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ABSTRACT 
We introduce TwinSpace, a flexible software infrastructure 
for combining interactive workspaces and collaborative 
virtual worlds. Its design is grounded in the need to support 
deep connectivity and flexible mappings between virtual and 
real spaces to effectively support collaboration. This is 
achieved through a robust connectivity layer linking 
heterogeneous collections of physical and virtual devices 
and services, and a centralized service to manage and 
control mappings between physical and virtual. In this paper 
we motivate and present the architecture of TwinSpace, 
discuss our experiences and lessons learned in building a 
generic framework for collaborative cross-reality, and 
illustrate the architecture using two implemented examples 
that highlight its flexibility and range, and its support for 
rapid prototyping. 
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INTRODUCTION 
A common theme of research for a number of years in the 
ubiquitous computing community has been the creation of 
‘smart’ or ‘interactive’ spaces to support group work. 
Systems ranging from the iRoom [1] to the NIST smart 
room [2] to i-LAND [23], and others have explored the use 
of specialized ‘smart rooms’, with a wealth of display 
devices, sensors, and specialized input devices, to support 
and enhance collaborative work.  

Generally, however, these systems have been designed for 
collaborative teams in which all the members are collocated 

in a single smart space. Remote participants have not had 
access to the wealth of technology in these spaces. Common 
methods for including remote collaborators—such as a 
conference call, or video teleconferencing—place remote 
collaborators at a disadvantage, as they lack both the 
benefits of collocation with their collaborators, as well as 
the range of technological supports that are present in the 
smart space.  

In our work we explore the fusion of interactive or smart 
room technology with virtual worlds (as has been proposed 
by several authors [8,9]), specifically in support of mixed-
presence collaboration. We set out to redress the imbalance 
between collocated and remote participants by creating 
‘virtual smart spaces’ that remote collaborators can join, and 
which are deeply interconnected with the physical smart 
space through pervasive computing technology. These 
virtual smart spaces provide capabilities similar to—and in 
some ways even beyond—those provided by their 
counterpart physical smart spaces. For example, virtual 
worlds provide effectively perfect ‘virtual sensing’, meaning 
that the system has accurate, fine-grained, real-time 
information about participants’ locations and orientations in 
the virtual space. These spaces also can allow fluid, dynamic 
configurability and control in ways that may be difficult or 
impossible in physical smart spaces, which still must operate 
under the constraints of physics. Perhaps most importantly, 
combining the sensing and interaction capabilities of both 
physical and virtual smart spaces may permit collocated 
groups to actively collaborate with remote persons without 
forfeiting the practices of collocated collaboration, or the 
spatiality and interactive affordances of the physical 
environment. 

There are, however, a number of research questions this 
arrangement raises. First, how do we map the virtual and 
physical spaces together?  Should the virtual space 
correspond spatially with the physical space, or should 
mapping focus on shared content, shared activity or some 
combination of these or other dimensions? Second, how 
does interconnectivity between physical and virtual spaces 
provide richer opportunities for collaboration than a 
conference call does?  Third, what are the requirements for 
adaptability in how physical and virtual spaces are 
combined? Is a static mapping between physical and virtual 
required to ‘ground’ collaboration, or can collocated and 
remote participants navigate a dynamic range of physical-
virtual integrations? 
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In this paper we present TwinSpace, our software 
infrastructure for connecting interactive workspaces and 
collaborative virtual worlds. TwinSpace provides a robust 
platform for rapid prototyping of applications that span 
physical and virtual spaces, allowing for comparative 
evaluation of designs; the system is applicable to a wide 
range of physical settings, virtual environments, and 
collaborative activities. By facilitating connectivity across a 
heterogeneous set of displays, sensors and interactive 
devices in both the physical and virtual worlds, TwinSpace 
provides a flexible infrastructure for exploring and 
implementing collaborative cross-reality (CoXR) 
environments.  

Our primary contribution is a novel infrastructure for 
building CoXR environments that provides the following 
four key features:  

1. A communications layer that seamlessly links the 
event-notification and transactional mechanisms in the 
virtual space with those in the physical space. 

2. A common model for both physical and virtual spaces, 
promoting the interoperability of physical and virtual 
devices, services and representations. 

3. A mapping capability, managing how physical and 
virtual spaces are connected and synchronized. 

4. Specialized virtual world clients that participate fully in 
the larger ecology of collaborative cross-reality devices 
and services. 

The remainder of this paper is organized as follows. After a 
consideration of related work, we present the systems model 
of collaborative cross-reality supported by TwinSpace. We 
then present the infrastructure in more detail in terms of 
challenges faced and lessons learned while implementing a 
generic framework for collaborative cross-reality. Following 
this we illustrate the architecture using two implemented 
examples that highlight its flexibility and range, and its 
support for rapid prototyping.  

RELATED WORK 
The TwinSpace architecture is inspired by work in smart 
and interactive team rooms, collaborative virtual 
environments and worlds, and collaborative mixed and 
cross-reality systems. In this section we outline how 
TwinSpace builds on and departs from earlier research. 

Interactive and Smart Workspaces 
So-called ‘smart’ or interactive collaborative workspaces 
have been a major focus of ubiquitous computing research. 
Dominant themes in this work include interaction techniques 
[1,12], sensing and context awareness [2,10] and 
software/hardware interoperability [1,11]. Each of these 
themes is also present in the TwinSpace design. Such 
systems typically support collaboration within one space 
only, however, and do little to assist remote collaborators. 
By contrast, TwinSpace provides a broad capacity for 
defining sensing and interaction behaviour in-room, and 

extends this capability to include devices and services in the 
virtual world. 

Semantic web technologies have been used in a number of 
research projects to provide formal reasoning services in 
collaborative smart spaces [10,13,14,15]. One outcome of 
this work is that several ontologies dedicated to pervasive 
and smart space computing have been defined [13,14,15]. 
TwinSpace extends this approach by permitting reasoning 
over the combined state of the physical and virtual spaces. 
More importantly, TwinSpace uses ontology in ways that 
are unique to CoXR environments—to provide a common 
model over physical and virtual entities and to determine 
how physical and virtual spaces are combined. 

Collaborative Virtual Environments and Virtual Worlds 
Collaborative Virtual Environments (CVEs) provide flexible 
3D landscapes within which distributed individuals can 
interact with each other and with data representations. 
Typically, these systems create an immersive experience, 
and employ natural interaction techniques including gesture 
tracking and haptic feedback. Churchill and Snowdon [16] 
cite support for “more complex, highly negotiated and 
interwoven collaborative tasks” as an advantage of a CVE 
over traditional CSCW applications. CVE work has 
influenced the TwinSpace design, however TwinSpace 
emphasizes mixed presence (collocated and remote) 
collaboration that does not mask the real world, but instead 
makes it a vehicle for working simultaneously with all 
collaborators. The framework provides base support for 
‘immersive co-presence’ (through support for natural 
interfaces, the management of shared perspectives, and the 
representation of collaborators in both spaces), but this is 
viewed as one among several possible strategies for 
connecting real and virtual. 

Online virtual worlds are increasingly accepted as a way for 
remote users to ‘meet’ for collaboration. Typically, the 
assumption with these systems is that participants are 
isolated physically from one another, and connect to a 
shared virtual world server using a personal computer. 
Second Life, while designed as a primarily social virtual 
world, has been appropriated for business events, lectures 
and meetings.  OpenWonderland [3], Croquet [4], and 
commercial products such as OLIVE, Sametime 3D [5] and 
Qwak Forums provide online virtual environments 
supporting collaboration over digital media. Typically these 
systems provide no special affordances for collaborators 
who happen to be physically collocated.  TwinSpace builds 
on an online virtual world engine to connect these “anytime, 
anywhere” remote clients with smart physical spaces and the 
collocated team members inhabiting them.   

Mixed Presence and Cross Reality 
Mixed presence groupware [17] includes all systems 
intended to support simultaneous collocated and remote 
collaboration, while cross-reality systems integrate real and 
virtual worlds in some useful way [8], possibly but not 
exclusively for collaboration. TwinSpace is the first generic 



framework we are aware of for cross-reality, mixed-
presence groupware.  

The Sentient Computing project [9] was an early cross-
reality effort that fused physical sensor networks with 
virtual worlds by connecting their event models, in a manner 
similar to TwinSpace. This project had the goal of 
visualizing sensor activity and not promoting collaboration, 
however. Recent work by Lifton et al. [8] has explored the 
same metaphor in support of sharing experiences, media, 
and informally collaborating, but does not provide a generic 
architecture for integration with collaborative spaces, and 
does not explicitly address the needs of collocated groups. A 
number of other projects have explored elements of 
collaborative cross-reality, including systems to support 
mixed presence tourism [19] malleable office spaces [6], 
and tabletop systems [7]. All of this work considers specific 
applications or collaborative scenarios, and does not put 
forward a general architecture. Furthermore, this work has 
largely considered ‘portal’ models, which provide 
standalone interactive device assemblies that connect with 
the virtual world [6,7]. While a portal’s physical location 
often carries implicit meaning (e.g., this portal is in my 
office [6]), they are not strongly integrated with their 
physical surroundings. We believe that collaboration 
through single portals may reduce the natural spatiality of 
many kinds of collocated group work by placing focus on a 
single point of collaboration with remote participants. A 
generic platform for collaborative cross reality should 
additionally permit more direct integration with the physical 
environment, which may be necessary to allow collocated 
collaboration to remain grounded in the physical space. 

SYSTEMS MODEL 
TwinSpace provides a generic systems model for CoXR 
development. At the highest level, TwinSpace connects 
physical spaces with counterpart virtual spaces so that work 
in the physical space can remain situated in the physical 
space without excluding remote collaborators connected to 
the virtual world. Individual remote users can connect to the 
virtual world from anywhere using a standard online virtual 
world client interface, allowing collaboration with 
collocated groups in one or more physical rooms. The 
sensor and device infrastructure in physical rooms can be 
synchronized to the services and virtual objects present in 
the virtual world interface. 

As a generic platform for prototyping and experimentation, 
the TwinSpace infrastructure permits a range of techniques 
for integrating physical and virtual spaces. For example, 
events generated by the smart room infrastructure in the 
physical space—such as sensor or input device events—can 
be published and reported in the virtual space. Likewise, 
events in the virtual space—such as an avatar entering a 
‘cell’ or region, or a new user logging in—can be published 
in the physical world. Further, the system can define spatial 
and structural correspondence between the physical and 
virtual spaces, to support co-presence across the two spaces 
(a mapping that we call ‘twinning’ the spaces), and can 

maintain representations of all parties across both spaces 
(creating avatars in the virtual space for physical 
participants, for example, or indicating in the physical world 
when virtual participants are present in a corresponding 
region of the virtual space).  Spaces may also be connected 
through functional ‘contact points’ (for example, a large 
virtual whiteboard might be paired with a physical 
interactive whiteboard), whether the real and virtual spaces 
correspond spatially or not. 

The TwinSpace infrastructure allows applications to  
dynamically reconfigure the integration between the 
physical and virtual spaces. Specific integrations can be 
added, altered or removed based on direct commands, user 
interactions or changes in context. For example, the system 
can allow applications to remap the devices in the physical 
room to different regions of a virtual world based on 
collaborative activity, or an overview camera’s perspective 
may change when a new participant enters an active 
collaborative region in the virtual world, or the open 
documents in a virtual space might be replaced when a 
group switches to a different project. 

TwinSpace also has the ability to connect multiple 
interactive rooms to a virtual space simultaneously, to 
support multiple, disjoint groups of collocated participants. 
The rooms can map to separate virtual regions (for example, 
when connecting offices to a virtual office space [6]), or to 
the same region (e.g., to allow physically separated creative 
teams to work together), or they can overlap. 

Architecture Overview 
The TwinSpace architecture is outlined in Figure 1. 
TwinSpace combines a virtual world engine and an 
interactive room infrastructure as balanced parts of a cross 
reality platform.  

On one side of TwinSpace is the OpenWonderland virtual 
world engine [3]. We chose to build on the open source 
OpenWonderland platform because it provides rich, 
programmatic control of the virtual world, the ability to use 
desktop applications in-world, event-based notification of 
many in-world events, and well-defined extension points on 
both the server and the client side [3]. 

The physical room infrastructure builds on the Event Heap 
[1], a simple and flexible communications platform that 
permits the creation of a wide range of room-level 
interactive capabilities and services [12]. Customized in-
room OpenWonderland clients respond to and generate 
event heap messages1 alongside other room-based sensors 
and services.  

                                                           
1 Clients can also be directly connected to interactive 
devices using native protocols. We have found this useful 
when building self-contained client interfaces using devices 
such as orientation sensors or fiducial trackers. 



 

Figure 1. The TwinSpace architecture.  Context tuples (CTX) 
flow from the virtual world, virtual world clients and in-room 
devices and services into the Context/Mapping Engine, which 
generates Command tuples (COM). Command tuples can also 
be generated directly by other components. 

Connecting these two sides are custom components 
providing bi-directional event delivery across spaces, and 
event translation into formats that are syntactically valid and 
semantically meaningful for the destination space. A shared 
model of entities (resources, individuals, events and 
artifacts) across physical and virtual spaces helps to enforce 
consistency in message structure and content across realms.  

Finally, the TwinSpace infrastructure includes a rule-based 
translation layer that supports multiple, pluggable methods 
controlling how entities are represented across realms, and 
how those representations are combined to give a coherent 
manifestation of one space in the other.  

ARCHITECTURAL CHALLENGES 
In this section we discuss the TwinSpace architecture in 
more detail, calling out architectural challenges and 
decisions that are unique to collaborative cross-reality 
environments.  

Choosing Client, Server or Both 
From an architectural standpoint, we felt it reasonable to 
define a custom, direct connection between physical and 
virtual spaces. Events occurring in the virtual world should 
not be communicated to a connected physical room through 
an arbitrary graphical client, nor should room-level events 
not directly controlling a virtual world client require such a 
client simply to communicate with the virtual world. 

 

This may be at odds with the architecture of online virtual 
worlds, however, which often employ a client-server model 
designed around the need to synchronize a 3D model across 
largely homogeneous but widely distributed clients [24]. 
While other approaches do exist (e.g., see the peer to peer 
strategy adopted by OpenCroquet [4]), our experiences 
using OpenWonderland are valuable as an example of using 
client-server virtual worlds in CoXR.  

Client-server models offer different APIs at each level. This 
can be a challenge for CoXR systems, which require more 
direct access to the virtual world model than is typically 
available on a client, but may still require certain client-side 
features. For example, OpenWonderland provides rich 
support for document creation in the client API (such as 
dynamically mapping a document load request to an 
appropriate renderer), but very little support on the 
OpenWonderland server. In addition, clients support 
multithreading while the server-side transaction and 
synchronization services severely constrain the creation and 
management of threads. There are technical limitations in 
the client API also: for example, the client maintains a 
subset of the virtual world model (its CellCache), and so 
can’t be used to conduct global searches for documents and 
other entities without opening specialized comm channels 
with the server. The OpenWonderland server also maintains 
an event notification thread intended for server-side 
components, simplifying in-world event sensing on the 
server. 

After evaluating the use of custom headless clients and 
combined server+client approaches, TwinSpace connects 
with the virtual world largely through a custom service 
called the Realm Bridge (Figure 1), implemented deep in the 
lower layers of the OpenWonderland server API (to gain 
control over multithreading and initialization). Its key 
features are an extensible base communications 
infrastructure (supporting multiple protocols), support for 
one-to-many relationships between virtual worlds and 
physical spaces, and automated syntactic conversion 
between in-room and in-world event formats. In-world 
components that use this service reside on the server, and we 
duplicate essential features from the client API where 
necessary. In addition, we define a broad set of hooks into 
the standard clients so they can participate in in-room 
interactions: in essence, when an interaction in-room 
controls a camera view onto the virtual world, or controls an 
avatar that is bound to a client, the corresponding client is 
used. All other communication between virtual and physical 
occurs through the bridge. 

Synthesizing Physical and Virtual Event Models 
One approach in cross-reality systems design is to extend a 
room-based sensor/actuator model into the virtual world by 
equating the virtual world’s event model with a highly 
instrumented space. This is complicated by the fact that the 
kinds of events generated in a virtual world can differ from 
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those of a physical smart room. In the case of collaborative 
virtual worlds, certain events carry high semantic value for 
collaboration (e.g. someone edits a shared document in-
world, someone leaves a room), and there may be no 
reliable way to sense the same level of collaborative event in 
a physical space. By contrast, the fact that such events are 
recorded in the virtual world is no guarantee that they can be 
interpreted in the same manner as if they were occurring in 
reality—an avatar may leave the room just to get a better 
perspective on the 3D environment, or may just happen to 
be facing a specific shared document, etc. Furthermore, 
there is a balance to strike between achieving real-virtual 
parity (in event granularity and type) and acceptable 
performance, when every low-level sensing event or 
actuation command requires communicating with a remote 
virtual world server and possibly updating its clients. 
TwinSpace provides a clear path for developers to manage 
these differences and tradeoffs using its Observer/Effector 
paradigm.  

Observers and Effectors (Figure 1) are server-side virtual 
world components that are roughly analogous to sensors and 
actuators in the physical world. Whereas physical sensors 
typically provide raw, low-level data, Observers can work at 
a range of granularities. They may do preliminary 
processing or reasoning over low-level events (like object 
movement), they may be combined together (e.g., to sense 
when an avatar is in close proximity to a document and is 
facing the document), or may simply forward the events 
produced by the virtual world (e.g. when someone logs into 
the world). Adding new sensing capacity in the virtual world 
is usually a simple matter of extending the base Observer 
and ObservedEvent classes. Adding a new Effector is 
similarly straightforward. 

An Encoder/Decoder hierarchy (Figure 1) encapsulates the 
generation and parsing of specific protocols and message 
formats, and they are associated with Observers/Effectors 
dynamically. For example, a MotionEffector might be 
associated with a VRPNDecoder for 6dof object 
manipulation, and an Event Heap TupleDecoder for coarser 
command-driven operations.  

Simplifying and Standardizing Language 
Maintaining a consistent message syntax is important for 
any distributed system. In particular, interactive spaces built 
using the Event Heap with more than a few components 
become unwieldy and brittle otherwise. CoXR environments 
are further challenged here, since the terminology used in-
world and aspects of the referent entities themselves can 
differ from their in-room counterparts. As a result, it can be 
difficult to address physical and virtual displays in the same 
way, for example: virtual displays may not need to be turned 
on or off, or the concept of display might not exist at all. 

TwinSpace addresses these issues by weaving an ontology 
throughout the system, based on the SOUPA [9] ontology 
for interactive smart spaces. Originally included in 
TwinSpace to permit context reasoning, the ontology has 

been most useful as a tool to structure development. The 
TwinSpace ontology includes SOUPA’s Device, Person, 
Location and Action classes, and adds support for a range of 
mapping relationships between entities across realms, 
discussed below.  

Using the ontology helps answer the question of how to 
structure messages passed between devices and services in-
room and in-world. It also gives a common model of entities 
that extends across physical and virtual spaces, facilitating 
interconnectivity and mapping. However, scaffolding is 
necessary to make a common model actionable: in the 
virtual world a device is often a skeuomorph, a familiar 
representation that when clicked on brings up a 2D GUI, 
whereas in-room a dial controller is a dial controller, for 
example. Similarly, in-world documents are presented in 
renderers, while in-room these renderers are situated on 
displays. We accommodate these and other differences 
using proxy objects in-world. 

Proxies are compound entities that combine Observers and 
Effectors to maintain an abstract model of an ontological 
element present in the virtual world, like persons, displays, 
content and rooms. Proxies greatly simplify mapping 
operations by permitting a shared ontology across physical 
and virtual spaces, and by encapsulating low-level virtual 
world commands. 

For example, the Display proxy provides a virtual 
counterpart to physical displays. Displays encapsulate the 
creation and configuration of in-world document renderers. 
If a request arrives to place a new type of document on the 
display, the Display Effector destroys the current renderer, 
replacing it with an app that can render the document, then 
loads the document. When content is changed on the 
Display, a Display Observer communicates this back out to 
registered rooms. On physical displays we provide a basic 
listener that can open documents in native renderers. This 
makes it straightforward to synchronize virtual displays with 
physical displays that present content using native renderers.  

Achieving Dynamic Configurability 
Another purpose of the shared ontology is to permit context-
driven, rule-based triggers in the TwinSpace framework. We 
wanted this for two reasons. First, (as discussed) virtual 
worlds have the equivalent of a very robust sensing 
infrastructure, limited mainly by what the virtual world 
engine chooses to make available as state and events, 
offering interesting possibilities for context-driven 
integration of physical and virtual. Second, rule-based 
triggers allow centralized control over reconfiguring spaces 
(or services in them) and the relationship between spaces via 
pluggable mapping rules. This focus on mapping is a unique 
feature of the Context/Mapping Engine (CME, Figure 1). 
Together with the shared physical/virtual ontology, the 
CME facilitates the definition of cross-reality configurations 
ranging from the very straightforward to very complex. 

In practice, we have used the context reasoning capacity 
very little. Our inference rules (Figure 1) have been very 



 

basic tests for presence/absence of specific contextual data, 
aside from one proof of concept experiment that tracked 
speaking avatars based on their seniority level in an 
organizational hierarchy. This is partly because much of the 
context posted from the virtual world is already at a higher-
level (e.g., someone has entered/left a room, started to edit a 
specific document, etc.), and because our use of sensing 
technologies in-room to date has largely been in support of 
explicit interactions. We anticipate that context reasoning 
may become important when attempting to infer activity 
across realms. For example, identifying who in the physical 
and virtual spaces are attending to a specific document 
might require combining information about presence, 
physical orientation, and recent history.   

Mapping rules, by contrast, have been a critical part of our 
prototyping work. Mapping rules enforce correspondences 
between entities (such as displays) in either or both physical 
and virtual spaces, and determine how contextual events are 
manifested. Mapping rules generate and post Command 
tuples back onto the Event Heap, causing mappings to be 
realized in both physical and virtual spaces. Over time we 
refined the mapping rule design to use indirection and have 
recently added an ontological Relationship element that can 
be reasoned over, as discussed below. 

Mapping rules are defined abstractly in the CME, referring 
to devices indirectly by mapping type. Rules are concretized 
at evaluation, and a device’s mapping type(s) can be altered 
dynamically. This is done for two reasons. First, the 
availability of resources in physical and virtual 
environments can change over time. Second, abstract 
mappings permit the support of multiple configurations of 
space and resources (for example, to promote collaboration 
across multiple physical teamrooms). For example, a single 
mapping rule involving primary and secondary mapping 
types can be used to provide a detail+context presentation of 
a shared virtual whiteboard in a teamroom with two displays 
(one labeled ‘primary’ and the other ‘secondary’), and to 
simultaneously generate a split-screen view on a single 
display in another room (if the display has both mapping 
types assigned to it). 

In addition to mapping types, entities may hold one or more 
relationships with other entities. For example, an avatar can 
be twinned with an in-room participant by defining two 
Person entities that hold a one-to-one twin relationship with 
each other. A display that focuses on a moving or stationary 
object holds a track relationship with it. Arrays of physical 
and/or virtual displays have the array mapping type plus a 
group relationship that specifies ordering. While this work is 
still preliminary, we feel that it, by allowing relationships to 
be represented and reasoned over, represents an evolution of 
context reasoning that is appropriate for cross-reality 
systems like TwinSpace.  

Because they are expressed in RDF, inference and mapping 
rules can be individually modified, linked together, or 
swapped out of the CME with minimal system 

configuration. This is to support experimentation and 
dynamic reconfiguration. In our prototyping work, when 
someone logs into the virtual world, different mapping rules 
can be applied so that a table lights up in-room, or an in-
room shared client jumps to the login area, or both. Our 
speaker tracking proof of concept demonstrates the same for 
inference rules: the org chart rule described above can be 
replaced by one that simply specifies that whoever started 
speaking most recently should be tracked.  

Altering the Interaction Model for Group Use 
CoXR environments can employ a wide range of 
perspectives or views onto the virtual world: a view that 
corresponds to the physical location and orientation of the 
viewer (in immersive approaches), a ‘best-view’ close-up of 
an in-world 2D document, a top-down view, an overview 
perspective, views that change based on events in-room or 
in-world, etc.  However, CVW systems often build-in 
assumptions that conflict with cross-reality collaboration: 
for example, in OpenWonderland clients are bound to an 
avatar and interaction is designed for a single user via 
keyboard+mouse.  

As a result, we have modified the basic OpenWonderland 
CVW client to support group use. Most importantly, clients 
are addressable via command tuples and we decouple the 
relationship between avatars and clients. These are basic 
requirements for room-level interactivity, cross-reality 
mappings, and event-based updates. We provide a core set 
of services on the client that can be accessed using 
command tuples:  control over the client’s configuration, 
emulation of input events, the ability to locate and track in-
world entities, direct control of camera and/or avatar 
movement using relative or absolute transformations, and a 
set of camera effects, including basic cut-away transitions, 
smooth transitions, zooming, and presentation of multiple 
views.         

CASE STUDIES 
In this section we discuss our experiences using TwinSpace 
in terms of two implemented prototypes. 

Activity Mappings 
This case study describes a CoXR prototype designed to 
utilize the spatial layout and ‘collaboration affordances’ of a 
specific team room (the ‘inSpace’ lab [25]), in order to 
promote mixed (collocated and remote) collaboration. More 
detail about this case study is provided in the video figure. 

The team room is composed of three main regions (see 
Figure 2). The assemble/array region supports extended 
group discussions and sharing content on wall displays. The 
aside table region supports composing, modifying, and 
discussing content over a tabletop display, and the aside 
wall region supports generating new content on a 
whiteboard.  

We outline two high-level activities the prototype currently 
supports: creative ‘brainstorming’ and giving presentations. 
Brainstorm mode configures the three regions of the room 
to support idea generation and group decision-making. 



Present mode provides facilities for in-room or remote 
users to give a presentation or guide a discussion with other 
participants.  

Modes are selected using a small touchscreen interface (see 
Figure 3) attached to one end of the ‘assemble’ table. When 
a mode is selected, the CME responds by firing a set of 
mapping rules, reconfiguring the team room’s digital 
devices as described below.    

In brainstorm mode, the spatial layout of the room is 
echoed in-world. Each of the three collaboration regions is 
mapped to its corresponding region in-world (see Figure 
2D). Further, within each collaboration region, displays are 
mapped to resources that have the same relative position and 
orientation in-world as the display does in-room.    

The wall displays in the assemble/array space operate as a 
unit in brainstorm mode (their CME representations share a 
group relationship and an array mapping type). An in-room 
dial controller (see video figure) provides a way to iterate 
through sets of in-world documents (more precisely, a set of 
virtual displays2). The wall displays operate as a window 
onto a subset of the documents in the set. Turning the dial 
iterates forward or backward along the current set of 
documents, by giving each wall display client the id of an 
in-world object (in this case, virtual display) to move to. 
Pushing and turning the dial will rotate the view of all three 
displays simultaneously (allowing exploration of the virtual 
space surrounding each document), snapping back to the 

                                                           
2 The virtual displays are grouped using the same 
mechanism (group, array) as the physical displays. Selecting 
display sets is made possible through the group relationship. 

default view once the dial is released.  Remote collaborators 
can connect to the dial session by clicking on a virtual dial 
object that is twinned with the physical control. Their client 
then presents the same subset of documents visible on the 
in-room displays on a heads-up display (HUD) layer. A GUI 
provides complementary controls so that in-world 
collaborators can also control the session.   

Figure 4. Correspondences in Brainstorm mode. A/a: displays 
in the aside table region show horizontal and vertical 
perspectives corresponding to the region’s in-world location. 
B/b: the vertical perspective highlights the spatial 
correspondence between the aside table region and the other 
two regions. C/c: an in-world avatar represents a remote 
person collaborating with the person at the whiteboard in the 
aside wall region.  

In brainstorm mode the aside wall region promotes an open 
exchange among collaborators, regardless of mode of input 
and physical location.  In-room participants can use a pen to 
draw on the physical whiteboard, and thereby onto the 
shared document in the virtual space (Figure 2(A)). Remote 
participants use standard virtual world clients, and can 
modify the document using mouse and keyboard.  On a 
cocktail table near the whiteboard we provide a tablet 
computer rendering the document in a native web browser. 

Figure 3. Touchscreen buttons for the Brainstorm and 
Present modes in the team room. 

 
Figure 2.  Three collaboration regions in the inSpace team room and the connected virtual space in brainstorm mode. Aside wall 
(A) centers around a large interactive whiteboard. Assemble/array (B) uses three wall displays configured around a sensing table. 
Aside table (C) combines an interactive tabletop and vertical display. Remote participants inhabit the virtual space and 
communicate with co-located collaborators using spatialised audio and telepointers. 



 

This is an example of how native renderers can be used to 
‘twin’ virtual and physical displays in TwinSpace.  

The aside table region permits collocated and remote 
collaborators to discuss or work on content on a tabletop 
display. In the region we combine a basic interactive 
tabletop display with a vertical ‘orienting’ display on an 
adjustable boom. On the tabletop we present a top-down 
view of a small region in the virtual world, and place virtual 
documents horizontally in this region. The tabletop tracks 
multiple pens, which can be used to arrange or edit these 
documents. Remote participants can choose to use a top-
down or oblique view over the same region, and can edit the 
documents using the standard CVW client controls. The 
vertical orienting display can be positioned in space and 
rotated about the boom’s center. A 3D orientation sensor 
causes the camera view to update based on yaw and linear 
acceleration. Consequently, the vertical display allows 
collaborators at the physical table to peer into the region of 
the CVW surrounding the area projected on the table (see 
Figures 2,4). Since the sensor is tightly coupled to the single 
client, we connect the sensor directly using its native API. 

Present mode supports giving presentations to a mixed in-
room and remote audience (see video figure). In this mode 
the display array in the assemble/array region is used, and 
the displays in the two aside regions are dimmed. The three 
displays are assigned specific mapping types for this mode 
in the CMV: the left is an overview display, the center is the 
main display and the right is the secondary display. The 
overview presents a raised oblique overview of the CVW 
presentation space, showing the virtual podium, the 
audience area and the location of presentation content. The 
main display shows the main presentation content, and the 
secondary display shows supporting content like video, 
whiteboard or websites.  

The remote audience sees the main content presented above 
the speaker’s avatar, and supporting content to the right. 
Whether collocated or remote, the presenter logs into the 
virtual world using a standard CVW client, and identifies 
themselves as presenter by clicking on the podium and 
selecting ‘present’ on a popup dialog. This sets their avatar 
in front of the podium and brings up controls for 
presentation content. 

To support dialog during or after the presentation, the left 
in-room display is also assigned a speaker tracking role in 
the CMV. When someone other than the presenter speaks 
in-world, the view snaps to a front-view of that person’s 
avatar. This behaviour is triggered by the CMV based on 
updates from our Speech Observer. After a few seconds 
elapse with no speaking, the display falls back to its default 
‘overview’ perspective.  

Present mode highlights TwinSpace’s ability to fluidly map 
functionality to devices (in this case to displays). In a 
different physical environment, each of the main, secondary, 
overview, and speaker tracking roles can be assigned to 
different displays as available and appropriate for that space. 

We have been periodically evaluating this prototype during 
weekly meetings with our collaborators in industry. We 
have successfully used each of the three regions during 
brainstorming, however there are some key areas for 
improvement that we have identified, all related to 
supporting awareness. First, the in-room collaborators 
exhibited a need to maintain awareness of who is in a given 
region in-world. The orienting display provides some 
indication of this, but is only located in one of the three 
regions.  Second, the remote collaborators lamented that 
there was no virtual representation of their in-room 
counterparts. Finally, there was limited awareness of 
ownership of action: when applications are ‘taken control 
of’ in-world, there is no indication on the application of who 
is interacting with it. Similarly, when one of the in-room 
participants takes control of an application (for example, the 
virtual whiteboard in the aside wall region), there is no 
indication of who in-room is interacting with the 
whiteboard. 

Cross-Reality Collaborative Game 
Or de l’Acadie is a prototype collaborative game built using 
TwinSpace. We outline it here to give a sense of the 
flexibility of the TwinSpace architecture. Set in an 
abandoned 18th Century French colonial fort, two pairs 
(French and British sides) compete for valuables distributed 
throughout the town, with the goal to collect the most 
valuables within a time limit. The game emphasizes 
asymmetry in both game controls and team dynamics. Each 
British player controls a single soldier using keyboard 
controls. Players are not collocated, and can communicate 
with each other only when their soldiers are within earshot. 
Each soldier is equipped with a static top-down map of the 
fort, and can collect a limited number of riches before 
needing to return to a location at the edge of the fort to stash 
them. The French side consists of a Mi’kmaq Indian mystic 
who is able to communicate with spirits, and a deceased 
French gendarme. The French players are physically 
collocated, and use a range of physical controls to compete 
for the valuables. While the ‘living’ players (French and 
British) are constrained by the laws of physics, the 
Gendarme moves freely through walls and in the air, but is 
unable to collect valuables. Instead, he communicates with 
the mystic who collects them. The mystic pushes a cart, and 
so can collect more riches than the soldiers, but as a result 
he cannot move quickly, or climb stairs. Luckily, the 
Gendarme can transport the mystic to any location in the 
fort by creating a portal.  

The gendarme is equipped with three simultaneous views: a 
top-down view of the entire fort, a wide-vista first-person 
view distributed across three screens, and a third-person 
view of the mystic’s current location. The player controls 
the gendarme’s first-person view using a SpaceNavigator 
3D mouse. The table always displays a top-down view of 
the entire fort, but its front clipping plane corresponds with 
the gendarme’s current altitude. When the gendarme locates 
valuables he can create a portal between where the mystic 



currently is and the location of the valuables. Portals are 
created by placing tangible objects at the two endpoints of 
the portal on the table’s top-down view of the fort. The 
mystic walks through the portal to enter the next location. 
Finally, the gendarme has a third person view of the mystic 
on a display on a boom. The view follows the participant, 
and rotating the boom changes the viewpoint relative to the 
mystic’s orientation. In this way the gendarme can help 
guide the mystic to the valuables in a location if he is having 
difficulty.   

The mystic and his cart are controlled using an assembly we 
call the TwinSpace Trolley. A 24” touchscreen is placed on 
a physical trolley, providing the first-person perspective of 
the mystic. The trolley is maneuvered around the physical 
space to navigate a mapped virtual space. Valuables are 
placed in the cart by touching them on the display. The 
trolley’s position is determined using a sensor assembly 
involving an RFID reader (reading tags in the carpet), a 3D 
orientation sensor and an optical mouse (‘reading’ the 
carpet). This sensor data is combined by a small program 
that transmits position and orientation updates to the event 
heap. The physical room area is mapped to the virtual space 
in the CME by calling custom Java code (in this case a basic 
shift and scale is applied). The resulting command to change 
position is sent to the trolley’s virtual world client. When the 
mystic walks through a portal, an observer sends notification 
to the CME, which updates the shift values accordingly. 

The gendarme’s main control is the SpaceNavigator 3D 
mouse. An in-room application receives data from the 
mouse via the OSC protocol, and converts this into Event 
Heap command tuples containing distinct transforms for 
each vertical display CVW client, and into a clipping plane 
value for the tabletop CVW client.  The boom display uses 
the same configuration as in the previous case study, except 
that its CVW client also receives the trolley’s position 
updates from the CME. Updates to the position and 
orientation of the tangible portal controls are converted from 
TUIO protocol messages into Event Heap context tuples by 
a custom application. The CME captures these and sends 
updates to the twinned portal objects in the virtual world, via 
a MovementEffector. 

CONCLUSION 
We have presented TwinSpace, an infrastructure for cross-
reality collaborative spaces. TwinSpace is designed to 
support deep interconnectivity and flexible mappings 
between virtual and physical spaces—two basic capabilities 
that facilitate cross-reality application prototyping and 
evaluation.  

The requirements of mixed presence collaboration are not 
met by standard online virtual worlds, nor by traditional 
smart room infrastructures. We have illustrated, however, 
that despite architectural differences between the two 
models, a coherent architecture for CoXR can be defined 
using these very different technologies. 

By promoting common abstractions in physical and virtual 
spaces, by streamlining event delivery across spaces, and 
through its sophisticated capacity to specify and trigger 
mappings of large and small scale, TwinSpace is a flexible 
framework for prototyping, evaluating and configuring 
interactive cross-reality environments. 
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