
TwinSpace: an Infrastructure for Cross-Reality Team
Spaces

Derek F. Reilly, Hafez Rouzati, Andy Wu, Jee Yeon Hwang, Jeremy Brudvik, and W. Keith Edwards
 GVU Center, Georgia Institute of Technology

 85 5th St. NW Atlanta GA, USA, 30308
 {reilly, hafez, andywu, brudvik, jyhwang, keith}@cc.gatech.edu

ABSTRACT
We introduce TwinSpace, a flexible software infrastructure
for combining interactive workspaces and collaborative
virtual worlds. Its design is grounded in the need to support
deep connectivity and flexible mappings between virtual and
real spaces to effectively support collaboration. This is
achieved through a robust connectivity layer linking
heterogeneous collections of physical and virtual devices
and services, and a centralized service to manage and
control mappings between physical and virtual. In this paper
we motivate and present the architecture of TwinSpace,
discuss our experiences and lessons learned in building a
generic framework for collaborative cross-reality, and
illustrate the architecture using two implemented examples
that highlight its flexibility and range, and its support for
rapid prototyping.

Author Keywords
Cross-reality, collaborative virtual environment, tuplespace,
RDF, interactive room, smart room, ontology, virtual world.

ACM Classification Keywords
H5.3. Information interfaces and presentation (e.g., HCI):
Group and Organization Interfaces----Computer Supported
Cooperative Work.

General Terms
Human Factors.

INTRODUCTION
A common theme of research for a number of years in the
ubiquitous computing community has been the creation of
‘smart’ or ‘interactive’ spaces to support group work.
Systems ranging from the iRoom [1] to the NIST smart
room [2] to i-LAND [23], and others have explored the use
of specialized ‘smart rooms’, with a wealth of display
devices, sensors, and specialized input devices, to support
and enhance collaborative work.

Generally, however, these systems have been designed for
collaborative teams in which all the members are collocated

in a single smart space. Remote participants have not had
access to the wealth of technology in these spaces. Common
methods for including remote collaborators—such as a
conference call, or video teleconferencing—place remote
collaborators at a disadvantage, as they lack both the
benefits of collocation with their collaborators, as well as
the range of technological supports that are present in the
smart space.

In our work we explore the fusion of interactive or smart
room technology with virtual worlds (as has been proposed
by several authors [8,9]), specifically in support of mixed-
presence collaboration. We set out to redress the imbalance
between collocated and remote participants by creating
‘virtual smart spaces’ that remote collaborators can join, and
which are deeply interconnected with the physical smart
space through pervasive computing technology. These
virtual smart spaces provide capabilities similar to—and in
some ways even beyond—those provided by their
counterpart physical smart spaces. For example, virtual
worlds provide effectively perfect ‘virtual sensing’, meaning
that the system has accurate, fine-grained, real-time
information about participants’ locations and orientations in
the virtual space. These spaces also can allow fluid, dynamic
configurability and control in ways that may be difficult or
impossible in physical smart spaces, which still must operate
under the constraints of physics. Perhaps most importantly,
combining the sensing and interaction capabilities of both
physical and virtual smart spaces may permit collocated
groups to actively collaborate with remote persons without
forfeiting the practices of collocated collaboration, or the
spatiality and interactive affordances of the physical
environment.

There are, however, a number of research questions this
arrangement raises. First, how do we map the virtual and
physical spaces together? Should the virtual space
correspond spatially with the physical space, or should
mapping focus on shared content, shared activity or some
combination of these or other dimensions? Second, how
does interconnectivity between physical and virtual spaces
provide richer opportunities for collaboration than a
conference call does? Third, what are the requirements for
adaptability in how physical and virtual spaces are
combined? Is a static mapping between physical and virtual
required to ‘ground’ collaboration, or can collocated and
remote participants navigate a dynamic range of physical-
virtual integrations?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’10, October 3–6, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0271-5/10/10....$10.00.

In this paper we present TwinSpace, our software
infrastructure for connecting interactive workspaces and
collaborative virtual worlds. TwinSpace provides a robust
platform for rapid prototyping of applications that span
physical and virtual spaces, allowing for comparative
evaluation of designs; the system is applicable to a wide
range of physical settings, virtual environments, and
collaborative activities. By facilitating connectivity across a
heterogeneous set of displays, sensors and interactive
devices in both the physical and virtual worlds, TwinSpace
provides a flexible infrastructure for exploring and
implementing collaborative cross-reality (CoXR)
environments.

Our primary contribution is a novel infrastructure for
building CoXR environments that provides the following
four key features:

1. A communications layer that seamlessly links the
event-notification and transactional mechanisms in the
virtual space with those in the physical space.

2. A common model for both physical and virtual spaces,
promoting the interoperability of physical and virtual
devices, services and representations.

3. A mapping capability, managing how physical and
virtual spaces are connected and synchronized.

4. Specialized virtual world clients that participate fully in
the larger ecology of collaborative cross-reality devices
and services.

The remainder of this paper is organized as follows. After a
consideration of related work, we present the systems model
of collaborative cross-reality supported by TwinSpace. We
then present the infrastructure in more detail in terms of
challenges faced and lessons learned while implementing a
generic framework for collaborative cross-reality. Following
this we illustrate the architecture using two implemented
examples that highlight its flexibility and range, and its
support for rapid prototyping.

RELATED WORK
The TwinSpace architecture is inspired by work in smart
and interactive team rooms, collaborative virtual
environments and worlds, and collaborative mixed and
cross-reality systems. In this section we outline how
TwinSpace builds on and departs from earlier research.

Interactive and Smart Workspaces
So-called ‘smart’ or interactive collaborative workspaces
have been a major focus of ubiquitous computing research.
Dominant themes in this work include interaction techniques
[1,12], sensing and context awareness [2,10] and
software/hardware interoperability [1,11]. Each of these
themes is also present in the TwinSpace design. Such
systems typically support collaboration within one space
only, however, and do little to assist remote collaborators.
By contrast, TwinSpace provides a broad capacity for
defining sensing and interaction behaviour in-room, and

extends this capability to include devices and services in the
virtual world.

Semantic web technologies have been used in a number of
research projects to provide formal reasoning services in
collaborative smart spaces [10,13,14,15]. One outcome of
this work is that several ontologies dedicated to pervasive
and smart space computing have been defined [13,14,15].
TwinSpace extends this approach by permitting reasoning
over the combined state of the physical and virtual spaces.
More importantly, TwinSpace uses ontology in ways that
are unique to CoXR environments—to provide a common
model over physical and virtual entities and to determine
how physical and virtual spaces are combined.

Collaborative Virtual Environments and Virtual Worlds
Collaborative Virtual Environments (CVEs) provide flexible
3D landscapes within which distributed individuals can
interact with each other and with data representations.
Typically, these systems create an immersive experience,
and employ natural interaction techniques including gesture
tracking and haptic feedback. Churchill and Snowdon [16]
cite support for “more complex, highly negotiated and
interwoven collaborative tasks” as an advantage of a CVE
over traditional CSCW applications. CVE work has
influenced the TwinSpace design, however TwinSpace
emphasizes mixed presence (collocated and remote)
collaboration that does not mask the real world, but instead
makes it a vehicle for working simultaneously with all
collaborators. The framework provides base support for
‘immersive co-presence’ (through support for natural
interfaces, the management of shared perspectives, and the
representation of collaborators in both spaces), but this is
viewed as one among several possible strategies for
connecting real and virtual.

Online virtual worlds are increasingly accepted as a way for
remote users to ‘meet’ for collaboration. Typically, the
assumption with these systems is that participants are
isolated physically from one another, and connect to a
shared virtual world server using a personal computer.
Second Life, while designed as a primarily social virtual
world, has been appropriated for business events, lectures
and meetings. OpenWonderland [3], Croquet [4], and
commercial products such as OLIVE, Sametime 3D [5] and
Qwak Forums provide online virtual environments
supporting collaboration over digital media. Typically these
systems provide no special affordances for collaborators
who happen to be physically collocated. TwinSpace builds
on an online virtual world engine to connect these “anytime,
anywhere” remote clients with smart physical spaces and the
collocated team members inhabiting them.

Mixed Presence and Cross Reality
Mixed presence groupware [17] includes all systems
intended to support simultaneous collocated and remote
collaboration, while cross-reality systems integrate real and
virtual worlds in some useful way [8], possibly but not
exclusively for collaboration. TwinSpace is the first generic

framework we are aware of for cross-reality, mixed-
presence groupware.

The Sentient Computing project [9] was an early cross-
reality effort that fused physical sensor networks with
virtual worlds by connecting their event models, in a manner
similar to TwinSpace. This project had the goal of
visualizing sensor activity and not promoting collaboration,
however. Recent work by Lifton et al. [8] has explored the
same metaphor in support of sharing experiences, media,
and informally collaborating, but does not provide a generic
architecture for integration with collaborative spaces, and
does not explicitly address the needs of collocated groups. A
number of other projects have explored elements of
collaborative cross-reality, including systems to support
mixed presence tourism [19] malleable office spaces [6],
and tabletop systems [7]. All of this work considers specific
applications or collaborative scenarios, and does not put
forward a general architecture. Furthermore, this work has
largely considered ‘portal’ models, which provide
standalone interactive device assemblies that connect with
the virtual world [6,7]. While a portal’s physical location
often carries implicit meaning (e.g., this portal is in my
office [6]), they are not strongly integrated with their
physical surroundings. We believe that collaboration
through single portals may reduce the natural spatiality of
many kinds of collocated group work by placing focus on a
single point of collaboration with remote participants. A
generic platform for collaborative cross reality should
additionally permit more direct integration with the physical
environment, which may be necessary to allow collocated
collaboration to remain grounded in the physical space.

SYSTEMS MODEL
TwinSpace provides a generic systems model for CoXR
development. At the highest level, TwinSpace connects
physical spaces with counterpart virtual spaces so that work
in the physical space can remain situated in the physical
space without excluding remote collaborators connected to
the virtual world. Individual remote users can connect to the
virtual world from anywhere using a standard online virtual
world client interface, allowing collaboration with
collocated groups in one or more physical rooms. The
sensor and device infrastructure in physical rooms can be
synchronized to the services and virtual objects present in
the virtual world interface.

As a generic platform for prototyping and experimentation,
the TwinSpace infrastructure permits a range of techniques
for integrating physical and virtual spaces. For example,
events generated by the smart room infrastructure in the
physical space—such as sensor or input device events—can
be published and reported in the virtual space. Likewise,
events in the virtual space—such as an avatar entering a
‘cell’ or region, or a new user logging in—can be published
in the physical world. Further, the system can define spatial
and structural correspondence between the physical and
virtual spaces, to support co-presence across the two spaces
(a mapping that we call ‘twinning’ the spaces), and can

maintain representations of all parties across both spaces
(creating avatars in the virtual space for physical
participants, for example, or indicating in the physical world
when virtual participants are present in a corresponding
region of the virtual space). Spaces may also be connected
through functional ‘contact points’ (for example, a large
virtual whiteboard might be paired with a physical
interactive whiteboard), whether the real and virtual spaces
correspond spatially or not.

The TwinSpace infrastructure allows applications to
dynamically reconfigure the integration between the
physical and virtual spaces. Specific integrations can be
added, altered or removed based on direct commands, user
interactions or changes in context. For example, the system
can allow applications to remap the devices in the physical
room to different regions of a virtual world based on
collaborative activity, or an overview camera’s perspective
may change when a new participant enters an active
collaborative region in the virtual world, or the open
documents in a virtual space might be replaced when a
group switches to a different project.

TwinSpace also has the ability to connect multiple
interactive rooms to a virtual space simultaneously, to
support multiple, disjoint groups of collocated participants.
The rooms can map to separate virtual regions (for example,
when connecting offices to a virtual office space [6]), or to
the same region (e.g., to allow physically separated creative
teams to work together), or they can overlap.

Architecture Overview
The TwinSpace architecture is outlined in Figure 1.
TwinSpace combines a virtual world engine and an
interactive room infrastructure as balanced parts of a cross
reality platform.

On one side of TwinSpace is the OpenWonderland virtual
world engine [3]. We chose to build on the open source
OpenWonderland platform because it provides rich,
programmatic control of the virtual world, the ability to use
desktop applications in-world, event-based notification of
many in-world events, and well-defined extension points on
both the server and the client side [3].

The physical room infrastructure builds on the Event Heap
[1], a simple and flexible communications platform that
permits the creation of a wide range of room-level
interactive capabilities and services [12]. Customized in-
room OpenWonderland clients respond to and generate
event heap messages1 alongside other room-based sensors
and services.

1 Clients can also be directly connected to interactive
devices using native protocols. We have found this useful
when building self-contained client interfaces using devices
such as orientation sensors or fiducial trackers.

Figure 1. The TwinSpace architecture. Context tuples (CTX)
flow from the virtual world, virtual world clients and in-room
devices and services into the Context/Mapping Engine, which
generates Command tuples (COM). Command tuples can also
be generated directly by other components.

Connecting these two sides are custom components
providing bi-directional event delivery across spaces, and
event translation into formats that are syntactically valid and
semantically meaningful for the destination space. A shared
model of entities (resources, individuals, events and
artifacts) across physical and virtual spaces helps to enforce
consistency in message structure and content across realms.

Finally, the TwinSpace infrastructure includes a rule-based
translation layer that supports multiple, pluggable methods
controlling how entities are represented across realms, and
how those representations are combined to give a coherent
manifestation of one space in the other.

ARCHITECTURAL CHALLENGES
In this section we discuss the TwinSpace architecture in
more detail, calling out architectural challenges and
decisions that are unique to collaborative cross-reality
environments.

Choosing Client, Server or Both
From an architectural standpoint, we felt it reasonable to
define a custom, direct connection between physical and
virtual spaces. Events occurring in the virtual world should
not be communicated to a connected physical room through
an arbitrary graphical client, nor should room-level events
not directly controlling a virtual world client require such a
client simply to communicate with the virtual world.

This may be at odds with the architecture of online virtual
worlds, however, which often employ a client-server model
designed around the need to synchronize a 3D model across
largely homogeneous but widely distributed clients [24].
While other approaches do exist (e.g., see the peer to peer
strategy adopted by OpenCroquet [4]), our experiences
using OpenWonderland are valuable as an example of using
client-server virtual worlds in CoXR.

Client-server models offer different APIs at each level. This
can be a challenge for CoXR systems, which require more
direct access to the virtual world model than is typically
available on a client, but may still require certain client-side
features. For example, OpenWonderland provides rich
support for document creation in the client API (such as
dynamically mapping a document load request to an
appropriate renderer), but very little support on the
OpenWonderland server. In addition, clients support
multithreading while the server-side transaction and
synchronization services severely constrain the creation and
management of threads. There are technical limitations in
the client API also: for example, the client maintains a
subset of the virtual world model (its CellCache), and so
can’t be used to conduct global searches for documents and
other entities without opening specialized comm channels
with the server. The OpenWonderland server also maintains
an event notification thread intended for server-side
components, simplifying in-world event sensing on the
server.

After evaluating the use of custom headless clients and
combined server+client approaches, TwinSpace connects
with the virtual world largely through a custom service
called the Realm Bridge (Figure 1), implemented deep in the
lower layers of the OpenWonderland server API (to gain
control over multithreading and initialization). Its key
features are an extensible base communications
infrastructure (supporting multiple protocols), support for
one-to-many relationships between virtual worlds and
physical spaces, and automated syntactic conversion
between in-room and in-world event formats. In-world
components that use this service reside on the server, and we
duplicate essential features from the client API where
necessary. In addition, we define a broad set of hooks into
the standard clients so they can participate in in-room
interactions: in essence, when an interaction in-room
controls a camera view onto the virtual world, or controls an
avatar that is bound to a client, the corresponding client is
used. All other communication between virtual and physical
occurs through the bridge.

Synthesizing Physical and Virtual Event Models
One approach in cross-reality systems design is to extend a
room-based sensor/actuator model into the virtual world by
equating the virtual world’s event model with a highly
instrumented space. This is complicated by the fact that the
kinds of events generated in a virtual world can differ from

Virtual World
Engine

Virtual World
Client

In-room Devices
Context/Mapping

Engine

Event Heap

CTX COM CTX COM CTX COM CTX COM

Alternative Comm Protocol (VRPN, OSC, other)

Virtual World Comm API

WebDAV

Content Repository

Virtual World Engine

Realm Bridge

DecoderEncoder

Virtual World Model

ProxyObserver Effector

COMCOMCTX

Context/Mapping Engine

Tuple Generation

Context Model

Inference Rule

COMCTX

RDF Conversion

Ontology

Mapping Rule

Data store or functional component

Comm protocol, converter or bridge

Data flow or packet

LEGEND

those of a physical smart room. In the case of collaborative
virtual worlds, certain events carry high semantic value for
collaboration (e.g. someone edits a shared document in-
world, someone leaves a room), and there may be no
reliable way to sense the same level of collaborative event in
a physical space. By contrast, the fact that such events are
recorded in the virtual world is no guarantee that they can be
interpreted in the same manner as if they were occurring in
reality—an avatar may leave the room just to get a better
perspective on the 3D environment, or may just happen to
be facing a specific shared document, etc. Furthermore,
there is a balance to strike between achieving real-virtual
parity (in event granularity and type) and acceptable
performance, when every low-level sensing event or
actuation command requires communicating with a remote
virtual world server and possibly updating its clients.
TwinSpace provides a clear path for developers to manage
these differences and tradeoffs using its Observer/Effector
paradigm.

Observers and Effectors (Figure 1) are server-side virtual
world components that are roughly analogous to sensors and
actuators in the physical world. Whereas physical sensors
typically provide raw, low-level data, Observers can work at
a range of granularities. They may do preliminary
processing or reasoning over low-level events (like object
movement), they may be combined together (e.g., to sense
when an avatar is in close proximity to a document and is
facing the document), or may simply forward the events
produced by the virtual world (e.g. when someone logs into
the world). Adding new sensing capacity in the virtual world
is usually a simple matter of extending the base Observer
and ObservedEvent classes. Adding a new Effector is
similarly straightforward.

An Encoder/Decoder hierarchy (Figure 1) encapsulates the
generation and parsing of specific protocols and message
formats, and they are associated with Observers/Effectors
dynamically. For example, a MotionEffector might be
associated with a VRPNDecoder for 6dof object
manipulation, and an Event Heap TupleDecoder for coarser
command-driven operations.

Simplifying and Standardizing Language
Maintaining a consistent message syntax is important for
any distributed system. In particular, interactive spaces built
using the Event Heap with more than a few components
become unwieldy and brittle otherwise. CoXR environments
are further challenged here, since the terminology used in-
world and aspects of the referent entities themselves can
differ from their in-room counterparts. As a result, it can be
difficult to address physical and virtual displays in the same
way, for example: virtual displays may not need to be turned
on or off, or the concept of display might not exist at all.

TwinSpace addresses these issues by weaving an ontology
throughout the system, based on the SOUPA [9] ontology
for interactive smart spaces. Originally included in
TwinSpace to permit context reasoning, the ontology has

been most useful as a tool to structure development. The
TwinSpace ontology includes SOUPA’s Device, Person,
Location and Action classes, and adds support for a range of
mapping relationships between entities across realms,
discussed below.

Using the ontology helps answer the question of how to
structure messages passed between devices and services in-
room and in-world. It also gives a common model of entities
that extends across physical and virtual spaces, facilitating
interconnectivity and mapping. However, scaffolding is
necessary to make a common model actionable: in the
virtual world a device is often a skeuomorph, a familiar
representation that when clicked on brings up a 2D GUI,
whereas in-room a dial controller is a dial controller, for
example. Similarly, in-world documents are presented in
renderers, while in-room these renderers are situated on
displays. We accommodate these and other differences
using proxy objects in-world.

Proxies are compound entities that combine Observers and
Effectors to maintain an abstract model of an ontological
element present in the virtual world, like persons, displays,
content and rooms. Proxies greatly simplify mapping
operations by permitting a shared ontology across physical
and virtual spaces, and by encapsulating low-level virtual
world commands.

For example, the Display proxy provides a virtual
counterpart to physical displays. Displays encapsulate the
creation and configuration of in-world document renderers.
If a request arrives to place a new type of document on the
display, the Display Effector destroys the current renderer,
replacing it with an app that can render the document, then
loads the document. When content is changed on the
Display, a Display Observer communicates this back out to
registered rooms. On physical displays we provide a basic
listener that can open documents in native renderers. This
makes it straightforward to synchronize virtual displays with
physical displays that present content using native renderers.

Achieving Dynamic Configurability
Another purpose of the shared ontology is to permit context-
driven, rule-based triggers in the TwinSpace framework. We
wanted this for two reasons. First, (as discussed) virtual
worlds have the equivalent of a very robust sensing
infrastructure, limited mainly by what the virtual world
engine chooses to make available as state and events,
offering interesting possibilities for context-driven
integration of physical and virtual. Second, rule-based
triggers allow centralized control over reconfiguring spaces
(or services in them) and the relationship between spaces via
pluggable mapping rules. This focus on mapping is a unique
feature of the Context/Mapping Engine (CME, Figure 1).
Together with the shared physical/virtual ontology, the
CME facilitates the definition of cross-reality configurations
ranging from the very straightforward to very complex.

In practice, we have used the context reasoning capacity
very little. Our inference rules (Figure 1) have been very

basic tests for presence/absence of specific contextual data,
aside from one proof of concept experiment that tracked
speaking avatars based on their seniority level in an
organizational hierarchy. This is partly because much of the
context posted from the virtual world is already at a higher-
level (e.g., someone has entered/left a room, started to edit a
specific document, etc.), and because our use of sensing
technologies in-room to date has largely been in support of
explicit interactions. We anticipate that context reasoning
may become important when attempting to infer activity
across realms. For example, identifying who in the physical
and virtual spaces are attending to a specific document
might require combining information about presence,
physical orientation, and recent history.

Mapping rules, by contrast, have been a critical part of our
prototyping work. Mapping rules enforce correspondences
between entities (such as displays) in either or both physical
and virtual spaces, and determine how contextual events are
manifested. Mapping rules generate and post Command
tuples back onto the Event Heap, causing mappings to be
realized in both physical and virtual spaces. Over time we
refined the mapping rule design to use indirection and have
recently added an ontological Relationship element that can
be reasoned over, as discussed below.

Mapping rules are defined abstractly in the CME, referring
to devices indirectly by mapping type. Rules are concretized
at evaluation, and a device’s mapping type(s) can be altered
dynamically. This is done for two reasons. First, the
availability of resources in physical and virtual
environments can change over time. Second, abstract
mappings permit the support of multiple configurations of
space and resources (for example, to promote collaboration
across multiple physical teamrooms). For example, a single
mapping rule involving primary and secondary mapping
types can be used to provide a detail+context presentation of
a shared virtual whiteboard in a teamroom with two displays
(one labeled ‘primary’ and the other ‘secondary’), and to
simultaneously generate a split-screen view on a single
display in another room (if the display has both mapping
types assigned to it).

In addition to mapping types, entities may hold one or more
relationships with other entities. For example, an avatar can
be twinned with an in-room participant by defining two
Person entities that hold a one-to-one twin relationship with
each other. A display that focuses on a moving or stationary
object holds a track relationship with it. Arrays of physical
and/or virtual displays have the array mapping type plus a
group relationship that specifies ordering. While this work is
still preliminary, we feel that it, by allowing relationships to
be represented and reasoned over, represents an evolution of
context reasoning that is appropriate for cross-reality
systems like TwinSpace.

Because they are expressed in RDF, inference and mapping
rules can be individually modified, linked together, or
swapped out of the CME with minimal system

configuration. This is to support experimentation and
dynamic reconfiguration. In our prototyping work, when
someone logs into the virtual world, different mapping rules
can be applied so that a table lights up in-room, or an in-
room shared client jumps to the login area, or both. Our
speaker tracking proof of concept demonstrates the same for
inference rules: the org chart rule described above can be
replaced by one that simply specifies that whoever started
speaking most recently should be tracked.

Altering the Interaction Model for Group Use
CoXR environments can employ a wide range of
perspectives or views onto the virtual world: a view that
corresponds to the physical location and orientation of the
viewer (in immersive approaches), a ‘best-view’ close-up of
an in-world 2D document, a top-down view, an overview
perspective, views that change based on events in-room or
in-world, etc. However, CVW systems often build-in
assumptions that conflict with cross-reality collaboration:
for example, in OpenWonderland clients are bound to an
avatar and interaction is designed for a single user via
keyboard+mouse.

As a result, we have modified the basic OpenWonderland
CVW client to support group use. Most importantly, clients
are addressable via command tuples and we decouple the
relationship between avatars and clients. These are basic
requirements for room-level interactivity, cross-reality
mappings, and event-based updates. We provide a core set
of services on the client that can be accessed using
command tuples: control over the client’s configuration,
emulation of input events, the ability to locate and track in-
world entities, direct control of camera and/or avatar
movement using relative or absolute transformations, and a
set of camera effects, including basic cut-away transitions,
smooth transitions, zooming, and presentation of multiple
views.

CASE STUDIES
In this section we discuss our experiences using TwinSpace
in terms of two implemented prototypes.

Activity Mappings
This case study describes a CoXR prototype designed to
utilize the spatial layout and ‘collaboration affordances’ of a
specific team room (the ‘inSpace’ lab [25]), in order to
promote mixed (collocated and remote) collaboration. More
detail about this case study is provided in the video figure.

The team room is composed of three main regions (see
Figure 2). The assemble/array region supports extended
group discussions and sharing content on wall displays. The
aside table region supports composing, modifying, and
discussing content over a tabletop display, and the aside
wall region supports generating new content on a
whiteboard.

We outline two high-level activities the prototype currently
supports: creative ‘brainstorming’ and giving presentations.
Brainstorm mode configures the three regions of the room
to support idea generation and group decision-making.

Present mode provides facilities for in-room or remote
users to give a presentation or guide a discussion with other
participants.

Modes are selected using a small touchscreen interface (see
Figure 3) attached to one end of the ‘assemble’ table. When
a mode is selected, the CME responds by firing a set of
mapping rules, reconfiguring the team room’s digital
devices as described below.

In brainstorm mode, the spatial layout of the room is
echoed in-world. Each of the three collaboration regions is
mapped to its corresponding region in-world (see Figure
2D). Further, within each collaboration region, displays are
mapped to resources that have the same relative position and
orientation in-world as the display does in-room.

The wall displays in the assemble/array space operate as a
unit in brainstorm mode (their CME representations share a
group relationship and an array mapping type). An in-room
dial controller (see video figure) provides a way to iterate
through sets of in-world documents (more precisely, a set of
virtual displays2). The wall displays operate as a window
onto a subset of the documents in the set. Turning the dial
iterates forward or backward along the current set of
documents, by giving each wall display client the id of an
in-world object (in this case, virtual display) to move to.
Pushing and turning the dial will rotate the view of all three
displays simultaneously (allowing exploration of the virtual
space surrounding each document), snapping back to the

2 The virtual displays are grouped using the same
mechanism (group, array) as the physical displays. Selecting
display sets is made possible through the group relationship.

default view once the dial is released. Remote collaborators
can connect to the dial session by clicking on a virtual dial
object that is twinned with the physical control. Their client
then presents the same subset of documents visible on the
in-room displays on a heads-up display (HUD) layer. A GUI
provides complementary controls so that in-world
collaborators can also control the session.

Figure 4. Correspondences in Brainstorm mode. A/a: displays
in the aside table region show horizontal and vertical
perspectives corresponding to the region’s in-world location.
B/b: the vertical perspective highlights the spatial
correspondence between the aside table region and the other
two regions. C/c: an in-world avatar represents a remote
person collaborating with the person at the whiteboard in the
aside wall region.

In brainstorm mode the aside wall region promotes an open
exchange among collaborators, regardless of mode of input
and physical location. In-room participants can use a pen to
draw on the physical whiteboard, and thereby onto the
shared document in the virtual space (Figure 2(A)). Remote
participants use standard virtual world clients, and can
modify the document using mouse and keyboard. On a
cocktail table near the whiteboard we provide a tablet
computer rendering the document in a native web browser.

Figure 3. Touchscreen buttons for the Brainstorm and
Present modes in the team room.

Figure 2. Three collaboration regions in the inSpace team room and the connected virtual space in brainstorm mode. Aside wall
(A) centers around a large interactive whiteboard. Assemble/array (B) uses three wall displays configured around a sensing table.
Aside table (C) combines an interactive tabletop and vertical display. Remote participants inhabit the virtual space and
communicate with co-located collaborators using spatialised audio and telepointers.

This is an example of how native renderers can be used to
‘twin’ virtual and physical displays in TwinSpace.

The aside table region permits collocated and remote
collaborators to discuss or work on content on a tabletop
display. In the region we combine a basic interactive
tabletop display with a vertical ‘orienting’ display on an
adjustable boom. On the tabletop we present a top-down
view of a small region in the virtual world, and place virtual
documents horizontally in this region. The tabletop tracks
multiple pens, which can be used to arrange or edit these
documents. Remote participants can choose to use a top-
down or oblique view over the same region, and can edit the
documents using the standard CVW client controls. The
vertical orienting display can be positioned in space and
rotated about the boom’s center. A 3D orientation sensor
causes the camera view to update based on yaw and linear
acceleration. Consequently, the vertical display allows
collaborators at the physical table to peer into the region of
the CVW surrounding the area projected on the table (see
Figures 2,4). Since the sensor is tightly coupled to the single
client, we connect the sensor directly using its native API.

Present mode supports giving presentations to a mixed in-
room and remote audience (see video figure). In this mode
the display array in the assemble/array region is used, and
the displays in the two aside regions are dimmed. The three
displays are assigned specific mapping types for this mode
in the CMV: the left is an overview display, the center is the
main display and the right is the secondary display. The
overview presents a raised oblique overview of the CVW
presentation space, showing the virtual podium, the
audience area and the location of presentation content. The
main display shows the main presentation content, and the
secondary display shows supporting content like video,
whiteboard or websites.

The remote audience sees the main content presented above
the speaker’s avatar, and supporting content to the right.
Whether collocated or remote, the presenter logs into the
virtual world using a standard CVW client, and identifies
themselves as presenter by clicking on the podium and
selecting ‘present’ on a popup dialog. This sets their avatar
in front of the podium and brings up controls for
presentation content.

To support dialog during or after the presentation, the left
in-room display is also assigned a speaker tracking role in
the CMV. When someone other than the presenter speaks
in-world, the view snaps to a front-view of that person’s
avatar. This behaviour is triggered by the CMV based on
updates from our Speech Observer. After a few seconds
elapse with no speaking, the display falls back to its default
‘overview’ perspective.

Present mode highlights TwinSpace’s ability to fluidly map
functionality to devices (in this case to displays). In a
different physical environment, each of the main, secondary,
overview, and speaker tracking roles can be assigned to
different displays as available and appropriate for that space.

We have been periodically evaluating this prototype during
weekly meetings with our collaborators in industry. We
have successfully used each of the three regions during
brainstorming, however there are some key areas for
improvement that we have identified, all related to
supporting awareness. First, the in-room collaborators
exhibited a need to maintain awareness of who is in a given
region in-world. The orienting display provides some
indication of this, but is only located in one of the three
regions. Second, the remote collaborators lamented that
there was no virtual representation of their in-room
counterparts. Finally, there was limited awareness of
ownership of action: when applications are ‘taken control
of’ in-world, there is no indication on the application of who
is interacting with it. Similarly, when one of the in-room
participants takes control of an application (for example, the
virtual whiteboard in the aside wall region), there is no
indication of who in-room is interacting with the
whiteboard.

Cross-Reality Collaborative Game
Or de l’Acadie is a prototype collaborative game built using
TwinSpace. We outline it here to give a sense of the
flexibility of the TwinSpace architecture. Set in an
abandoned 18th Century French colonial fort, two pairs
(French and British sides) compete for valuables distributed
throughout the town, with the goal to collect the most
valuables within a time limit. The game emphasizes
asymmetry in both game controls and team dynamics. Each
British player controls a single soldier using keyboard
controls. Players are not collocated, and can communicate
with each other only when their soldiers are within earshot.
Each soldier is equipped with a static top-down map of the
fort, and can collect a limited number of riches before
needing to return to a location at the edge of the fort to stash
them. The French side consists of a Mi’kmaq Indian mystic
who is able to communicate with spirits, and a deceased
French gendarme. The French players are physically
collocated, and use a range of physical controls to compete
for the valuables. While the ‘living’ players (French and
British) are constrained by the laws of physics, the
Gendarme moves freely through walls and in the air, but is
unable to collect valuables. Instead, he communicates with
the mystic who collects them. The mystic pushes a cart, and
so can collect more riches than the soldiers, but as a result
he cannot move quickly, or climb stairs. Luckily, the
Gendarme can transport the mystic to any location in the
fort by creating a portal.

The gendarme is equipped with three simultaneous views: a
top-down view of the entire fort, a wide-vista first-person
view distributed across three screens, and a third-person
view of the mystic’s current location. The player controls
the gendarme’s first-person view using a SpaceNavigator
3D mouse. The table always displays a top-down view of
the entire fort, but its front clipping plane corresponds with
the gendarme’s current altitude. When the gendarme locates
valuables he can create a portal between where the mystic

currently is and the location of the valuables. Portals are
created by placing tangible objects at the two endpoints of
the portal on the table’s top-down view of the fort. The
mystic walks through the portal to enter the next location.
Finally, the gendarme has a third person view of the mystic
on a display on a boom. The view follows the participant,
and rotating the boom changes the viewpoint relative to the
mystic’s orientation. In this way the gendarme can help
guide the mystic to the valuables in a location if he is having
difficulty.

The mystic and his cart are controlled using an assembly we
call the TwinSpace Trolley. A 24” touchscreen is placed on
a physical trolley, providing the first-person perspective of
the mystic. The trolley is maneuvered around the physical
space to navigate a mapped virtual space. Valuables are
placed in the cart by touching them on the display. The
trolley’s position is determined using a sensor assembly
involving an RFID reader (reading tags in the carpet), a 3D
orientation sensor and an optical mouse (‘reading’ the
carpet). This sensor data is combined by a small program
that transmits position and orientation updates to the event
heap. The physical room area is mapped to the virtual space
in the CME by calling custom Java code (in this case a basic
shift and scale is applied). The resulting command to change
position is sent to the trolley’s virtual world client. When the
mystic walks through a portal, an observer sends notification
to the CME, which updates the shift values accordingly.

The gendarme’s main control is the SpaceNavigator 3D
mouse. An in-room application receives data from the
mouse via the OSC protocol, and converts this into Event
Heap command tuples containing distinct transforms for
each vertical display CVW client, and into a clipping plane
value for the tabletop CVW client. The boom display uses
the same configuration as in the previous case study, except
that its CVW client also receives the trolley’s position
updates from the CME. Updates to the position and
orientation of the tangible portal controls are converted from
TUIO protocol messages into Event Heap context tuples by
a custom application. The CME captures these and sends
updates to the twinned portal objects in the virtual world, via
a MovementEffector.

CONCLUSION
We have presented TwinSpace, an infrastructure for cross-
reality collaborative spaces. TwinSpace is designed to
support deep interconnectivity and flexible mappings
between virtual and physical spaces—two basic capabilities
that facilitate cross-reality application prototyping and
evaluation.

The requirements of mixed presence collaboration are not
met by standard online virtual worlds, nor by traditional
smart room infrastructures. We have illustrated, however,
that despite architectural differences between the two
models, a coherent architecture for CoXR can be defined
using these very different technologies.

By promoting common abstractions in physical and virtual
spaces, by streamlining event delivery across spaces, and
through its sophisticated capacity to specify and trigger
mappings of large and small scale, TwinSpace is a flexible
framework for prototyping, evaluating and configuring
interactive cross-reality environments.

ACKNOWLEDGMENTS
This work was funded by NSF grant IIS-0705569, and a
research collaboration grant from Steelcase Inc. We also
thank the former Sun Microsystems Labs Project
Wonderland team for in-kind and technical support.

REFERENCES
1. Johanson, B., Fox, A., Winograd, T. (2002) The

Interactive Workspaces Project: Experiences with
Ubiquitous Computing Rooms. IEEE Per. Comput., 1
(2), 67–74.

2. Stanford, V., Garofolo, J., Galibert, O., Michel, M.,
Laprun, C. (2003) The NIST Smart Space and Meeting
Room Projects: Signals, Acquisition Annotation, and
Metrics. Proceedings of ICASSP '03, 736–739.

3. The OpenWonderland Project,
http://www.openwonderland.org, retrieved March 2010.

4. Smith, D. A., Kay, A., Raab, A., and Reed, D. P. (2003)
Croquet – a collaboration system architecture.
Proceedings of the Intl. Conference on Creating,
Connecting and Collaborating through Computing

Figure 5. Interfaces of the French team in Or de l’Acadie. (A) the gendarme’s first person view is presented on three large wall
displays (two shown here). (B) in addition, a top-down view of the fort is used to place portal endpoints using fiducial markers.
The 3D mouse (on right) is used to simultaneously move the first person perspective and adjust the clipping plane of the top-down
perspective. (C) the gendarme can also see the viewpoint of his teammate on a boom display (on left). (D) the mystic’s interface.
This player pushes the physical cart around on the carpet to move her avatar, returning to a marked location on the floor to walk
through a portal. Items are selected using the touch display.

5. Virtual Collaboration for Lotus Sametime. Retrieved
Sept.’09. www-
01.ibm.com/software/lotus/services/vc4sametime.html

6. Schnadelbach, H., Penn, A., Benford, S., Koleva, B. and
Rodden, T. (2006) Moving Office: Inhabiting a Dynamic
Building, Proceedings of CSCW ’06.

7. Regenbrecht, H., Haller, M., Hauber, J., and Billinghurst,
M. (2006) Carpeno: interfacing remote collaborative
virtual environments with table-top interaction. Virtual
Real. 10(2), 95–107.

8. Lifton, J., Laibowitz, M., Harry, D., Gong, N-W.,
Mittal, M., and Paradiso, J. A. (2009) Metaphor and
Manifestation: Cross-Reality with Ubiquitous
Sensor/Actuator Networks, IEEE Pervasive Computing,
8 (3), 24-33.

9. Addlesee, M., Curwen, R., Hodges, S., Newman, J.,
Steggles, P., Ward, A., and Hopper, A. 2001.
Implementing a Sentient Computing System. Computer
34, 8 (Aug. 2001), 50-56.

10. Ye, J., Coyle, L., Dobson, S., and Nixon, P. (2007)
Ontology-based models in pervasive computing systems.
Knowl. Eng. Rev. 22 (4), 315–347.

11. Blackstock, M., Lea, R., and Krasic, C. (2008)
Evaluation and analysis of a common model for
ubiquitous systems interoperability. Proceedings of
Pervasive ’08, 180–196.

12. Ponnekanti, S. R., Johanson, B., Kiciman, E., and Fox,
A. (2003) Portability, Extensibility and Robustness in
iROS. In Proceedings of PerCom'03, 11.

13. Chen, H., Finin, T., and Joshi, A. (2003) An ontology for
context-aware pervasive computing environments.
Knowl. Eng. Rev. 18 (3), 197-207.

14. Ranganathan, A. and Campbell, R. H. (2003) A
middleware for context-aware agents in ubiquitous
computing environments. Proceedings of the ACM/IFIP
/USENIX Intl. Conference on Middleware ‘03,143-161.

15. Wang, X. H., Zhang, D. Q., Gu, T., and Pung, H. K.
(2004) Ontology Based Context Modeling and

Reasoning using OWL. In Proceedings of PerCom'04
Workshops Washington, DC, 18.

16. Churchill, E. F., and Snowdon, D. (1998) Collaborative
Virtual Environments: An Introductory Review of Issues
and Systems. Virtual Reality: Research, Development
and Applications 3(1), pp. 3-15.

17. Tang, A., Boyle, M., and Greenberg, S. (2004) Display
and presence disparity in Mixed Presence Groupware.
Proceedings of OzCHI’04, 73-82.

18. Milgram, P. and Kishino, F. (1994) A Taxonomy of
Mixed Reality Visual Displays. IEICE Transactions on
Information Systems, Vol E77-D, No.12.

19. MacColl, I., Millard, D., Randell, C., and Steed, A.
(2002) Shared Visiting in EQUATOR City. Proceedings
of CVE ’02, Bonn, Germany.

20. Johansen, R., Sibbet, D., Benson, S., Martin, A.,
Mittman, R. & Saffo, P. (1991) Leading Business
Teams. Addison-Wesley.

21. Yankelovich, N., Simpson, N., Kaplan, J., and Provino,
J. (2007) Porta-person: telepresence for the connected
conference room. In CHI '07 Extended Abstracts, 2789-
2794.

22. Jena, a semantic web framework for Java. Retrieved
Sept. ’09. http://jena.sourceforge.net/

23. Streitz, N. A., Geißler, J., Holmer, T., Konomi, S.,
Müller-Tomfelde, C., Reischl, W., Rexroth, P., Seitz, P.,
and Steinmetz, R. (1999) i-LAND: an interactive
landscape for creativity and innovation. Proceedings of
CHI '99, 120-127.

24. Sandeep, S., and Zyda, M. Networked Virtual
Environments: Design and Implementation. Addison
Wesley, 1999.

25. Reilly, D., Voida, S., McKeon, M., Le Dantec, C.,
Edwards, W. K., Mynatt, E. and Mazalek, A. Space
Matters: Physical-Digital and Physical-Virtual Co-
Design in the Inspace Project. IEEE Pervasive
Computing, to appear.

