
Page 11

[Yor89] Bryant W. York, editor.Final Report of the Boston University Workshop on
Computers and Persons with Disabilities, 1989.

Page 10

Acknowledgments
The authors would like to thank the other members of the project team: Elizabeth Mynatt, John
Goldthwaite, Ian Smith, and David Burgess. This work has been sponsored by the NASA Marshall
Space Flight Center (Research Grant NAG8-194) and Sun Microsystems Laboratories. We would
like to thank our technical contacts at those organizations, Gerry Higgins and Earl Johnson.

Author Information
Keith Edwards and Tom Rodriguez are research assistants at the Georgia Tech Graphics,
Visualization, & Usability Center. They may be contacted via mail at Georgia Tech, Atlanta, GA
30332-0280; via telephone at 404.894.6266; and via e-mail at keith@cc.gatech.edu and
jack@cc.gatech.edu.

References

[BBV90] L.H. Boyd, W.L. Boyd, and G.C. Vanderheiden. "The Graphical User Interface:
Crisis, Danger and Opportunity."Journal of Visual Impairment and Blindness, pp.
496-502, December 1990.

[Bur92a] David Burgess. "Real-Time Audio Spatialization with Inexpensive Hardware." In
Proceedings of International Conference on Signal Processing Applications and
Technology. Boston, MA, 1992.

[Bur92b] David Burgess. "Low Cost Sound Spatialization." InProceedings of ACM
Symposium on User Interface Software and Technology, UIST’92, November
1992.

[Bux86] William Buxton."Human Interface Design and the Handicapped User." In
Proceedings of ACM Conference on Computer-Human Interaction, CHI’86, pp.
291-297, 1986.

[Lad88] Richard E. Ladner. Public law 99-506, section 508, Electronic Equipment
Accessibility for Disabled Workers. InProceedings of ACM Conference on
Computer-Human Interaction, CHI’88, pp. 219-222, 1988.

[ME92a] Elizabeth Mynatt and W. Keith Edwards. "The Mercator Environment: A
Nonvisual Interface to X Windows and Unix Workstations." GVU Technical
Report GIT-GVU-92-05. February 1992.

[ME92b] Elizabeth Mynatt and W. Keith Edwards. "Mapping GUIs to Auditory Interfaces."
In Proceedings of ACM Symposium on User Interface Software and Technology,
UIST’92, 1992.

[SM91] Ian Smith and Elizabeth Mynatt. "What You See Is What I Want: Experiences
with the Virtual X Shared Window System," GVU Technical Report GIT-GVU-
91-33, Georgia Tech, May 1991.

Page 9

from the GC data structure on the client-side, not from the server. Since we need to have access to
the fonts used to draw text and we may need to know the color or drawing style used, we keep a
cache of all the GCs that an application creates.

Widget Set Dependencies

As will probably be the case with any access system, Mercator has widget set dependencies in it.
The information we retrieve via Editres includes widget class names which are particular to
specific widget sets. The Application Manager code must recognize these widget class names to
know how to deal with them. Currently the recognition of the widget classes is done by the
individual rules and thus is hard-coded into the Applications Manager. We are investigating an
external representation of widget sets to overcome this limitation.

Status
The components of the Application Manager are C++ objects; the current implementation is
approximately 12,000 lines of code and supports the Athena widget set. Our implementation is for
the Sun SPARCstation. The three audio servers discussed in this paper have been implemented as
RPC services, with C++ wrappers around the RPC interfaces.

The synthesized speech server supports the DECtalk hardware and provides multiple user-
definable voices. The non-speech audio server controls access to the built-in workstation sound
hardware (/dev/audio on the SPARCstation in our case), and provides prioritized access and on-
the-fly mixing. The spatialized sound server currently runs on either a NeXT workstation or an
Ariel DSP-equipped Sun SPARCstation and supports the spatialization of multiple channels in
real-time, as well as other effects.

In the current implementation, all of the Application Manager components except for the various
sound servers execute as a single thread of control in the same address space. We are investigating
whether a multi-threaded approach would yield significant performance benefits and better code
structuring.

Currently our rule set is somewhat limited. Creating rules in the present system is difficult because
rule writers must have some degree of familiarity with both X and the Application Manager as a
whole.

Future Directions
There are a number of enhancements we plan for the Application Manager. Currently, the
translation rules used by our system are expressed in a stylized C++ notation. We would like to use
an externalized representation of the translation rules. To avoid having to hard-code widget class
names into the system, we are also investigating an external representation of widget set-dependent
characteristics. More provision for user configuration is needed throughout the system.

One major direction we are investigating is the use of a protocol which speaks directly to the Xt
Intrinsics layer. We believe that such a protocol, if well-designed, could overcome many of the
problems related to using Editres and obviate the need for protocol monitoring (and hence the
many problems associated with protocol monitoring).

Page 8

Editres Weaknesses
While Editres is quite powerful and sufficient for customization of applications, there are several
problems we encountered in trying to use it for Mercator. One problem seems to be a deficiency in
the protocol. Editres provides a request called GetResources that retrieves the name, class and
types of all resources of a widget, but it does not provide a way to retrieve resource values. This
limitation may be present because many widget sets do not provide converters from internal
representations to string formats.

This limitation was a serious problem for Mercator because many of the resources greatly affect
the behavior of widgets, especially widgets that implement different behavior depending on the
setting of internal flags. To solve this problem, we extended Editres with a GetValues request, with
the hope that it could be integrated back into the official Editres protocol.

Editres uses the selection mechanism for to transmit its replies. The use of selections is the standard
way to exchange data between X clients. Because the selection mechanism is a synchronous,
multistage protocol, it introduces complexity into our architecture and impacts on the performance.
If ClientMessages could be of variable size or if X provided a general-purpose stream abstraction,
we might be able to get better performance.

Another limitation we encountered is that Editres is a polling protocol. Information concerning
widgets is only provided when a client explicitly asks for it. Thus we have to watch for window
creation or changes in window state to notice the creation or change of a widget. There are also
potential race conditions caused by the polling nature of the protocol combined with the multistage
nature of selections. It becomes difficult to decide when the interface has stabilized and the data
Editres is returning is valid.

Architectural Caveats
There are several problems we have encountered in building our system. We outline some of the
more important of these problems below.

Control Flow and Deadlock Conditions

Because the Application Manager is interposed between the X server and applications, the system
uses a callback programming model internally to ensure that we never block the X protocol stream.
Consider the use of Editres as an example of why it is important to never block the protocol stream.
Editres uses selections as its communication mechanism. While naively we may want to issue an
Editres request and then block waiting on the result, we cannot block because Editres requests
themselves progress through the X protocol. If we block waiting on a response the Editres request
will never be answered and we will be in a deadlock state. Because of the frequency with which
potential deadlock conditions such as this occur, the Application Manager uses callbacks widely
and maintains state information between callback invocations.

Client-side State in X

Because of the client-server nature of X, some information is kept in the client-side libraries and
is not available through the X protocol. For example, there are requests to create, copy, and change
GCs, but there is no call to retrieve the values of a GC. The Xlib call XGetGCValues gets its data

Page 7

User Input
In addition to presenting the application interface to the user in a non-visual modality, the
Application Manager must listen for user input and direct this input to the appropriate location:
either to one of the applications running in the environment, or to the Application Manager itself.

The Application Manager maintains the notion of the user’scurrent contextin the environment.
The current context is defined as the application the user is currently working in, and a particular
widget within that application where the user is currently “located.” Users can navigate through
applications by changing their current context and operating the widgets at their current context.
The Application Manager effects changes in context by actually warping the mouse pointer to the
desired location in response to user input. We warp the pointer to ensure that applications will
behave in our environment exactly as they would in a visual environment if the user moved the
mouse over a widget.

Currently all navigation is done via the keyboard. Since the mouse is an inherently visual device
(it maps hand motions to pixel-relative cursor motions on the screen), and we felt that navigating
the interface’ssemantic structure rather than its pixel-by-pixel graphical structure was most
important, our interface does not make use of the mouse. Because we are using the keyboard for
input, all of the user input comes through the X server in the form of events.

Reading user input via the X protocol stream does present several problems however. First, not all
widgets solicit keyboard-related events. In general, if a widget does not solicit a particular type of
event the server will not send it. This implies that some widgets will not be “navigatable.” That is,
once the current context is changed to a widget that is not soliciting keyboard events, it will be
impossible to move out of that widget since no further keyboard events will be generated as long
as the focus is in that widget.

To solve this problem, we modify the X protocol stream in certain ways. First, whenever a window
is created, we ensure that its attributes include an event mask which will result in keyboard events
being sent. After window creation, we monitor the protocol stream for any
ChangeWindowAttributes requests, and modify these requests if need be to ensure that the
windows are soliciting keyboard input. This approach seems to work quite well in practice.

Of course, not all user input is directed to the Application Manager. Other input is intended for the
applications. Since the PIM has full control over the protocol stream, we can simply remove events
which are intended for the Application Manager. Thus, the "reserved" keys which are used for
navigation are never seen by applications. Other keyboard events are passed through to the
applications unmodified.

We are investigating the uses of other input streams (such as voice) which do not come through the
X server. As an interface issue, we feel that the use of multiple input sources will greatly improve
the human-computer bandwidth of the interface. We are also beginning to investigate the use of
the X Input Extension as a means of accepting Application Manager-destined input from devices
other than the keyboard.

Page 6

position, and the ID of the font to use when drawing. Using this information we can keep track of
the text contained in each window.

Even though we can record all the text being drawn in an interface, it still may be difficult to
interpret this information in a meaningful way. Since text may be drawn using arbitrary fonts,
determining the meaning of a piece of text is not always easy. Characters are simply indices into
fonts and while the ASCII value 65, "A," may appear as "A" in most fonts, it may be a special
symbol in another. Text can also be drawn over other text, and graphics requests are often used to
erase and move text. Our representation of text has to correctly model the effects of these requests.

Our present implementation models the text in each window as a grid, much like a terminal. The
grid is determined dynamically based on the font used to draw the text. This works well for
monospace or charcell fonts, but it breaks down when a proportional font is used. Such fonts
require more sophisticated bookkeeping since each character may have a different width. An
alternative representation would keep per-character width information in the grid but we presently
do not deal with proportional fonts. We do provide some facilities to restrict the fonts that can be
opened by intercepting OpenFont requests, thus avoiding the problem.

Textual Output

As part of providing access to text in a GUI, we need to provide mechanisms for browsing the text
and reading it back. Simple widgets like labels, are very easy to handle because they are generally
short. Long text regions like text widgets or large information labels must be dealt with specially
since the user may want to browse the text. Because some widgets have no insertion point and other
widget’s insertion point is maintained internally, we maintain our own cursor point and provide
ways to move it.

Scrolling text regions pose a problem because we can only capture text we can "see;" that is, text
which is displayed in the viewport of the scrolling region. This behavior makes it difficult to model
the entire piece of text contained in a widget and requires that we can drive the scrollbar to change
the viewed region to access the rest of the text. We have not implemented an auto-scroll
mechanism, so currently the user must scroll the text manually.

The textual output mechanisms consist of functions to move the cursor and to read a word, a line,
or the entire text of a widget. The reading is done by sending the text to a speech synthesizer. The
speech from the synthesizer is interruptible so users can jump around quickly and not wait for all
text to finish. Our screen-reader facilities are somewhat primitive at present, but we have shown
that the information required to read the text is available via X; improvements can be made to the
interface to it by changing the rule set.

Auditory Output

In Mercator, interface output is primarily auditory. One component of the Application Manager,
the Sound Manager, coordinates all audio output from the system. The Sound Manager
communicates to three servers which may reside on the local machine or across the network. These
servers are responsible for the control of speech output, non-speech monaural output, and high-
quality synthetically spatialized sound. The particulars of the sound servers are outside the scope
of this paper. See [Bur92a] and [Bur92b] for a discussion of the spatialized sound system.

Page 5

maintained by the Model Manager, we are able to translate that model to an auditory
representation. The mechanisms of translation are described below.

Interface Presentation

Rules

Once we have retrieved information about the application interface and stored it in our off-screen
model, we still must present that interface to the user in a meaningful way. To accomplish this task,
we are using a translation system which applies a set of rules to generate an auditory presentation
of the interface model and events in the interface. This Rules Engine forms the heart of the
Application Manager.

The Rules Engine is driven asynchronously by the Protocol Interest Manager. The Rules Engine
informs the PIM of patterns in the X protocol which should cause control to be passed to the Rules
Engine (that is, the Rules Engine expresses a "protocol interest," hence the name of the Protocol
Interest Manager). When protocol events or requests occur which match a specified pattern, control
is passed to the Rules Engine which is notified of the condition which caused it to awaken.

The facilities available to the Rules Engine are quite complex. The Engine can stall the X protocol
stream (block the passage of protocol packets), insert new protocol packets, drop packets, and
modify packets (the system ensures that sequence numbers are updated properly if the protocol
stream is changed). The Rules Engine can also generate Editres traffic or query the Model Manager
about current client state. Based on the specific semantics of the rules themselves, and the current
state of the Application Manager, the Rules Engine may generate output to the user or update the
Model Manager.

Templates

We have developed the notion ofrule templatesto deal with presenting different classes of
widgets. Rules templates are sets of rules that define the presentation of particular types of widgets.
They are installed by the Rules Engine when it detects the creation of widgets. For instance, the
rule template for a PushButton might include rules that are called when it is created, desensitized,
or destroyed. It could include rules to retrieve the label of the button or to determine if the button
was a toggle button or radio button. Rules templates give us the ability to define consistent
behavior for widgets on a per-class basis.

Dealing with Text

Text forms a large part of most interfaces and presents some interesting problems in a GUI. In a
purely textual interface like a terminal, all the text is stored in memory and can be retrieved by
simply reading memory. In X, text is only available in an ASCII representation at the time it is
drawn, after which it becomes pixels in the frame buffer.

To deal with text in Mercator, we use the PIM to examine all ImageText and PolyText requests
from the client. These requests are the primary means for drawing text under X. In addition to the
character string to be drawn, these requests contain the destination window ID, the starting drawing

Page 4

application’s interface, and the relations between objects), semantic information (the types of
objects in the interface), appearance attributes ("the text in this window is in boldface") and
behavioral attributes ("clicking this button causes a dialog box to pop up").

The modeling techniques must be sufficient to represent any application which could be run in our
environment. One way to satisfy this requirement is to have our off-screen model mimic many of
the structural attributes inherent in X applications. The notion of the window is the lowest common
structural denominator for X applications. Windows are represented in the X protocol and thus we
are guaranteed that at a minimum we can determine an application’s window structure.

The problem with using this window-only approach alone is that, like much of the X protocol,
windows themselves are too low-level to be very meaningful. For example, individual windows
may not even have a one-to-one correspondence with the widgets which the user perceives to be
the actual structural components of the interface. Thus, we also need to maintain information
retrieved via Editres: information on the structural components of the application, and the
attributes of those components.

The Model Manager is responsible for maintaining the off-screen models of all applications
running in the environment. The Model Manager keeps two main dictionaries (key-value
mappings) to track application information. The first is a dictionary of all windows present in the
system. This dictionary maintains a representation of the current X window hierarchy. The
dictionary values are Mercator Window objects, which store known attributes about particular
windows.

The second dictionary is the Client dictionary. This dictionary contains Mercator Client objects
which represent per-application information. Every time a new application is started, a new Client
object is instantiated and placed into the Client dictionary.

Client objects maintain information about running applications: the application name, current
state, and other information. In addition, the Client objects maintain a representation of the
structural layout of the application. Each Client object maintains a tree of XtObjects (our internal
representations for widgets and gadgets) which reflects the widget organization in the actual
application. Each XtObject keeps information about the name and class of the widget or gadget
being modeled (such as MenuBox or PushButton), and also keeps a dictionary of resource
information. Client objects also maintain a dictionary of all top level windows in the applications.

All of the data structures maintained by the Model Manager are keyed in such a way that it is easy
to determine the window (or windows) associated with a given widget. Similarly, given a window
it is easy to determine the widget which corresponds to it.

Keeping information cached in the Application Manager itself reduces the amount of Editres and
X protocol traffic we must generate to retrieve information about the interface and thus can provide
performance improvements over simply querying the application anytime a piece of information
is needed.

This technique of application modeling gives us the power to represent most X interface in several
forms. Our modeling scheme provides us with a means to quickly determine the structural objects
which are referred to by X protocol requests. Based on the structural model of the interface

Page 3

The X protocol is a low-level, policy-free way of implementing a window system toolkit. As a
result the protocol contains almost no semantic, high-level information. For example, when a
pushbutton widget is created, the protocol stream shows that a window is created and some text or
graphics is drawn in it. When the mouse moves in and out of the window, more drawing is done in
that window (highlighting). It would be difficult to derive a semantically meaningful
representation of the interface from monitoring the protocol alone.

To overcome some of the limitations of using the protocol alone, we use the Editres protocol,
which was introduced in Release 5 of the X Window System. Editres is designed to allow easy
customization of Xt-based applications. Editres clients can ask an application to send a description
of the application’s widget hierarchy, including the name, class, and window ID of each widget.
Editres can also be used to query the geometry of widgets and set widget resource values.

We use the information we get from Editres to interpret the X protocol stream. By matching
window IDs from the protocol stream to widgets in Editres, we are able to derive some higher-level
semantic meaning from the events and requests in the protocol stream. For example, when we see
a window creation request in the protocol, we generate an Editres request to the application which
will return the widget hierarchy of the application’s interface. By matching the window ID in the
protocol to the window IDs which are returned by Editres, we can determine the name and class of
the widget which was created.

Another approach to capturing protocol information which we considered but did not use is the
Xtrap extension from DEC. Xtrap allows clients to intercept and/or fake X events and requests
from another client. The main reason we chose not to use Xtrap was that Xtrap must be compiled
into the server, and thus may not be available on many platforms.

Application Modeling
Once we have retrieved information from the application, we must be able to synthesize a coherent
model of the application’s interface which can then be used by the rest of Mercator. This model
must include structural information (such as the hierarchy of objects which comprise the

Figure 1: Application Manager Overview

X ClientX Server Protocol Interest Mgr

Rules Engine Editres Mgr

Model MgrSound Mgr

Non-speech Audio Server

Spatialized Sound Server

Synthesized Speech Server

Network communication
Inter-object communication

Application Manager components

Page 2

The contents of the computer’s framebuffer are simple pixel values which are difficult to interpret
by the access software. To provide access to GUIs it is necessary to intercept or capture application
output before it reaches the screen. This intercepted application output becomes the basis for an
"off-screen model" of the application interface. The information in the off-screen model is then
used to create alternative, accessible interfaces.

The goal of our work, called the Mercator project, is to providetransparentaccess to X Window
System applications for computer users who are blind. In order to achieve this goal we need to
solve two major problems. First, in order to provide transparent access to applications, we need to
build a system which would allow us to monitor, model, and translate X-based application
interfaces without modifying the applications themselves. Second, given these application models,
we need a methodology for translating our off-screen representation to an auditory interface
presentation. This paper largely focuses on the first of these problems: the architecture required to
capture interface information from running X applications, model the interfaces of those
applications, and allow user input to the applications. The system which accomplishes these tasks
is called the Mercator Applications Manager. See [ME92a] and [ME92b] for more details on the
specifics of our auditory interfaces.

This paper is organized as follows. First, we present our techniques for retrieving information
about application interfaces from running X clients. Next, we detail our data structures for
modeling interfaces. The mechanics of interface presentation are presented next. After this we
explore how user input is handled in our system. Finally, we present some of the problems we
encountered in building this system, some of the system’s weaknesses, and the current status and
future directions for the project.

Information Retrieval
Our approach is based on the assumption that we should not modify applications or toolkits to
present a non-visual interface directly. We feel that such an approach would limit the flexibility of
the interface, would not be transparent, and would greatly increase the complexity of the modified
toolkits and applications. Instead, our approach is to use an external process to model and present
the interfaces of running applications. Applications are not aware of the existence of this process.

To correctly model an X interface we need to have a representation of the widgets that compose
the interface, their attributes, and their layout. Since applications and their interfaces are dynamic
we also need to be able to update our model of the interface as the application runs. Our solution
to information retrieval is two-fold. First, we tap the X display connection between the client and
server, providing access to the raw X protocol. In Mercator this is accomplished by a subsystem
called the Protocol Interest Manager or PIM. Second, we make use of the Editres protocol to
retrieve higher-level information about interface structure. Figure 1 provides a structural view of
the various components of the Application Manager.

The PIM is essentially a pseudo-server which allows us to monitor requests and events as they flow
between the client and server (see [SM91] for details on the lower layers of the protocol monitoring
system). Using the PIM we can delete, change, or create requests and events. Thus we are informed
when windows are created or destroyed, text and graphics are drawn, and keys and mouse buttons
are pressed.

Page 1

Runtime Translation of X Interfaces to
Support Visually-Impaired Users

W. Keith Edwards
Tom Rodriguez†

Abstract

This paper describes work to provide mappings between X-based graphical user interfaces and
auditory interfaces transparently to applications. The primary motivation for this work is to provide
accessibility to graphical applications for users who are blind. We describe our architecture for
capturing, modeling, and translating X-based interfaces. We conclude with some ideas for future
work, a description of some aspects of the X Window System which caused difficulties in the
design and implementation of our system, and some indications of possible solutions to the
problems we encountered.

Introduction
While the recent boom of computer systems and applications supporting graphical user interfaces
(GUIs) has been widely regarded as beneficial for the large majority of computer users, GUIs have
disenfranchised a significant portion of the computing population. Presently, graphical user
interfaces are all but completely inaccessible for computer users who are blind or severely visually
impaired [BBV90][Bux86][Yor89]. The problem is critical enough that it has been recognized and
addressed in recent legislation in the US (Title 508 of the Rehabilitation Act of 1986, and the 1990
Americans with Disabilities Act). This legislation mandates that computer systems suppliers
ensure accessibility to their systems, and that employers must provide accessible equipment
[Lad88].

In the days of simple textual interfaces, providing access to computing equipment was a relatively
easy proposition. An access software system could simply retrieve the ASCII text as it was stored
in the computer’s display memory and present it to the user (usually via either a speech synthesizer
or a Braille terminal or printer). This approach will not work with graphical interfaces, however.

†Keith Edwards and Tom Rodriguez are research assistants at the Georgia Tech Graphics, Visualization, & Usability
Center in Atlanta, GA.

Published in the Proceedings of the X Technical Conference, 1993, Boston, MA.

