an asynchronous event that encapsulates the 
controller’s UI object. This UI provides controls for setting 
up the projector—powering it up, setting video mode, 
brightness etc (see Figure 5)—and is rendered on the  
PDA’s display. The UI communicates over the network 
with the projector component. Any actions invoked on the 
UI will be relayed to the component, which will change the 
state of the actual hardware projector. 
After this, another controller is added to the session by the 
PowerPoint typehandler. This controller provides the user 
with features for navigating through the slides, using the 
controller’s host device (in this case the user’s PDA). 
During navigation, a small preview of the slide appears on 
the controllers UI, along with any notes associated with that 
particular slide. The controller allows the user to gesture 
with the pen to “draw” over the slide displayed on the 
projector—the controller receives input events from the 
PDA and relays those to the backend component running 
on the projector. 
This simple example demonstrates the utility and flexibility 
of using mobile code to deliver user interfaces, and extend 
clients with new data transfer capabilities. The PDA shown 
in Figure 4 not only does not have the PowerPoint 
application installed on it, but also is running a generic 
browser application that knows nothing about projectors, 
slide shows, or PowerPoint. The controller code 
downloaded from the various components in the session 
extends the UI behavior of the client dynamically, however. 
During this transfer session, there are often occasions when 
more than one controller is active at a single point in time. 

  

Figure 3: Two subsequent steps in the controller protocol. In 3, one party (in this case the browser) “takes” the controller 
from the session and displays it. The browser then becomes the “host” for the controller. The host leases the controller 

from the master, and both arrange to receive events from one another. In 4, Events communicate the state of the 
controller to the master; leases insure that a failed controller will be noticed by the master. Here, the master receives an 

event when the user closes the controller. 



For a device with a small display it can be problematic to 
display several controller UIs at the same time. To deal 
with this issue, the controller toolkit automatically manages 
controller UIs as they are received by client applications, 
and automatically places the controls on separate tabbed 
panels as shown in Figure 5. This mechanism allows users 
to be aware as controllers come and go, and also provides 
mechanisms to quickly switch between UIs. 
Of course, this particular scenario could have been realized 
in a number of different ways, either with or without 
Speakeasy. Numerous solutions to the problem of remotely 
controlling a presentation have been described in the 
literature, for example in Pebbles [10]. However, each of 
these represents a custom solution to this problem and 
involves specific software to be written for the client 
platform (PDA or laptop), whereas the Speakeasy solution 
requires only that a generic Speakeasy-aware browser be 
installed on the client. All other functionality, such as the 
ability to control the projector and the slide presentation, is 

discovered at runtime. Because of this, the same simple 
browser can be extended at runtime to perform a whole 
host of other operations that it was not explicitly written to 
do, such as capture whiteboard images; use the projector to 
display images, web pages, or MPEG movies; print 
documents; transfer data from one file system to another; 
and so on. 
Other Components and Controllers 
The “travel light” scenario only touches on a small subset 
of the components and controllers that we have built to 
date. Other examples include a screen capture component 
that can export a computer’s standard display to any other 
component on the network (such as a projector); 
multimedia components that represent speakers, 
microphone and video cameras.  Most of these support their 
own custom controllers and type handlers.  
We have built controllers that can grab keyboard and 
mouse events from the user’s machine and pipe them to a 
component on the network. The combination of these 
controllers and a display component allows an application 
to take complete control of a remote machine’s desktop and 
view it locally. 
CONCLUSIONS AND FUTURE WORK 
We have presented the Speakeasy UI infrastructure for 
delivering user interfaces to users in ubiquitous computing 
environments. This framework not only provides access to 
user interfaces for services about which the user’s 
application has no prior knowledge, but also allows 
components in a connection to provide connection-specific 
user interfaces at precisely the moment when they are 
needed. Further, the framework provides facilities for 
providing user interfaces to users on multiple platforms. 
We are exploring a number of avenues for future work to 
address questions that this framework raises. First is the 
difficulty inherent in creating meaningful and usable 
aggregate interfaces, when neither the browser nor any of 
the involved components are expected to have knowledge 
of each other’s semantics. 

 
Figure 4: A PDA displaying the controller for a PowerPoint 

viewer running on a projector (shown in the background). The 
PDA in this example knows nothing about PowerPoint. 

  
Figure 5: Two controllers for the connection between a remote file and a projector. The controller on the left was added by the 

PPT Viewer typehandler, and provides controls for the presentation itself. The controller on the right was added by the projector 
and provides controls for turning the projector on and off, switching the input source, and so on.  



In the simple example of displaying a video stream on a 
projector, for example, a case could be made for any of the 
involved parties adding a controller to pause the video. The 
approaches we have explored do not address these issues—
there is no higher-level “model” of the capabilities of the 
individual UIs added by the parties in a connection. Model-
based user interfaces may hold promise here; others, 
including ICrafter, have begun to investigate ways to create 
such aggregate UIs flexibly. 
Second, while we have been pleased that the controller 
framework has proved flexible enough to be used for a 
range of situations (including relaying a user’s mouse and 
keyboard events over a network), it is not clear to us that 
controllers are necessarily the right model for such low-
level I/O. We have begun to explore new approaches to 
recombination that allow such low-level I/O streams to be 
“snapped together,” in the same way that our connection 
framework allows components to be snapped together. 
Finally, the controller framework described here illustrates 
one (and, currently, our only) use of operation-specific user 
interfaces in Speakeasy. Controllers are the user interfaces 
to connections, in our model. There are, however, other 
operations that Speakeasy affords, including discovery of 
remote components, and examination of contextual 
metadata on components. We believe that parallel 
frameworks may exist for these operations also, and have 
begun to explore these. 
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