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Abstract. Case-based planning (CBP) is based on reusing past success-
ful plans for solving new problems. CBP is particularly useful in envi-
ronments where the large amount of time required to traverse extensive
search spaces makes traditional planning techniques unsuitable. In par-
ticular, in real-time domains, past plans need to be retrieved and adapted
in real time and efficient plan adaptation techniques are required. We
have developed real time adaptation techniques for case based planning
and specifically applied them to the domain of real time strategy games.
In our framework, when a plan is retrieved, a plan dependency graph is
inferred to capture the relations between actions in the plan suggested
by that case. The case is then adapted in real-time using its plan de-
pendency graph. This allows the system to create and adapt plans in an
efficient and effective manner while performing the task. Our techniques
have been implemented in the Darmok system (see [8]), designed to play
WARGUS, a well-known real-time strategy game. We analyze our ap-
proach and prove that the complexity of the plan adaptation stage is
polynomial in the size of the plan. We also provide bounds on the final
size of the adapted plan under certain assumptions.

1 Introduction

Traditional planning techniques are inapplicable in real-time domains with vast
search spaces. Specifically, we are interested in real-time strategy (RTS) games
that have huge decision spaces that cannot be dealt with search based AI tech-
niques [1]. Case-based planning (CBP) can be useful in such domains since they
can potentially reduce the complexity of traditional planning techniques. CBP
techniques [10] work by reusing previous stored plans for new situations instead
of planning from scratch. However, plans cannot be replayed exactly as they
were stored in any non trivial domain. Therefore, CBP techniques require plan
adaptation to adapt the information contained in plans. More specifically, CBP
techniques for RTS games need adaptation techniques that are suitable for dy-
namic and unpredictable domains, and that have a low complexity to be useful
for real-time situations. In this paper we present Darmok, a case-based planning
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Fig. 1. A screenshot of the WARGUS game.

architecture that integrates planning and execution and is capable of dealing
with both the vast decision spaces and the real-time component of RTS games.
Then, we will focus on the problem of how to adapt plans stored in the knowl-
edge base of our system to suit new situations in real-time. We further analyze
the algorithms and establish bounds on their complexity, thus proving that the
algorithms presented are suitable for a real-time situation.

It is hard to approach RTS games using traditional planning approaches:
RTS games have huge decision spaces [1], they are adversarial domains, they
are non-deterministic and non fully-observable, and finally it is difficult to de-
fine postconditions for actions (actions don’t always succeed, or take a different
amount of time, and have complex interactions that are difficult to model us-
ing planning representation formalisms). To address these issues, we developed
Darmok [8], a case-based planning system that is able to deal with domains such
as WARGUS. We apply our plan adaptation techniques to Darmok.

Plan adaptation techniques can be classified in two categories: those adap-
tation techniques based on domain specific rules (domain specific, but fast) and
those based on domain independent search-based techniques (domain indepen-
dent, but slow). In this paper, we will present a domain independent and search-
free structural plan adaptation technique based on two basic ideas: a) removing
useless operations from a plan can be done by analyzing a dependency graph and
b) the insertion of new operations in the plan can be delegated to the case-based
planning cycle itself. Thus, the plan adaptation will state that some new oper-
ations to achieve a particular goal must be inserted, and the CBP engine will
generate a plan for that goal. Our plan adaptation approach has been imple-
mented in the Darmok system with promising results.

In the rest of this paper we introduce the Darmok system in Section 2, and
then we focus on plan adaptation in Section 3. Then, we analyze the complexity
of the adaptation algorithms in Section 4. After that, we report experimental
results in Section 5. The paper closes with related work and conclusions.
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Fig. 2. Overview of the Darmok system.

2 Case-Based Planning in WARGUS

Figure 1 shows a screen-shot of WARGUS, a RTS game where each player’s
goal is to remain alive after destroying the rest of the players. Each player has
a series of troops and buildings and gathers resources (gold, wood and oil) in
order to produce more troops and buildings. Buildings are required to produce
more advanced troops, and troops are required to attack the enemy.

In this section we will briefly describe the Darmok system, in which we
have implemented our plan adaptation techniques. In order to play WARGUS
Darmok learns behaviors from expert demonstrations, and then uses case-based
planning to play the game reusing the learnt behaviors. Figure 2 shows an
overview of our case-based planning approach. Basically, we divide the process
in two main stages:

– Plan Learning: performed by the Revision and Case Learning modules. Each
time a human plays a game, a trace is generated (containing the list of actions
performed in the game). During revision, the human annotates that trace
stating which goals he was pursuing with each action. This annotated trace
is processed by the case learning module that extracts plans in form of cases.

– Plan Execution: The execution engine consists of several modules that to-
gether maintain a current plan to win the game. The Plan Execution module
executes the current plan, and updates its state (marking which actions suc-
ceeded or failed). The Plan Expansion module identifies open goals in the
current plan and expands them. In order to do that it relies on the Behavior
Retrieval module, that retrieves the most appropriate behavior to fulfill an
open goal. Finally, the Plan Adaptation module adapts the retrieved plans.

Cases in Darmok consist of two parts: behaviors and episodes. A Behavior
contains executable code to achieve a particular goal, and an episode contains
information on how successful a behavior was in a particular situation.

A behavior has two main parts: a declarative part and a procedural part. The
declarative part has the purpose of providing information to the system about
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the intended use of the behavior, and the procedural part contains the executable
behavior itself. The declarative part of a behavior consists of three parts:

– A goal, that is a representation of the intended goal of the behavior.
– A set of preconditions that must be satisfied before execution.
– A set of alive conditions that must be satisfied during the execution of the

behavior for it to have chances of success.

Unlike classical planning approaches, postconditions cannot be specified for
behaviors, since a behavior is not guaranteed to succeed. Thus, we can only
specify the goal a behavior pursues. The procedural part of a behavior consists
of executable code that can contain the following constructs: sequence, parallel,
action (primitive actions in the application domain), and subgoal (that need to be
further expanded). A goal may have parameters, and must define a set of success
conditions. For instance, AbsoluteHaveUnits(TOWER,1) is a valid goal in our
gaming domain that has the following success condition: UnitExists(TOWER).

2.1 Run-Time Plan Expansion and Execution

During execution, the plan expansion, plan execution and plan adaptation mod-
ules collaborate to maintain a current partial plan tree that the system is exe-
cuting. A partial plan tree in our framework is represented as a tree consisting of
goals and behaviors (similar to HTN planning [6]). Initially, the plan consists of a
single goal: “win the game”. Then, the plan expansion module asks the behavior
retrieval module for a behavior for that goal. That behavior might have sev-
eral subgoals, for which the plan expansion module will again ask the behavior
retrieval module for behaviors, and so on. When a goal still does not have an
assigned behavior, we say that the goal is open.

Additionally, each behavior in the plan has an associated state that can be:
pending (when it still has not started execution), executing, succeeded or failed.
A goal that has a behavior assigned and where the behavior has failed is also
considered to be open. Open goals can be either ready or waiting. An open goal
is ready when all the behaviors that had to be executed before this goal have
succeeded, otherwise, it is waiting.

The plan expansion module is constantly querying the current plan to see
if there is any ready open goal. When this happens, the open goal is sent to
the behavior retrieval module. The retrieved behavior is sent to the behavior
adaptation module, and then inserted in the current plan, marked as pending.

The plan execution module has two main functionalities: check for basic
actions that can be sent to the game engine and check the status of plans that
are in execution:

– Pending behaviors with satisfied preconditions change status to executing.
– Basic actions that are ready and with all their preconditions satisfied are

sent to WARGUS to be executed. If the preconditions are not satisfied, the
behavior is sent back to the adaptation module to see if the plan can be
repaired. If it cannot, then the behavior is marked as failed.
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– Whenever a basic action succeeds or fails, the execution module updates
the status of the behavior that contained it. When a basic action fails, the
behavior is marked as failed, and thus its corresponding goal is open again.

– If the alive conditions of an executing behavior are not satisfied, the behavior
is marked as failed.

– If the success conditions of a behavior are satisfied, the behavior is marked
as succeeded.

– Finally, if a behavior is about to be executed and the current game state
has changed since the time the behavior retrieval module retrieved it, the
behavior is handed back to the plan adaptation module.

In the remainder of this paper we will focus on the plan adaptation compo-
nent. See [8] for a more detailed explanation of the rest of the system.

3 Real-Time Case-Based Plan Adaptation

The plan adaptation module is divided in two submodules: the parameter adap-
tation module and the structural plan adaptation module. The first one is in
charge of adapting the parameters of the basic actions, i.e. the coordinates and
specific units (see [8] for an explanation on how that module works). In this
section we will focus on the structural plan adaptation module.

We specifically consider plans which are only composed of actions, sequen-
tial constructs and parallel constructs. This implies that we consider only those
plans which are completely expanded and do not contain a sub-goal which further
needs to be expanded. We generate a plan dependency graph using the precon-
ditions and success conditions of the actions. The structural plan adaptation
process has two sub-processes: elimination of unnecessary actions, and insertion
of required actions. The first one is performed as soon as the plan is retrieved,
and the second one is performed on-line as the plan executes.

3.1 Plan Dependency Graph Generation

Figure 3 shows the algorithm for plan dependency graph generation. Each action
within a plan has a set of preconditions and a set of success conditions. The
plan dependency graph generator analyzes the preconditions of each of these
primitive actions. Let p′ be an action in the plan which contributes to satisfying
the preconditions of another action p. Then, a directed edge from p′ to p is
formed (function FindDependencies, shown in Figure 3). This directed edge can
be considered as a dependency between p′ and p. Here, we assume that actions
in different parts of a parallel plan are independent of each other (a strong
assumption, subject to improvement in future work). A pair of actions might have
a dependency between them only if their closest common parent is a sequential
plan. This is what is effectively done by using the set of actions D, in Figure 3. For
any action p′ when the function FindDependencies is called D contains exactly
the set of actions on which p′ might be dependent. The set of primitive actions for
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Function GeneratePlanGraph(p, D)
G = ∅
ForEach p′ ∈ p.subP lans

If p′ is sequential or parallel Then
G = G ∪GeneratePlanGraph(p′, D)

ElseIf p′ is a primitive action Then
G = G ∪ FindDependencies(p′, D)

EndIf
If p is sequential Then D := D ∪ p′.allPrimitiveActions

EndForEach
Return G

End-Function

Function FindDependencies(p, D)
G = ∅
ForEach p′ ∈ D

If p′ statisfied any condition of p Then
G = G ∪ (p′, p)

EndIf
EndForEach
Return G

End-Function

Fig. 3. Algorithm for Plan Dependency Graph Generation. Where p is the plan to be adapted, and
D is the set of plans on which any sub-plan in p might depend (and it is equal to ∅ in the first call to
the algorithm). p.subP lans refers to the set of sub-plans directly inside p in case p is sequential or
parallel. And p.allPrimitiveActions refers to all the primitive actions inside p or in any sub-plan
inside p.

a subplan p′ of p are added to D only if p is a sequential construct. The recursive
call to GeneratePlanGraph ensures that nested parallel and sequential constructs
can be processed. This process results in the formation of a plan dependency
graph G with directed edges between actions that have dependencies.

A challenge in our work is that simple comparison of preconditions of a
plan p with success conditions of another plan p′ is not sufficient to determine
whether p′ contributes to achievement of preconditions of p. This is because
there isn’t necessarily a direct correspondence between preconditions and success
conditions. An example is with attacking: the success condition of a goal might
specify that a particular enemy unit has to be killed, but the attack actions have
no postcondition named “killed”, since we cannot guarantee that an attack will
succeed (the success condition of the attack action is that a particular unit will
be in the “attacking status”).

For that purpose, the plan dependency graph generation component needs
a precondition-success condition matcher (ps-matcher). In our system, we have
developed a rule-based ps-matcher that incorporates a collection of rules for
the appropriate condition matching. For example, our system has six different
conditions which test the existence of units or unit types. Thus the ps-matcher
has rules that specify that all those conditions can be matched. In some cases it is
not clear whether a relation exists or not. However it is necessary for our system
to capture all of the dependencies, even if some non-existing dependencies are
included. If a dependency was not detected by our system, a necessary action in
the plan might get deleted.
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Function RemoveRedundantPlans (p, g)
B = GetDirectActions(p, g)
G = GeneratePlanGraph(p, ∅)
A = BackPropagateActivePlans(B, G, ∅)
remove from p all the actions not in A
Return p

EndFunction

Function BackPropagateActivePlans (B, G, A)
ForEach p ∈ B

If p’s success conditions are not satisfied Then
A = A ∪ {p}
B′ = GetParentPlans(p, G)
A = BackPropagateActivePlans(B′, G, A)

EndIf
EndForEach
Return A

EndFunction

Fig. 4. Algorithm for Removal of Unnecessary Actions. Where p is the plan to be
adapted, and g is the goal corresponding to p. GetParentPlans(p, G) is a simple function
that returns all the plans that have a causal direction with a given plan p, according
to a graph G. GetDirectActions(p, g) is a function that returns those primitive actions
in p that are direct actions.

3.2 Removal of unnecessary actions

Figure 4 shows the algorithm for the removal of unnecessary or redundant ac-
tions. Every plan p has a root node that is always a goal g. The removal of
unnecessary actions begins by taking the success conditions of the goal g and
finding out which of the actions in the plan contribute to the achievement of
those conditions. This is done by the function call to GetDirectActions in Figure
4. These actions are called direct actions for the subgoal. Then the plan depen-
dency graph for p is generated using the GeneratePlanGraph function in Figure
3. The algorithm works by maintaining a set of active actions A. At the end
of the algorithm, all the actions not in A will be removed from the plan. The
removal of actions proceeds using the plan dependency graph and the set of di-
rect actions, B. The success conditions of each action in B are evaluated for the
game state at that point of execution. Each of these actions p with unsatisfied
success conditions is added to the list of active actions. The set of actions B′ on
which the action p has a dependency according to the dependency graph G are
recursively checked to see if they have to be activated. Such plans are obtained
using the function GetParentPlans in the algorithm (that can be easily imple-
mented to have constant time). The result of this process is a set A of actions
whose success conditions are not satisfied in the given game state and which
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Function AdaptForUnsatisfiedConditions(p)
C = GetUnsatisfiedPreconditions(p)
G = ∅
ForEach c ∈ C

G = G ∪GetSatisfyingGoal(c)
EndForEach
Initialize q as an empty parallel plan
ForEach g ∈ G

add SubGoalPlan(g) to q
EndForEach
insert q at the beginning of p
Return p

End-Function

Fig. 5. Algorithm for Adding Goals for Unsatisfied Preconditions, where p is the prim-
itive action to be adapted. GetUnsatisfiedConditions(p) is a function which returns
the set of those preconditions of p which are not satisfied. GetSatisfyingGoal(c) is a
function which returns a goal whose success satisfies the condition c. SubGoalPlan(g)
is a function which returns a sub-goal plan with goal g.

have a dependency to a direct plan, also with success conditions not satisfied in
the given game state. Actions that are not active (not in A) are removed.

3.3 Adaptation for unsatisfied preconditions

Figure 5 shows the algorithm for adaptation for unsatisfied preconditions. If
the execution of an action fails because one or more of its preconditions are
not satisfied, the system needs to act so that the execution of the plan can
proceed. To do this, each unsatisfied condition is associated with a corresponding
satisfying goal. The satisfying goal is such that when a plan to achieve the
goal is retrieved and executed, the success of the plan implies that the failed
precondition is satisfied. Initially, all the unsatisfied preconditions of the action
p to adapt are computed, resulting in a set C. For each condition c ∈ C, a
satisfying goal is obtained, using the function GetSatisfyingGoal in Figure 5.
This gives a set of goals G which need to be achieved before the action p can
be executed. A parallel plan q is generated where each of the goals in G can be
achieved in parallel. q is inserted as the first step of plan p.

After the modified plan is handed back to the plan execution module, it is
inserted into the current plan. In the next execution cycle the plan expansion
module will expand the newly inserted goals in G.

Notice that the plan adaptation module performs two basic operations: delete
unnecessary actions (which is performed by an analysis of the plan dependency
graph), and insert additional actions needed to satisfy unsatisfied preconditions.
This last process is performed as a collaboration between several modules: the
plan execution module identifies actions that cannot be executed, the adaptation
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component identifies the failed preconditions and generates goals for them, and
the plan expansion and plan retrieval modules expand the inserted goals.

4 Complexity Analysis

In the following sections we will analyze the complexity of our structural adap-
tation techniques. We analyze both the removal of redundant actions through
plan dependency graph generation as well as the addition of goals to the partial
plan to satisfy unsatisfied conditions. In the first case the time complexity of
plan dependency graph generation and removal of actions is obtained. In the
case of goal additions, the goal addition for a single condition happens in con-
stant time. Here, the time complexity is not as important as the number of goals
added during a game play, because the addition of goals has an impact on the
size of the plan for winning the game and thereby on the time taken to win the
game. We obtain a bound on the number of goals that are added during the plan
adaptation stage for satisfying any unsatisfied preconditions.

4.1 Complexity of Removal of Unnecessary Actions through Plan
Dependency Graph Generation

Theorem 1. The time complexity for removal of unnecessary actions through
plan dependency graph generation is O(N(n)), where N(n) = kl(n − 1)(n −
2)/2+ l2n+(n− 1)(n− 2)/2. Where n is the size of the plan, k is the maximum
number of pre-conditions and l is the maximum number of success conditions of
actions.

We derive Theorem 1 in the following discussion. A plan dependency graph
is generated for a plan which has been expanded to the level of primitive actions.
Let the number of pre-conditions in any action be bounded by k and the number
of success conditions for any subgoal or action be bounded by l. The maximum
number of comparisons that can occur while comparing the preconditions of any
action with the success conditions of another action is bounded by Nmax

c = kl.
Now consider a retrieved plan with n actions. If the plan is a sequential plan,

to obtain the dependencies we compare the preconditions of each action with
the success conditions of the preceding actions. Thus the preconditions of the
second action are compared with the success conditions of the first action, the
preconditions of third action are compared with the success conditions of the
first action and the second action and so on. The total number of comparisons
at the level of plans is thus:

NP
c (n) = 1 + 2 + .... + (n− 1) =

(n− 1)(n− 2)
2

(1)

In case the plan retrieved is a parallel plan we do not try to obtain the
dependencies as we assume that the component plans are independent of each
other. When the retrieved plan is a combination of sequential plans and parallel
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plans, some comparisons take place but the number of comparisons will be less
than that in the case of a sequential plan. The sequential plan thus provides
an upper bound on the number of comparisons. Within each action comparison,
there can be Nmax

c condition comparisons and these condition comparisons take
constant time.

When obtaining the direct actions we compare the success conditions of each
primitive action with the success conditions for the goal. The maximum number
of condition comparisons possible here is l2 and this is done for each of the n
actions. Thus the number of condition level comparisons for obtaining direct
plans is bounded by Nmax

d (n) = nl2.
Once the dependencies between plans have been determined we remove re-

dundant actions. Only those direction actions with unsatisfied success conditions
are initially considered active. Then we propagate it to the plans on which the
direct plans depend, we also recursively do this for the plans made active. We
do the propagation only once for each action. If the total number of actions is n,
and the position of an action in a sequential plan is i, the maximum number of
actions the action can depend upon is i− 1. Thus, the number of links we follow
is bound by Nmax

l (n).

Nmax
l (n) = 1 + 2 + .... + (n− 1) =

(n− 1)(n− 2)
2

(2)

The complexity of adaptation through plan dependency graph generation is
thus O(N(n) = Nmax

c ∗NP
c (n) + Nmax

d (n) + Nmax
l (n)), proving Theorem 1.

4.2 Analysis of Adaptation for Unsatisfied preconditions

Considering the maximum number of preconditions for any action to be k and
that each precondition when not satisfied leads to the addition of a single goal,
the maximum number of goals inserted to satisfy an action’s preconditions is also
k. Each goal is expanded into a plan. The primitive actions present in this new
plan can further have unsatisfied conditions during execution. This may lead to
the creation of cycles i.e it is possible that a goal g1 has a precondition c1 which
leads to goal g2 and the goal g2 has a precondition c2 which leads to the goal
g1, it might lead to the continuous addition of goals. No bound regarding the
size of the final partial plan can be obtained if such cycles can occur (Darmok
incorporates a simple cycle detection mechanism that prevents these situations).

Theorem 2. Assuming all plans succeed upon execution and goals do not form
cycles, the number of goals added by the adaptation module is O(Mmax

G ), where:
Mmax

G = nmaxk ∗ (nG−1
maxkG−1 − 1)/(nmaxk − 1). Where nmax is the maximum

size of any plan in the case base, k is the maximum number of preconditions in
any plan and G is the number of different goals possible in the domain.

If the goals in a real-time planning system cannot form a cycle i.e any plan
for a goal g1 will never lead to a goal g2 such that the plan for g2 leads to the goal
g1, a bound can be established on the number of goals added. If the total number

In 9th European Conference on Case-Based Reasoning (ECCBR 2008), Trier, Germany



of possible different goals in the system is G, the number of possible goals a plan
for a top level goal g can lead to is G− 1. Let g′ be one such goal. The number
of goals a plan for this goal can lead to is G − 2, and so on. Additionally, the
number of goals added for any action is limited by k. Consider the maximum
number of actions in any fully expanded plan for a goal to be nmax. If the goals
added by plan adaptation for the first time are considered level one goals, the
goals added within a plan for a first level goal as second goals, and so on, the
maximum number of goals that can be added at level l for a level l − 1 goal is
nl

G = min(G− l, k). The maximum number of goals added is Nmax
G :

Nmax
G =

∑
i=1...G−1

(nmax)i
∏

j=1...i

nj
G

 (3)

If k < G and we replace nl
G by k we get an upper bound on Nmax

G , Nmax
G <

Mmax
G :

Mmax
G =

∑
i=1...G−1

(nmax)iki = nmaxk ∗ ((nmax)G−1kG−1 − 1)
(nmaxk − 1)

(4)

Thus the number of goals added by the adaptation module is bounded by
Mmax

G . This is clearly not a tight upper bound. Better upper bounds can be
obtained introducing domain related constraints.

In the case of WARGUS domain, the goals inserted by the plan adapta-
tion module are either to build certain units or buildings or to gather resources.
Consider the term units to refer to all units other than peasants and the term
buildings to refer to all buildings other than farms (peasants and farms need
to be considered separately). For the further analysis we assume that the op-
ponents have not destroyed any buildings. Let n0 be the number of primitive
actions in the completely expanded plan without adaptation. Let b, f , u and p
be the number of buildings, farms, units and peasants inserted by the adaptation
module respectively. Farms are required to train peasants and units, each farm
allows training of four peasants and units. Considering each of the n0 actions
can produce at most one peasant or unit, the number of units trained is at most
n0 + u + p. We know that before executing the plan, the number of farms was
enough for the number of units and peasants we had. Thus, the number of farms
f that the adaptation component will insert must satisfy the following inequality
(because it will not insert more farms than needed): 4f ≤ n0 + u + p.

Now, consider the peasants inserted by the adaptation module. Peasants are
trained to gather resources or build buildings or farms. There are three kinds
of resources in WARGUS:wood, gold and oil. Farms require only two of these
resources(wood and gold), while a building or unit might require any of the three
resources. Farms and buildings also require peasants for building them. Thus, a
building can require 4 peasants - one to build it and three to gather the different
resources. Similarly, a farm or a unit can require 3 peasants. The maximum
number of peasants required by the n0 primitive actions is 4n0. Thus we get
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the following inequality (because it will not insert more peasants than needed):
p ≤ 4n0 + 4b + 3f + 3u.

Solving these inequalities gives us: f ≤ (5n0 +4b+4u) and p ≤ (19n0 +16b+
15u). Further, units can only be required by one of the n0 actions, since they
are not required for building or gathering resources. Thus, u ≤ n0. The number
of goals added is thus O(Ng):

Ng = b + u + f + p ≤ 24n0 + 21b + 20u ≤ 44n0 + 21b (5)

Thus, the number of extra goals added due to plan adaptation is O(21b +
44n0). Notice also that b is bounded by the number of different buildings (other
than farms), because adaptation will never insert duplicate buildings since du-
plicate buildings are never required (although it might be convenient to have
them, it is never required). Thus the number of goals added is linearly bounded
in the number of building types and the number of actions which were originally
present in the plan. The analysis presented, provides a bound on the size of the
plan after the adaptation module has finished adapting it, assuming that there
are no goal cycles (easily detected in the case of WARGUS).

4.3 Single Cycle Complexity

In order to have a real-time system, it is important that a single execution cycle
takes a short time. Each cycle of Darmok involves the expansion of open goals
and then execution of actions ready to execute. If the number of open goals is
r and the number of actions ready to execute is e, r plans are retrieved and the
plan dependency graph is generated for these plans. If nmax is the maximum
number of actions in any of the retrieved plans, the complexity for the adapta-
tion of retrieved plans is O(rN(nmax)) (See Theorem 1). While plan execution,
adaptation due to failed preconditions of an action can lead to the addition of
maximum k goals in a single cycle. Thus the total per cycle complexity of the
Darmok planning adaptation module is polynomial, O(rN(nmax) + ke).

5 Experimental results

To evaluate our plan adaptation techniques, we conducted two sets of experi-
ments turning the plan adaptation on and off respectively. The experiments were
conducted on 12 maps: 11 different variations of the well known map “Nowhere
to run nowhere to hide” (NWTR) and 1 version of “Garden of War” (GoW).
NWTR maps have a wall of trees separating the opponents that introduces a
highly strategic component in the game (one can attempt ranged attacks over
the wall of trees, or prevent the trees to be chopped by building towers, etc.).
GoW maps are large maps with an empty area in the middle where a lot of gold
mines are located. 10 different expert demonstration were used for evaluation;
8 of the expert traces are on maps from NWTR maps while the other 2 expert
traces were for GoW maps. Each one of the expert demonstrations exemplified
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Table 1. Effect of Plan Adaptation on Game Statistics

Adaptation No Adaptation

NT W D L ADS AOS WP W D L ADS AOS WP improvement

1 17 4 27 2158 1514 35.42% 9 7 32 1701 1272 18.75% 88.75%
2 16 5 27 2798 1828 33.33% 15 2 31 1642 1342 31.25% 6.66%
3 18 6 24 1998 1400 37.5% 10 6 32 1633 1491 20.83% 80.00%
4 19 3 26 2343 1745 39.58% 8 4 36 1358 1663 16.67% 137.40%
5 11 6 31 2141 1842 22.91% 7 6 35 1310 1607 14.58% 57.13%
6 14 2 32 1709 1695 29.17% 3 5 40 1475 1788 6.25% 366.72%
7 20 0 28 1941 1448 41.67% 9 6 33 1800 1564 18.75% 122.24%
8 15 3 30 1887 1465 31.25% 6 3 39 1598 1671 12.50% 150.00%
9 21 4 23 2110 1217 43.75% 7 3 38 1449 1681 14.58% 200.07%
10 5 0 7 1533 1405 41.67% 2 0 10 1158 1555 16.67% 150.00%

156 33 255 20618 15559 35.14% 76 67 301 15124 15634 17.12% 105.38%

different techniques with which the game can be played: fighter’s rush, knights
rush, ranged attacks using ballistas, or blocking the enemy using towers.

We conducted the experiments using different combinations of the traces. We
report the results in 12 games (one per map) using all 10 traces. We also report
the results in 48 games in nine different scenarios where the system learnt from
1, 2, 3, 4, 5, 6, 7, 8 and 9 traces respectively. For conducting these experiments,
for any number of traces, n, we randomly chose four sets containing n traces and
ran our system against the built in AI with each set on all 12 maps.

Table 1 shows the results of the experiments with and without adaptation.
NT indicates the number of traces. For each experiment 6 values are shown: W,
D and L indicate the number of wins, draws and loses respectively. ADS and AOS
indicate the average Darmok score and the average opponent score (where the
“score” is a number that WARGUS itself calculates and assigns to each player
at the end of each game). Finally, WP shows the win percentage. The right
most row presents the improvement in win percentage comparing adaptation
with respect to no adaptation. The bottom row shows a summary of the results.

The results show that plan adaptation leads to an improvement of the per-
centage of wins as well as the player score to opponent score ratio. An im-
provement occurs in all cases irrespective of the number of traces used. When
several traces are used cases belonging to different traces are retrieved and ex-
ecuted, thus, there is a much greater chance of redundant or missing actions
being present. Our plan adaptation deals with these problems, improving the
performance of Darmok. In some cases the system performs well even without
adaptation. This may be because the cases retrieved “tie in” together as they are
and do not require adaptation. For instance, in the experiment where the system
learnt 10 traces, we can see how the system managed to improve performance
from 16.67% wins without adaptation to 41.67% wins with adaptation. Finally,
when considering these numbers, we must take into account that our system is
attempting to play the whole game of WARGUS at the same granularity as a
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human would play, and that also results depend on the quality of the demon-
stration traces provided to the system. Thus, with better demonstrations (by
true experts), the performance could greatly improve.

6 Related Work

Case-based planning is the application of CBR to planning, and as such, it is
planning as remembering [2]. CBP involves reusing previous plans and adapting
them to suit new situations. There are several motivations for case-based plan-
ning [10], the main one being that it has the potential to increase the efficiency
with respect to generative planners (although, in general, reusing plans has the
same or even higher complexity than planning from scratch [7]).

One of the first case-based planning systems was CHEF [2], able to build new
recipes based on user’s request for dishes with particular ingredients and tastes.
CHEF contains a memory of past failures to warn about problems and also a
memory of succeeded plans from which to retrieve plans. One of the novel capa-
bilities of CHEF with respect to classical planning systems is its ability to learn.
Each time CHEF experiences a planning failure, it means that understanding
has broken down and something has to be fixed. Thus, planning failures tell
the system when it needs to learn. CHEF performs plan adaptation by a set of
domain-specific rules called TOPs.

Domain-independent nonlinear planning has been shown to be intractable
(NP-hard). PRIAR [4] was designed to address that issue. PRIAR works by
annotating generated plans with a validation structure that contains an expla-
nation of the internal causal dependencies so that previous plans can be reused
by adapting them in the future. Related to PRIAR, the SPA system was pre-
sented by Hanks and Weld [3]. The key highlight of SPA is that it is complete and
systematic (while PRIAR is not systematic, and CHEF is not either complete
nor systematic), but uses a simpler plan representation than PRIAR. Extending
SPA, Ram and Francis [9] presented MPA (Multi-Plan Adaptor), that extended
SPA with the ability to merge plans. The main issue with all these systems is
that they are all based on search-based planning algorithms, and thus are not
suitable for real-time domains, where the system has to generate quick responses
to changes in the environment. A thorough review on plan adaptation techniques
was presented in [5].

7 Conclusions

In this paper we have presented real-time structural plan adaptation techniques
for RTS games. Specifically, our technique divides the problem in two steps:
removal of unnecessary actions and addition of actions to fill gaps in the sequence
of actions. We implemented our algorithm inside the Darmok system that can
play the game of WARGUS. The experiments conducted gave promising results
for the techniques introduced, however our techniques are domain-independent.
Moreover, one of the important aspects of our techniques is that they are efficient

In 9th European Conference on Case-Based Reasoning (ECCBR 2008), Trier, Germany



at the same time as effective, so they can be applied for real-time domains in
which other search-based plan adaptation techniques cannot be applied. The
complexity analysis performed shows that the adaptation techniques do not have
a significant overhead and are suitable for real time situations.

Our techniques still have several limitations. Currently, our plan adaptation
techniques require a plan to be fully instantiated in order to be adapted, thus we
cannot adapt plans that are still half expanded. As a consequence, the high level
structure of the plan cannot be adapted unless it is fully instantiated. Because
of that, plan adaptation as presented in this paper can only work at the lower
levels of the plan, where everything is instantiated. This could be addressed by
reasoning about interactions between higher level goals, by estimating which are
the preconditions and postconditions of such goals by analyzing the stored plans
in the case-base to achieve those goals. Another line of further research is to
incorporate ideas from MPA [9] in order to be able to merge several plans into
a single plan. This can increase the flexibility of the approach since sometimes
no single plan in the case base can achieve a goal, but a combination will.
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5. Héctor Muñoz-Avila and Michael Cox. Case-based plan adaptation: An analysis
and review. IEEE Intelligent Systems, 2007.

6. D. Nau, T.C. Au, O. Ilghami, U. Kuter, D. Wu, F. Yaman, H. Muñoz-Avila, and
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