Abstracted in Case-Based Reasoning: Papers from the 1993 Workshop, July 11-12, Washington, D.C., Technical Report WS-93-01, AAAI Press

THE UTILITY PROBLEM IN CASE BASED REASONING

ANTHONY G. FRANCIS ASHWIN RAM
College of Computing College of Computing
Georgia Institute of Technology Georgia Institute of Technology
Atlanta, Georgia 30332-0280 Atlanta, Georgia 30332-0280
(404) 351-4574 (404) 853-9372
centaur@cc.gatech.edu ashwin@cc.gatech.edu
ABSTRACT

Case-based reasoning systems may suffer from the utility problem, which occurs when knowledge
learned in an attempt to improve a system's performance degrades performance instead. One of
the primary causes of the utility problem is the slowdown of conventional memories as the
number of stored items increases. Unrestricted learning algorithms can swamp their memory
system, causing the system to slow down more than the average speedup provided by individual
learned rules. Massive parallelism is often offered as a solution to this problem. However, most
theoretical parallel models indicate that parallel solutions to the utility problem fail to scale up to
large problem sizes, and hardware implementations across a wide class of machines and
technologies back up these predictions. Failing the creation of an ideal concurrent-write parallel
random access machine, the only solution to the utility problem lies in a number of coping
strategies, such as restricting learning to extremely high utility items or restricting the amount of
memory searched. Case-based reasoning provides an excellent framework for the implementation
and testing of a wide range of methods and policies for coping with the utility problem.
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1. INTRODUCTION

The paradigm of case-based reasoning is based on the fundamental principle that it is
advantageous to remember your past experiences and to re-apply them in novel situations. Case-
based reasoning systems operate by remembering their experiences in problem solving episodes
and recalling the solutions when they encounter new problems. Generalized traces of past
problem-solving episodes, called cases, act as a cache of previous solutions, allowing systems to
compute new solutions more quickly and efficiently (CARBONELL 1986, HAMMOND 1989,
KOLODNER 1993). While many intuitive arguments can be made for the appeal of this approach, it
is unclear that case-based reasoning will be exempt from many of the problems that plague
conventional learning systems. In particular, case-based reasoning, like many other learning
systems, may suffer from the utility problem.

The utility problem in learning systems occurs when knowledge learned in an attempt to
improve a system's performance degrades it instead. The problem appears in many Al systems,
but it is most familiar in speedup learning. Speedup learning systems are designed to improve their
performance by learning control rules which guide their problem-solving performance. These
systems often exhibit the undesirable property of actually slowing down if they are allowed to
learn in an unrestricted fashion (MINTON 1990, HOLDER 1990). Each individual control rule is
guaranteed to have a positive utility (improve performance) but, in concert, they have a negative
utility (degrade performance).

One of the causes of the utility problem is the serial nature of current hardware. The more
control rules that speedup learning systems acquire, the longer it takes for the system to test them
on each cycle. Few case-based reasoning systems have been tested with case-bases large enough
to encounter this kind of problem, so the utility problem has not been extensively studied. It is not
intuitively clear that case-based reasoning is in any way exempt from the utility problem.

One solution to the utility problem is to design a parallel memory system to eliminate the
increase in match cost (DOMESHEK 1992, KOLODNER 1988). This approach moves the matching
problem away from the central processor and into the memory of the system. These so-called
active memories allow memory search to occur in "nearly constant-time™ in the number of data
items (FAHLMAN 1988), relying on the memory for fast, simple inference and reminding.

It is not possible to simply store cases in a database structure indexed on some pre-computed
hash key for easy retrieval. In general, matching cases requires performing a partial match
between a case and features of a situation [ an exponential-time problems in the worst case [
and then selecting a case out of the matching cases. Unfortunately, while matching of multiple
cases can be done in parallel, theoretical and practical considerations of parallel architectures
enforce a lower bound of Q(lg n) on the time complexity of ideal selection algorithms.

This seemingly innocuous bound places in reality a set of harsh constraints on any retrieval
algorithms designed to solve the utility problem. An analysis of these constraints in turn reveals
that case-based reasoning, while incapable of solving the utility problem by itself, provides a ready
framework for the implementation of a series of coping strategies that can.

2. PROBLEM-SOLVING AND LEARNING SYSTEMS

In order to evaluate case-based reasoning, it is important to have other kinds of systems to
compare case-based reasoning systems with. Particularly important for this discussion are classes
of learning and problem solving systems that suffer from the utility problem.
2.1. STATIC AND DYNAMIC LEARNING SYSTEMS

Not all systems suffer from the utility problem; for the purposes of this discussion, we can



divide learning systems into two categories; static and dynamic. Static machine learning systems,
such as some category-learning and discovery algorithms, are more properly called learning
methods, because the algorithms never modify themselves or the knowledge that they use. In
contrast, dynamic learning systems, such as Soar (TAMBE ET.AL. 1990), CHEF (HAMMOND
1989), and PRODIGY (VELOSO & CARBONELL 1993), integrate learning and problem-solving
performance. These programs modify the knowledge that they use during the course of learning
and problem-solving.

The utility problem only arises in dynamic learning systems. Moreover, it primarily arises in
systems that have a secondary goal of speeding up their processing on some task other than the
learning task itself. Informally, these systems acquire knowledge which should improve their
performance, and yet their performance degrades because of the additional processor overhead
the new knowledge imposes.

This leads us to the question of defining the possible performance tasks that a system might
engage in. Given such a definition, we can characterize the additional overhead that learning
imposes on performance, and from that analyze and evaluate possible solutions to the utility
problem.

2.2. A TAXONOMY OF PROBLEM-SOLVING SYSTEMS

Perhaps the most general characterization of perfomance tasks is as instances of problem
solving. Given a set of operators that define a problem space, a problem can be defined as a pair
of an initial state and a goal state in that problem space. Problem solving is the process of finding
a path between the initial state and the goal state, called a solution. A problem solver, then, is
simply an algorithm that performs this search process.

The length of the solution path is called the depth or difficulty of the solution, and is denoted
by d. The amount of work, w, that a problem solver has to do to find a solution defined to be the
number of nodes that the problem solver visits during the course of problem solving. The total
problem solving time t that the system takes is simply the product of the work and the average
time cost of each problem solving step, c:

t=cw

A final definition worth note is that of the size of a problem, s. A convenient definition of size
is the number of bits needed to represent the problem; note, however, that the size of a problem
description may have no bearing whatsoever on the difficulty of its solution. To see this, imagine a
problem space defined by program states and possible program inputs, and a problem whose
initial state is the initial state of a program and the goal state is that of a halted program. Since it is
easy to devise short programs that halt immediately, halt after arbitrarily long running times, or
never halt at all, it is correspondingly easy to devise three problems of the same size whose
solutions have vastly different difficulties O the first (immediate halt) with a difficulty of 1, the
second with a difficulty as great as we choose, and the third with an undefined difficulty (because
it is not soluble at all).

2.2.1. UNGUIDED PROBLEM SOLVERS

An unguided problem solver is a problem-solving procedure that has no knowledge about
which operators to apply at a given state, yet nonetheless is guaranteed to find a solution. An
unguided problem solver is simply one of the standard weak methods of artificial intelligence. One
such method is breadth-first search, which is the benchmark method we will use for comparison in
this paper. For breadth-first search, the work that a problem solver must perform to find a
solution to a problem is exponential in its depth:

Wn :bd,



where b is the average branching factor of the search space. To distinguish the work and time
that an unguided problem solver takes to solve a problem, these values are denoted wg and tr ;

the O symbolizes the lack of control knowledge [0 the "empty" knowledge base [ used by the
system.
2.2.2. META-LEVEL PROBLEM SOLVERS

A useful formalism for studying the utility problem is the meta-level problem solver model
(ETzIiONI 1992). Many existing systems that suffer from the utility problem can be modeled as
meta-level problem solvers, including Soar and PRODIGY .

Meta-level problem solvers augment a standard unguided problem solver by using a database,
K, of control rules, which guide the problem solver's choices of which states to visit. At each
state that a meta-level problem solver visits in a problem space, the system must match its
database against the current state to determine which control rules to apply. A meta-level problem
solver with no control knowledge degenerates to an unguided problem solver. With very little
modification, this definition of control rules can be extended to many kinds of knowledge, from
standard control rules to chunks to certain kinds of macro-operators.

The work and time that a guided problem solver takes to solve a problem are denoted by wy
and tx, where K represents the knowledge that the system uses to solve the problem.
2.2.3. CASE-BASED REASONING SYSTEMS

In this framework, case-based reasoning systems are dynamic learning systems that use a
database of past solutions, called cases, to avoid search in the problem space. The basic case-
based reasoning model uses a problem solving engine to produce the system's initial cases; for the
purposes of this model we will assume that this is an unguided problem solver, although this need
not be the case. The cases are then generalized and stored in a database, K, called a case library.
On future problem solving episodes, a retrieval engine searches the case library for appropriate
cases. A retrieved case is then adapted by the problem solving engine to produce the solution.

Actual case-based reasoning systems depart from this simple model in a number of ways.
Most real case-based reasoning systems use some kind of guided problem solver to perform
adaptation, either using generic control rules in addition to the operators or storing the equivalent
of control rules with each case. Not all case-based reasoning systems can function without cases.
In these systems, the problem solving engine is more appropriately termed an adaptation engine,
because it cannot solve the problem on its own and merely serves to adapt the initial cases that the
system has obtained from observation, instruction or preprogramming. Other case-based
reasoning systems use cases to predict and avoid failures as well as to plan for successes. Still
other systems can apply case-based reasoning recursively to perform adaptation; these systems
more closely resemble meta-level problem solvers than the basic case-based reasoning model. For
the purposes of the formal analyses in this paper, however, we will restrict ourselves to the basic
case-based reasoning model.
2.3. RETRIEVAL IN META-LEVEL PROBLEM SOLVERS AND CASE-BASED REASONERS

For both meta-level problem solvers and case-based reasoners, there are two key operations
that are crucial to the system's ability to guide or avoid search through the search space. The first
operation is the matching of the knowledge base to the current state, to determine which elements
of a knowledge base apply in the current situation. The second operation is the selection of a
particular element to apply in the current situation.

The combined operations of matching and selection are collectively called retrieval. The cost
of retrieval obviously depends on the number of items n in the knowledge base K, as well as on
the algorithms for matching and selection. On serial systems, the increased cost of retrieval is a



key factor in the utility problem.

3. THE UTILITY PROBLEM AS AN INTERACTION OF PERFORMANCE METRICS

The utility problem, in its most general form, is the phenomenon whereby a learning system L
acquires a knowledge base K with the goal of improving problem solving performance over
unguided problem solving by some calculated factor fc, but whose actual effect is to degrade
problem solving performance by some actual factor f5. In this context, better performance means
that the system expends less labor when solving the same problems, given some metric m of labor
like problem solving work or time. By this definition, the utility problem arises when the
calculated improvement factor f.<1, but the actual change in performance f3>1.

It is sometimes convenient to refer to the calculated improvement factor fe simply as the
speedup, F, and to refer to the ratio of the actual to the calculated improvements f5/f; as the
slowdown, S. Thus, the speedup can be represented by:

fc= Mprojected/Meurrent
and the actual improvement can be expressed by the formula:
fa = Sfc

Most frequently, the utility problem arises when the problem solving system calculates its
speedup with regards to one metric of system performance, such as problem solving work, but the
system's performance is measured by a different metric, such as problem solving time (TAMBE
ET.AL. 1990). For example, both case-based reasoners and meta-level problem solvers decrease
the number of states that the system visits during problem solving, but this improvement may be
offset by the increased overhead O imposed by the process of retrieval, causing the total problem
solving time to increase.

In meta-level problem solvers, control rules improve performance by reducing the number of
states that the problem solver visits, but this improvement comes at the cost of the additional
overhead Ok of matching those control rules at every state that the problem solver visits:

tk = (c+Oy)wi
Therefore, in meta-level problem solvers, when the calculated speedup factor f; of a knowledge
base K is defined to be the ratio of the work of guided and unguided problem solving:

fC = WK/WD ,
the actual speedup f5 can be defined as the ratio between the time cost of guided and unguided
problem solving steps:
fa = tK/tD = (C + OK)WK/CWD = (C+OK)fC.
Thus, the slowdown factor S can be computed as a function of the overhead Oy:
S= C+OK.

Lest the reader think that we are stacking the deck to make our point, we note in passing that
some systems explicitly assume an ideal cognitive model, in which the time of individual problem
solving steps always remain constant (TAMBE ET.AL. 1990).

Similar metrics can be defined for other types of systems, such as case-based reasoning
systems. The retrieval of a case occurs only once in an ideal basic case-based reasoner, and so the
total overhead is proportional only to the overhead of a single retrieval:

tk = OK + CWk
The calculated and actual speedup can be again derived in the same fashion:
fC = WK/WD ,
fa = tK/tD = (OK+CWK)/CWD =(c+ OK/WK)fC.
Thus, for case based reasoners, the slowdown factor S is:
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S = c+Ok/w.
As we can see, the overhead of retrieval creates much less of a burden on a case-based reasoning
system than it does on a meta-level problem solver, because the cost of retrieval is amortized
across all the remaining problem steps. Unfortunately, this advantage may disappear on more
realistic, more complex case-based reasoners, especially those that have a high degree of
recursion; furthermore, the cost of a retrieval of a case from a large case library may be greater of
a single control rule.

4. A TAXONOMY OF UTILITY PROBLEMS

Given this formalism, we can identify two main varieties of the utility problem: performance
utility problems, and search-space utility problems.
4.1. PERFORMANCE UTILITY PROBLEMS

We can define a performance utility problem as any utility problem in which the slowdown S is
a function of the overhead O; that is, any utility problem that arises because of interactions
between the learning that a system performs and the increased overhead the learning places on the
system's architecture. While a knowledge base K may reduce the work that the problem solver
does, the overhead it imposes outweighs that improved performance, increasing total problem
solving time. There are two primary performance utility problems: the swamping problem and the
expensive chunks problem.

4.1.1. SWAMPING

Swamping was first noticed in PRODIGY/EBL (MINTON 1988). Swamping occurs when a
system learns a large number of rules whose combined match time slows problem solving time
down more than individual control rules speed it up (COHEN 1990). In other words, the calculated
speedup F provided by the database is outweighed by the slowdown S(Ok) of the database. Each
individual rule may be useful and easy to match, but the overhead of matching the rule set
outweighs any performance benefit provided by the individual rules.

Swamping is, in a sense, the "core" utility problem because of the severe cost of retrieval in
serial computers; the O(n) bound on matching alone can be crushing for large knowledge bases.
For this same reason, it is the most amenable to solution by the addition of parallelism, and will be
the primary focus of this paper.

4.1.2. THE EXPENSIVE CHUNKS PROBLEM

The expensive chunks problem was first noticed in the Soar system (TAMBE ET.AL. 1990). The
problem occurs when single control rules are so expensive to match that they slow down the
entire system. The expensive chunks problem occurs whenever a small subset of K, denoted K",
degrades system performance enough to outweigh the benefits of K as a whole. In other words,
the calculated speedup F is again outweighed by the slowdown S(Ok), but the primary
contribution to that slowdown is the overhead O of a small subset of the rulebase K', even
though the size of K' may be very small (|K'|<<|K]). In fact, the overhead of the rest of the
knowledge base (Ok_k+) may not cause a slowdown at all (TAMBE ET.AL. 1990).

Many algorithms for matching control rules are NP-complete operations, and can become
arbitrarily expensive if rule size is unbounded. The performance effect of expensive chunks is
independent of the size of the database, and can have serious repercussions despite a move to
parallel hardware.

4.2. SEARCH-SPACE UTILITY PROBLEMS

There are a number of other utility problems that can affect a meta-level problem solver that
are unrelated to the performance overhead Ok. These utility problems arise because of problems
in the way that the control rules modify the system'’s search through the search space, not because
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of changes that occur in the system's architectural performance.

The composability problem occurs when individual control rules, learned to improve problem
solving performance with regards to one metric, actually degrade problem solving performance as
a rule set with regards to the same metric (GRATCH & DEJONG 1991A). The performance
overhead is irrelevant here, because while the calculated speedup F<1 for each individual rule kjC]
K, the total speedup of the whole problem base F>1 [0 that is, there is no speedup at all,
calculated or actual.

The branching utility problem can arise when a problem solver learns macro-operators that
change the topology of the search space itself. Etzioni effectively demonstrated that if the macro-
operators increase the branching factor of the search space even slightly, the additional number of
nodes visited can increase work and search time in the limit despite the improvement provided by
the macro-operators (ETzIONI 1992).

Finally, the wandering utility problem occurs when a set of control rules fails to curtail search
in the search space to a polynomial function of the problem difficulty. While the set of rules may
provide improvement on problems of the same difficulty for which they are learned, problem
solving time guided by the ruleset may still be exponential in solution depth, a situation which is
generally regarded to be intractable (ETzIONI 1992).

Solving these utility problems requires a careful analysis of the type of rules or cases that the
system generates. For the composability problem in particular, this is extremely difficult, because
control rules can theoretically interact in many different ways. A full treatment of search-space
utility problems is beyond the scope of this paper, but, in general, search-space utility problems
are best solved by never allowing them to occur in the first place (GRATCH AND DEJONG 1991B).
Even if they are solved, however, this is no guarantee that the system will avoid performance
utility problems. Therefore, the remainder of this paper will focus on parallel solutions to the
expensive chunks and swamping problems.

5. A BRIEF REVIEW OF PARALLEL ARCHITECTURES

Both the swamping problem and the expensive chunks problem arise when the cost of the
matching algorithm becomes so large that the speedup provided by the rules or cases is swamped
by the overhead of matching them. One possible solution to the utility problem, then, would be to
eliminate this overhead, perhaps through the use of massive parallelism to reduce the cost of
matching to a constant-time operation in the number of rules. To determine whether on not this is
possible, it is necessary to construct and analyze theoretical models of parallel machines. In this
paper, we will examine a standard model of parallel systems called Parallel Random Access
Machines, or PRAMSs.

A p-processor PRAM consists of p ordinary serial processors, each of which can access a
shared, global memory. Each processor can read from or write to any location in the global
memory (FORTUNE AND WYLLIE 1978). For the sake of simplicity, all processors are assumed to
be synchronized with each other, so that every individual processor performs exactly one serial
operation within the same time slice.

It is often convenient to assume that each processor pj is "responsible™ for a corresponding
memory location, denoted mj. In practice, there may be far more memory locations than
processors; the additional space is used for "scratch™ computation. For this text, we will assume
that each processor pj is responsible for two memory locations: a storage location kj containing an
item in the knowledge base K, and a scratch location m;j used to store intermediate results in
computations.

The basic PRAM model does not define what happens if two processors attempt to read from
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or write to the same memory location at the same time. Both reading and writing can be either
exclusive or concurrent operations, and there are four flavors of PRAMSs based on all possible
combinations of exclusive and concurrent reads and writes. For the purposes of this paper, we
need only concern ourselves with the two extremes: exclusive read, exclusive write (EREW)
systems, and concurrent read, concurrent write (CRCW) systems. In an EREW system, only one
processor can read from or write to a given memory location at any one time; in contrast, any
number of processors can read from or write to a given memory location at any one time in a
CRCW PRAM (CORMEN ET.AL. 1990).

Implementing a large, ideal PRAM of either variety is very difficult, and many theoreticians
believe that large, completely connected parallel machines are impractical (PARBERRY 1987).
Faced with these limitations, researchers have considered more tractable models of parallel
machines that require less connectivity, including models like the hypercube (SHIH AND FIER
1989). Hypercubes are multiprocessor parallel computer with a distributed, rather than global
memory; a hypercube of dimension d has 2d processor nodes, each connected to d other
processor nodes. Even extremely large hypercubes can be constructed well within the limits of
technologies under development [0 a hypercube with 109 processors, for example, would only
require on the order of 1010 interconnections, well within the upper limits currently projected for
optical computing (HECHT-NIELSEN 1986). A PRAM of 109 processors, on the other hand, would
require 1013 interconnections.

Finally, it is important to note the blurry distinction between serial and parallel systems.
Parallelism is only relative to the size of the knowledge base; a parallel machine with 10
processors does not provide many of the traditional advantages of parallelism if the expected size
of the knowledge base ranges from 1,000 to 10,000 items. On the other hand, a parallel system
that can guarantee that no processor will ever have to handle more than 10 items may provide
many of the same benefits as a system that allocates one processor per data item. For the purposes
of this paper, we define a parallel machine to be a PRAM whose number of processors is on the
order of the number of items in the knowledge base (p is O(n), where n is the size of the
knowledge base), and a serial machine to be a PRAM whose number of processors is constant (p
is O(2) in n).

6. PARALLEL CASE RETRIEVAL

The two core operations of retrieval can both be aided by a move to parallel hardware, but
there are pitfalls with each operation that complicate the benefits of parallelism.
6.1. PARALLEL MATCHING OF CASES AGAINST AN INDEX
PARALLEL-MATCH
Given a knowledge base K = (kg..kn-1), a state X, a matching function g, and a match threshold t:
1) For all i = 0 to n-1 in parallel do mj = g(x,kj)

On serial machines, Parallel-Match is O(k) with respect to the size of the casebase, n. On any
PRAM, Parallel-Match can be performed in O(1) time with respect to the size of the casebase, n.
However, this glosses over a number of other possible contributions to the running time. For this
discussion, the most important contribution comes from the time needed to perform the matching
function g on each individual case. If the size of each case is unbounded, then the time it takes to
match each case is similarly unbounded (ETzIONI 1992; TAMBE ET.AL. 1990). This is the
expensive chunks problem; while matching all the cases can be done in parallel, individual cases
can cause the total time for matching to increase.

Parallelism does provide a vast improvement over serial systems, in which match time is the



sum of all the match times of all the individual cases. On a parallel system, the time of matching is
simply the maximum match time of any individual case; however, this only a partial solution to the
expensive chunks utility problem; because the total match time of an individual case is still
unbounded. These results can be summed up by the following observation:

Observation 1: If rule size is unbounded, the running time of Parallel-Match, while still

O(1) in n, can become arbitrarily large.
6.2. PARALLEL SELECTION OF CASES FOR ADAPTATION

There are a number of different algorithms for selecting a memory item out of matching items
in a database; for case-based reasoning systems, however, the most appropriate policy is Best-
Selection [0 selecting the case that matches the current state best. Meta-level problem-solvers can
use different retrieval policies, such as Arbitrary-Selection [J selecting any rule that matches
within some tolerance value 0 and Absolute-Selection [0 select all rules that match within some
tolerance value.

Implementation of Arbitrary-Selection selection can be problematic [1 for example, Arbitrary-
Selection may select a preference rule for a given operator over a higher-matching rejection rule
for the same operator [J and implementing Absolute-Selection can lead to the problem of a large
number of rules concurrently executing at once. Because Arbitrary-Selection is unsuitable for
most case-based reasoning systems and Absolute-Selection cannot be implemented at all, we will
restrict our attention to the Best-Selection algorithm.

BEST-SELECTION(A)

Given knowledge base K = (kg..kpn-1), a state s, and a matching function g:

1) For all i =0 to n-1 in parallel do mj = g(x,kj)

2) For all i =0 to n-1 in parallel do select the rule with the best match score for execution

Step 1 of BEST-SELECTION is simply PARALLEL-MATCH, so the same complexity bounds and
the same observations hold: Step 1 of BEST-MATCH is O(1), but the constant factor can become
arbitrarily large if rule size is unrestricted.

Step 2 is more problematic. Finding a single best match is essentially the same as finding the
maximum of a set of values. If concurrent writes are allowed, finding the maximum can be done in
O(1) time; for exclusive-write PRAM's, however, the lower bound on finding the maximum
element of an array is Q(lg n), even with unlimited processors and unlimited memory (COOK ET AL
1986).

Alternative models of parallelism fare no better than exclusive-write PRAM's; the best that a
hypercube can do on either BEST-SELECTION is O(lg n) time. While actually performing the
matching operations can be done in constant time in a hypercube with one processor per data
item, propagating the match criteria to every node would take Q(lg n) time. Selecting the best
match is also a Q(lg n) time operation. This is no better than an exclusive-write PRAM, and
possibly much worse.

Observation 2: On any parallel machine prohibiting concurrent writes, BEST-SELECTION

is Q(lg n).

7. CONSTRAINTS ON HARDWARE SOLUTIONS TO THE UTILITY PROBLEM

We began our analysis of parallel systems by categorizing them in terms of the numbers of
processors and interconnections that the systems had and the types of operations that the system
permitted. Now, we can devise a new categorization, based not on the internal architecture of the
system but instead on the running times for retrieval that the architecture permits.

The worst class of systems are Class I retrieval engines, in which retrieval time is O(n) in the
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knowledge base size. These are current serial systems and most current parallel systems. Class 11
systems improve upon this by reducing retrieval time to O(lg n); hypercubes and EREW PRAMS
meet this criterion. Class I11 retrieval engines, the most powerful class of systems, have a retrieval
time that is constant and independent of the size of the knowledge base.

Class I Systems Class Il Systems Class Ill Systems
Hardware Types Serial RAMs EREW PRAMs, CRCW PRAMs
Small PRAMs, Hypercubes
Parallel-Match Time | O(n) 0(1) 0(1)
Best-Selection Time | O(n) O(lg n) 0(1)
Total Retrieval Time | O(n) O(lg n) 0(1)

Table 1. Running times of algorithms for various types of hardware

Clearly, Class 111 machines have the potential to fulfill the expectations of an ideal cognitive
model proposed in some systems, such as ABBY (DOMESHEK 1992) and Soar (TAMBE ET.AL.
1992). However, there are severe constraints on the kinds of hardware that can live up to the
stringent requirements of the CRCW PRAM model needed to implement a Class 111 machine.

In current (VLSI) systems, it is unclear whether or not CRCW machines really provide the
advantages that they theoretically claim to, since CRCW hardware is, in general, slower than
EREW hardware. The full power of a concurrent-write PRAM depends essentially on its ability to
perform a Boolean AND of n values in constant time (CORMEN ET.AL. 1990). In VLSI
technology, however, the lower bound on the size of a Boolean formula in n variables is Q(n),
excluding fan-out considerations of individual processing elements (BRENT AND GOLDSCHLAGER
1982). Including fan-out considerations upper bound on the area of such a chip is O(n2log3n).
For time, the upper bound is the familiar O(log n). These considerations indicate that, at least, the
real silicon hardware to implement the interconnections of a concurrent-write PRAM will be more
expensive than the processors used in computation. At worst, it indicates that the performance
advantages of VLSI concurrent-write PRAMs are entirely imaginary, because the hardware
required to run them eliminates the advantages of the abstraction.

Optical computing may provide a way of getting around the AND problem; optical AND
gates of virtually unbounded fan-in can be constructed simply by directing multiple beams of light
towards a single source (TOBORG AND HWANG 1989). However, despite their projected speed and
versatility, even optical computers fail to provide the number of interconnections needed to
support a full PRAM of billions or even millions of elements. Volume holograms are projected to
provide up to billions of interconnections (HECHT-NIELSEN 1986) but even a million-element
PRAM would require a trillion interconnections.

Beyond optical computing lie more exotic technologies. Molecular nanotechnology will make
possible the inexpensive mechanosynthesis of ~1000 MIPS nanomechanical RISC systems in
extremely short time scales (DREXLER 1992). This will make the construction of parallel systems
with extremely large numbers of processors easier, perhaps even allowing systems to be extended
on the fly. Furthermore, if some analog method of computing an AND with near-unbounded fan-
in can be devised, constructing the requisite number of interconnections can be performed cheaply
and reliably.

The point of this section is not that it is impossible to build a giant concurrent-write PRAM;
similar remarks were made about airplanes around the turn of this century after the Wright
Brothers' first flight. The point is that designing a large Class 111 machine is a highly nontrivial
problem, requiring 1) massive parallelism, on the order of the number of items in the database and
either 2a) full connectivity, or 2b) dedicated hardware for the distribution of match criteria to all



nodes (a dedicated equivalent of a concurrent read) and dedicated hardware for the accumulation
of best-match rules, (a dedicated equivalent of a concurrent write).

This is possible, but far in the future. Even if a Class 11l machine were built, it would be an
extremely expensive solution, as measured in the sheer amount of processor power and other
hardware devoted just to interconnections rather than actual computations. For this reason, it is
likely that Class Il machines [0 which only require the number of processors, not the full
connectivity O will be built and become common before any Class Il machines are ever
constructed. The practical effect of this can be summed up by the following observation:

Observation 3: Theoretical and practical considerations currently do not permit the

construction of Class I11 retrieval engines, placing a lower bound of at least O(lg n)
on retrieval algorithms on parallel hardware.

8. THE SIGNIFICANCE OF THE TIME COMPLEXITY OF BEST-SELECTION

A logarithmic time bound is usually a joy to the eyes of any computer scientist; it usually
signifies an easy problem, one readily amenable to increased processor size and time. For machine
learning, however, the logarithmic time bound means that the utility problem will not go away, at
least for multi-purpose learners functioning in an open world. The problem arises and remains
because the absolute speed of the memory is not the issue [ only the relative speedup is.

In speedup learning, the most that a learned item can provide is a speedup of a constant factor
F. To see this, note that while a casebase or rule set may reduce exponential search to
polynomial-time problem solving, for any one given problem instance the problem difficulty is
fixed, and the ratio of unguided and guided work performed is similarly fixed. This ratio, F,
depends only on the problem, the problem difficulty, and the advantages provided by the rules that
apply to the particular problem.

8.1. PROBLEM SOLVING IN CLOSED WORLDS

Closed world systems assume that a reasoner's knowledge about a domain in which it operates
is complete I one in which input features are set in advance, input data is quiet (error-free), and
the domain knowledge needed for problem solving can be completely specified in advance
(RIETER 1978). In a closed world system with limited-size problems, a problem solver can always
converge into a finite set of rules to solve a problem.

To see why, let the input size of the problem be its length in bits. If problems are less than
some size s, then there are less than 25 problems. A rote case-based reasoning system could store
each case identically, recalling it if and only if the same problem statement appears. Of course,
such a rote learner is intractable. Suppose the maximum problem size is 100 bits, not an
unreasonable assumption. Then we have 2100 problems, which is (210)10 [ 1030 different
problems.

On a serial system, the total overhead for such a knowledge base is O(2S), which is an
exponential in problem size and likely to quickly exceed the work of rederiving a solution. On a
Class Il parallel system, however, the total overhead would be O(lg 25) = O(s), which is
polynomial in problem size. This is a large improvement, but problem size has Ittle to do with
problem difficulty. If the rote learner's problems are not that difficult, then the rote learner still
suffers from the utility problem. For example, assume that the cost of applying an operator is
roughly equivalent to a memory retrieval of a single case, and further assume that the result of
each problem was a 1-step path, obtained from applying the result of one of ten operators. Then,
the time cost of unguided problem solving is simply 10. Then memory will experience a slowdown
of a factor of 100 over the course of learning, and will very quickly exceed the cost of applying
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and testing the results of each operator.

However, assuming that the problem statement is tractable and assuming that the problems
have a large difficulty values, then we can construct a rote learner or other simple learning system
running on Class Il parallel hardware that will learn all that it needs to know without ever
encountering the utility problem.

8.2. PROBLEM SOLVING IN OPEN WORLDS

In open worlds, many of the safe assumptions of closed worlds do not apply because a
reasoner's knowledge may be incomplete or inconsistent (HINRICHS 1991). For example, the set of
input features may need to be learned; alternatively, a set of input features may be specified in
advance, but the number of bits needed to describe a problem can be incredibly large, even into
millions of bits (DOMESHEK 1992), in which case a rote learner is intractable. Input may be
errorful, or the existing set of features may not cover all of the relevant features of the domain.
The domain theory may not be complete or may not exist.

In an open world, it is unlikely that a learner would ever converge on a set of learned rules or
cases that completely cover the domain. Even if such a set exists, the system's input bandwidth
and useful life may not be long enough to acquire it; the universe is an example of such a domain
with respect to human science.

Even if such a learning system were able to acquire a complete set of rules for some subtask in
the problem domain, it will continue to learn about other problems and other intricacies of the
system. In effect, the learner runs forever, and the maximum problem size (the maximum amount
of data you can apply in any given situation) may be very small compared to the number of
examples the system encounters in its lifetime.

In open worlds, the slowdown S caused by the overhead of the performance component is a
function of the size of the database and can increase independently from F as the system learns
about other problems in other domains. While speedup remains fixed, the slowdown increases at a
rate of at least Ig n and is unbounded in size. This leads us to the following observation:

Observation 4: Any policy for learning items only guaranteed to bring an average
speedup of F will be swamped in the limit by the increasing cost of memory access
for any parallel machine that prohibits concurrent writes.

A valid criticism of this characterization of the utility problem is that no current algorithms
ever approach the number of items in their databases that they would need to cause swamping on
a parallel machine. This is only partially true; no existing system that suffers from the utility
problem has ever been scaled up that far, but databases that would cause the problem already
exist [ for example, the CYC database (LENAT AND GUHA 1992). Even those who do not agree
with the CYC philosophy must recognize that the size of the CYC database is a good indication
of how large Al databases are likely to get on open world problems. Case bases are likely to grow
to this size as well, especially in general-purpose case based reasoning systems that depend on
extensive databases in multiple domains to provide cross-domain remindings. This leads to the
next observation:

Observation 5: Existing learning algorithms produce learn items with an average
speedup that is small enough that even a logarithmic slowdown will swamp them for
reasonably-sized databases and open world problems.

For example, the CYC database currently holds 107 items, and even that number reflects an
incomplete database not yet containing any additional modules for application domains. It is a
reasonable extrapolation to assume that the CYC database could grow in size to as many as 109
items, especially if the underlying model is extended to include speedup learning. 109 items will
cause a Q(lg n) slowdown on the order of ~30, regardless of the constant factors, which cancel
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out when computing slowdown. But the average speedup provided by various learning schemes is
far less than this [ on the order of 6-10 times for Soar, and 2-6 for PRODIGY. This indicates
that if Soar or PRODIGY are scaled up to reasonably-sized open world databases, any rule they
learn is guaranteed to cause slowdown, rather than speedup.

8.3. WHAT ABOUT THE CONSTANT FACTORS?

One part of the picture hidden by the O(lg n) time bound is the constants of memory retrieval
and problem-solving steps. If each problem solving step takes 100 times as long as a memory
access, then even a slowdown of 30 on memory operations will not cause an overall slowdown in
average problem solving time. On the other hand, if memory operations take as long as or longer
than problem solving steps, then even a small slowdown can cause the utility problem.

For conventional hardware, memory accesses are generally slower than CPU operations. This
problem tends to worsen as CPU speeds increase because memory access generally require off-
chip access. Even if we assume that memory operations can be brought on-chip, however, it is
reasonable to assume that memory accesses may still require more time. As interconnections
increase, the size and time required to input values increases at O(nZlog3n) and O(log n)
respectively. For a fully connected PRAM, each interconnect may have a billion input bits, and for
most problems the space and time complexity of such a circuit will be far larger than the space
and time complexity of the (relatively) simple circuitry needed to perform an individual problem
step.

9. COPING STRATEGIES AND CASE BASED REASONING

Given the nature of the utility problem and the theoretical limits and practical limits on parallel
solutions to the problem, it is clear that alternative solutions are needed. However, the pitfalls of
the idealized matching algorithms considered earlier O the arbitrarily large constant factor that
arises during the matching of rules and the O(lg n) bound for finding the best rule in the entire
database I provide us with fairly good indications of the kinds of solutions that will be effective
in eliminating the utility problem.

Because the ideal algorithms are intractable, solutions to the utility problem lie in deliberately
adopting explicit storage and retrieval policies that depart from the ideal algorithms in ways that
are guaranteed to improve performance. The following list of policies is by no means exhaustive,
but they do suggest ways to attack the utility problem.

9.1. SWAMPING

1) Class 111 Retrieval Engines: Use a hardware solution to provide an ideal cognitive model.
Tempting though this policy is, it is not currently available and will not be within the lifetimes of
current Al systems.

2) Restricted Learning Policy: Never learn anything with a speedup of less than the
slowdown produced by the maximum expected size of the system database. In other words,
compute an upper bound on the overhead O incurred by the memory and the corresponding
slowdown S that this causes; then, ensure that the speedup factor F will always be greater than the
maximum slowdown. For systems with quick matching times and long problem-solving times this
may be relatively easy. For memory-intensive systems, this may be nearly impossible.

Case-based reasoning provides two primary kinds of support for a restricted learning policy.
First, by amortizing the overhead over many adaptation steps, ideal case-based reasoners suffer
less severely from the same overhead than a more conventional meta-level problem solver.
Second, cases have the potential to eliminate vast amounts of search in the search space,
providing improvements robust enough to survive the architectural slowdown.
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An example of a system that satisfies these requirements is the CASEY program (KOTON
1989), a case-based reasoning system that serves as a speedup module for a model-based medical
expert system. CASEY's cases provided up to three orders of magnitude of improvement over the
original problem solver. Even a slowdown of a factor of 30 or more would not swamp the
speedup provided by such a case, assuming that case memory access time is within the same order
of magnitude as the time needed to adapt a case. Unfortunately, as noted above, most problem
solving systems do not provide performance improvements anywhere near this order of
magnitude.

3) Deletion Policy: Prune the database so that the slowdown never becomes unreasonable.
Formally, fix a lower bound on F, the minimum acceptable speedup, and then constrain the size
and overhead of the database such that S never exceeds F. Deciding what can and cannot be
deleted is in and of itself a difficult problem. For some systems, like Prodigy, in which no one
operator or rule is critical, deletion of least-recently-used or even random items may be a viable
option. Experiments with the FUNES system verify that even random deletion can improve
performance (MARKOVITCH AND ScOTT 1988). Other systems, like Soar, combine the results of
knowledge-level and symbol-level learning in the same rule format; the elimination of the wrong
rule can cause critical errors in a problem-solving sequence.

Case-based reasoning systems can adapt to a deletion policy, but most real case-based
reasoning systems contain critical knowledge in many of their cases, knowledge without which
solutions are impossible. Deletion policies in these kinds of systems must be carefully designed
never to eliminate knowledge that is critical to the system's operation.

4) Guided Search Policy: Limit the amount of the database that is examined during retrieval
so that the slowdown never becomes unreasonable. Formally, this is similar to a deletion policy,
except that it is not the size of the database itself that is being constrained but instead the amount
of the database that is searched. Matching and/or selection is constrained to a subset of the
database; for the purposes of the running time of retrieval, it is as if the system was operating with
a smaller database and incurring a proportionately smaller overhead.

However, no information is ever eliminated from the database; if critical information that is
needed is not found on the first pass of retrieval, then retrieval can be extended to find it without
imposing a performance penalty on all retrievals that find a suitable item on the first pass. Various
policies of guided search have proven effective in speeding up problem-solving performance
(MOONEY AND SRIDHARAN 1989, MARKOVITCH AND SCOTT 1989).

The real advantage of guided search policies is that they scale smoothly to both Class I and
Class Il machines (JONES 1992). (Scaling to Class Il machines is not necessary, of course,
because the problem goes away.) Search needs to be more severely curtailed for serial than
parallel implementations to gain the same benefit, but the processes involved are identical.

A number of case-based reasoning systems already implement guided search policies through
their choice of indexing schemes (KOLODNER 1992). These indexing schemes partition the
system's case library and use indices [ processed match criteria [I that allow the system to
search only a subset of the available partitions. Indexing thus makes case-based reasoning
resistant to architectural overhead based purely on the increase in numbers of cases, and makes
case-based reasoning a viable learning strategy for both serial and parallel machines.

9.2. EXPENSIVE CHUNKS:

1) Restricted Expressiveness Policy: Eliminate expensive chunks by limiting the kinds of
chunks that the system can form. In Soar, this was accomplished by limiting the language used to
express chunks so that expensive chunks were never formed; this tack was successful for a wide
range of problems (TAMBE ET.AL.1990). One of the drawbacks to this policy is that more chunks
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need to be formed to provide the same speedup; however, experiments with Soar indicate that this
is an effective means for eliminating the utility problem.

Case-based reasoning systems can suffer from the expensive chunks problem, but systems can
easily incorporate a restricted expressiveness policy into the indexing scheme itself. For example,
some case-based reasoning systems attack the expensive chunks problem by placing an upper
bound on the size of an item that can be matched (DOMESHEK 1992).

2) No-Wait Policy: Terminate longer-running matches when a successful alternative has been
found. This is really a combination of Absolute- and Best-Selection policies. If a quick-matching
rule has a high match score, relative to some absolute scale, it is posted to the problem solver and
matching of all other rules is terminated. Case based reasoning systems can easily adapt to a no-
wait policy.

3) Asynchronous Match Policy: Allow expensive chunks to match asynchronously. One way
to do this and still preserve the "best match"” philosophy is to have a cut-off point at which all the
completed matches are compared against each other. The maximum value is posted to the
problem solver, but if any later matches complete with a better match value, they are posted to the
problem solver as well as they come in, like news-flashes in a newsroom. Also like a newsroom,
there may be an absolute deadline for a match time [0 for example, the point at which a matched
rule's preconditions no longer apply.

Most case-based reasoning systems cannot take advantage of asynchronous match policies,
because they only select a single case for adaptation at once. Case-based reasoners that attempt to
apply and adapt multiple cases could, however, allow matching and retrieval to continue in the
background while the intial case is being matched, and then would conceivably have a better set of
cases to choose from when it selected the next case for adaptation.

9.3. COPING STRATEGIES FOR OTHER UTILITY PROBLEMS

In addition to their advantages on performance utility problems, case-based reasoning systems
have a number of other features that aid them in tackling search-space utility problems as well.
For example, basic case-based reasoners avoid the composability problem entirely, because two
cases cannot be applied at once. More advanced case-based reasoners may call case-based
reaosning recursively and might run into a situation where two adaptation cases may conflict;
once a conflict is recognized and resolved, however, it could be stored in the case itself to
eliminate conflicts in the future.

Furthermore, basic case-based reasoning systems avoid the branching problem by segregating
learned cases from operators. Applying an operator and selecting a case are entirely different
operations. Learning a new case may increase the overhead of the memory system, but it does not
increase the branching factor of the search space, because cases are not operators and cannot be
applied in the place of operators. Even more advanced case based reasoners that learn macro-
operators for adaptation can also store preference and selection rules for operators with each
case, so that the application of these new operators is restricted and the increase in the branching
factor eliminated.

More advanced case-based reasoners can avoid the wandering utility problem by learning from
both success and failure. Advanced case-based reasoning systems can assign blame in failure
scenarios and learn critics that use this knowledge to terminate adaptation paths likely to end in
failure; similarly, analysis of successes can lead to preference critics that select more likely paths
of adaptation first, increasing the likelihood that a system will more quickly reach a solution.

10. FURTHER WORK
10.1. A NEW METRIC: CRITICALITY OF KNOWLEDGE
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Not all learning is speedup learning; some systems combine knowledge-level learning and
symbol-level learning, sometimes even using the same knowledge representation format for both.
In this case, both deletion and guided search policies must be devised carefully, because the
overhead swamping out the utility of control rules may actually come from a body of domain
knowledge which may be critical for the system's operation. In these systems, knowledge must be
characterized on two dimensions: its utility and its criticality.

The utility of a piece of knowledge is typically defined as the degree to which the knowledge
alters the problem solver's search through the problem space; in contrast, the criticality of a piece
of knowledge can be defined as the degree to which it alters the problem space itself. Thus,
critical knowledge is knowledge that defines the problem space within which a system functions.
Semi-critical knowledge, like cases and macro-operators, redefines the topology of the search
space, but does not redefine the set of states that the search space contains. Non-critical
knowledge does not redefine the problem space, but it may alter the search of that space
significantly.

In a true meta-level problem solver, critical and non-critical knowledge are segregated: all
critical knowledge is always contained within the problem solving component, and all non-critical
knowledge is contained in the knowledge base itself. In traditional case-based reasoning
programs, the case library usually contains both non-critical and semi-critical knowledge. If the
best-match case is deleted, these systems can usually adapt the next-best match, possibly with
reduced performance or competence. In some systems, such as MEDIATOR, every case may
contain critical knowledge, without which entire portions of the search space are inaccessible
(KOLODNER 1989).

A thorough analysis of the general utility problem must analyze the relationship of criticality of
knowledge to various policies for restricting search and matching. One way to do this might be to
use the system's learning goals to identify and organize useful knowledge for selective storage and
retrieval (RAM AND HUNTER 1992). A formal characterization of criticality is crucial for devising
effective guided search and deletion policies.

10.2. MOORE

As an attempt to put the principles embodied in this paper into practice, the authors are
currently constructing a memory module called MOORE which attempts to eliminate the utility
problem. MOORE uses a combination of restricted expressiveness and asynchronous match policies
to limit the expensive chunks problem, and adopts a guided search policy called context focusing
to limit swamping. Context focusing uses a trace of a system's reasoning both within and across
problems to guide memory search. This trace, along with a record of the effectiveness of memory
items for retrieval, is also used to index new memory items as they are stored. A potential
advantage of context focusing is that it is both an indexing scheme and a guided search policy; in
theory, context focusing can scale smoothly to all three classes of hardware, from serial to
exclusive-write to concurrent-write systems, without the need for reprogramming or reprocessing
of the underlying database.
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