Distributed mediation of imperfectly sensed context in
aware environments

Anind K. Dey, Jennifer Mankoff and Gregory D. Abowd
College of Computing & Graphics, Visuali zation, & Usability Center
Georgia Institute of Tecdhndogy
Atlanta, GA 303320280
{anind, jmankoff, abowd} @cc.gatech.edu

ABSTRACT

Current context-aware services make the ssumption that
the context they are deding with is corred. However, in
redity, both sensed and interpreted context is often imper-
fed. In this paper, we describe an architedure that supparts
the building of context-aware services that assuume ntext
is imperfed and all ows for the refinement of this imperfea
context by mobile users in aware-environments. We discuss
the achitedural medhanisms and design heuristics that
arise from supparting this refinement over space ad time.
We illustrate the use of our architedure and heuristics
through two example @ntext-aware services, an In-Out
Board for the home and a situation-aware reminder toal.

KEYWORDS: context-aware computing, distributed media-
tion, aware environments, ubiquitous computing, mobile
computing

INTRODUCTION

A charaderistic of an aware ewvironment is that it senses
context, information sensed about its occupants and their
adivities, and reads appropriately to this context, by pro-
viding context-aware services that fadlitate the occupants
in their everyday adions. Reseachers have been trying to
build tools and architedures to fadlitate the aedion of
these mntext-aware services by providing ways to more
ealy aquire, represent and dstribute sensed data. Our
experience shows that though sensing is becoming more
cost-effedive and ubiquitous, it is gill i mperfed and will
likely remain so. A challenge fadng the development of
redistic context-aware services, therefore, is the aility to
handle imperfed context.

In this paper, we present an architedural solution for im-
plementing context-aware services that assime imperfed
information about the mntext of humans in mobil e settings
and allows for the distributed, refinement of incorred con-
text by humans in aware ewironments. This architedure
allows humans in an aware ewironment to deted errors in
sensed information about them and their intentions and cor-
red those arorsin avariety of ways. In previous work, we
have presented an architedure for the development of con-
text-aware services, but that context was assumed to be
perfed [8]. We have dso developed an architedure to sup-
port the mediation of errors in recogniti on-based interfaces
[14]. The work presented here combines and expands those
previous lutions to confront additional challenges that
arise in highly mobil e interadive environments.

Imperfedly sensed context produces errors smilar to rec-
ognition-based interfaces, but there ae alditional chal-
lenges that arise from the inherent mobility of humans in
aware ewvironments. Spedficdly, since users are likely to
be mobile in an aware environment, the interadions neces-
sary to aert them to pesshble mntext errors (from sensing
or the interpretation of sensed information) and allow for
the smoath corredion of those erors must occur over some
time frame and over some physicd space We discuss ®me
of the new architedural medchanisms and heuristics that
come into play, since designing corredion strategies over
time and spaceinvolves more than just an architedure that
supports error mediation.

After summarizing some related work, we will present brief
overviews of our own previous work that we have extended.
We overview the Context Toadlkit, an infrastructure to sup-
port the rapid development of context-aware services,
which has asaimed perfed context sensing in the past. We
then overview OOPS (Organized Option Pruning System),
an architedure for the mediation of errors in recognition-
based interfaces. We describe an extended Context Toalkit
that no longer asaumes perfedly sensed context and ex-
pands on mechanisms from OOPS to allow for the media-
tion of imperfedly-sensed context.

We then describe two separate implemented scenarios that
use the extended Context Toolkit to fadlit ate interadionsin
aware environments that are sympathetic to errors. The first
example, set in a home, shows how low-level identity and
intention recognition can be wrreded in a variety of ways.
To fadlitate this corredion, the feedbad and mediation
strategies must be distributed wisely. The second example,
set in an office deds with higher-level human intentions,
something that will not likely ever be attomaticadly and
perfedly sensed, and how an environment can make rea-
sonable asaumptions of these intentions and alow for the
modificaion over time. We @nclude the paper with a dis-
cusson of further challenges in context-aware computing
that ded with mediating interadions over time and space

RELATED WORK

Over the past several yeas, there has been a number of
reseach efforts whose ultimate goal has been to crede a
ubiquitous computing environment, as described by Weiser
[20]. We divide these dforts into three céegories. aware
environments, architedures to suppat context-aware serv-
ices, and relevant context-aware services.

An aware environment is an environment that can automeati-
cdly or implicitly sense information or context about its
occupants and itself and can take adion on this context. In
the Readive Room projed, a room used for video
conferencing was made aware of the context of both users
and oljedsin the room for the purpose of relieving the user
of the burden of controlling the objeds [5]. For example,
when afigure is placal underneah a document camera, the
resultingimage is displayed on alocad monitor aswell ason
remote monitors for remote users. Similarly, when a video-
tape is being played, the lights in the room will automati-
cdly dim.

Along the same line, Mozer built the Neural Network
House, a house that uses neural networks to balance the
environmental needs of a user against the csts of heaing
and lighting the house [15]. The house gradually leans
occupants’ patterns of heaing and lighting control for vari-
ous locaions in the house axd various times of day. It uses
this knowledge to predict user needs and automaticdly
controls the heaing and lighting, while, at the same time,
attempting to minimize the overall expense incurred from
them.

Environmental control was also a goal in the Intelli gent
Room projed [4]. The Intelligent Room uses automaticaly
sensed context along with explicit user input to adapt appli-
cdions or services. Example services include turning off the
lights and turning on socthing music when an occupant lies
down on a sofa, and retrieving weaher or news information
that are relevant to the aurrent context.

Bobick et a. also huilt an aware ewironment cdled
KidsRoom [1]. KidsRoom was an interadive narrative
spacefor children. The dements of the narrative continued
based on the implicitly sensed adivities of the dildren.
These adivities included talking to and dancing with ava-
tars displayed on the walls.

These four aware environments all share the same property:
they use implicit sensing but ignore aty uncertainty in the
sensed data and its interpretations. If the environment takes
an adion on incorredly sensed input, it is the occupant’s
responsibility to undo the incorred adion (if this is poss-
ble) and to try again.

A number of architedures that fadlitate the building of
context-aware services, such as those found in aware evi-
ronments, have been built [2,6,9,11,13,19]. Unfortunately,
as in the cae of the avare environments, a simplifying as-
sumption is made that the mntext being implicitly sensing
is 100% certain. Context-aware services that are built on
top o these achitedures ad on the provided context with-
out any knowledge that the mntext is potentially uncertain.

There ae some exceptions to this assumption about cer-
tainty. We will examine two context-aware services that
illustrate how individual services have atempted to take
uncertainty of sensed input into acount. The first is the
Remembrance Agent, a service that examines the user’'s
locdion, identity of nearby individuals, and the airrent time
and date to retrieve relevant information [18]. The inter-

pretation of the sensed context into relevant information is
uncertain here. Rather than displaying the information with
the highest cdculated relevance the Remembrance Agent
instead presents the user with a list of the most relevant
pieces of information and the relevance fador for ead. In
this way, the user can choose what is most relevant to the
current situation from afiltered set.

The seaond service we will discussis Multimodal Maps, a
map-based applicaion for travel planning [3]. Users can
determine the distances between locaions, find the location
of various stes and retrieve information on interesting sites
using a ombination of dired manipulation, pen-based
gestures, handwriting and speed input. When a user pro-
vides multimodal input to the gplication, the gplicaion
uses multimodal fusion to increase the likelihood d recog-
nizing the user’s input. Rather than take adion on the most
likely input, if there is any uncertainty or ambiguity re-
maining after fusion, the gplicaion prompts the user for
more information. By prompting the user for additional
information, the system reduces the chance of making a
mistake and performing an incorred adion.

Rather than asauming that sensed input (and its interpreta-
tions) is perfed, the two services demonstrate two tech-
niques for alowing the user to corred uncertainty or
ambiguity in implicitly sensed input. Note that both systems
require explicit input on the part of the user before they can
take any adion. The goal in our work isto provide a ar-
chitedure that suppats a variety of techniques, ranging
from implicit to explicit, that can be gplied to context-
aware services. By removing the simplifying and incorred
asamption that all context is certain, we ae atempting to
fadlit ate the building of more redistic context-aware serv-
ices.

EXISTING SUPPORT

Similar to the achitedures described in the previous sc-
tion, we have built an architecure for the development of
context-aware services, but the mntext it used was asaumed
to be perfed [8]. We have dso developed an architedure
that supparts the mediation of errors in recogniti on-based
interfaces [14]. We will now describe the relevant feaures
of both architedures. The next sedion will describe how
these achitedures were combined and extended to suppart
usersin mediating imperfedly sensed context.

The Context Toolkit

The Context Todlkit is a software todlkit that is aimed at
alowing others to build services that suppat mobile users
in aware ewvironments. The Context Toolkit makes it easy
to add the use of context or implicit input to existing appli-
caionsthat don’t use mntext.

The Context Todlkit consists of threebasic buil ding blocks:
context widgets, context aggregators and context interpret-
ers. Figure 1 shows the relationship between sample @ntext
components and appli cations.

Agg:mgmr
Interp reter

Widget Widget
Comntext

Arc]iitel:ture

Figure 1: Context Todkit components: arr ows indicate
data flow.

Context widgets encgpsulate information about a singe
pieceof context, such as locaion or adivity, for example.
They provide auniform interfaceto components or appli-
caions that use the context, hiding the detail s of the under-
lying context-sensing mechanism(s), allowing them to trea
implicit and explicit input in the same manner. Context
widgets alow the use of heterogeneous sensors that sense
redundant input, regardlessof whether that input is implicit
or explicit. Widgets maintain a persistent record o all the
context they sense. They alow other components to bah
pall and subscribe to the context information they maintain.
Widgets are responsible for colleding information about
the environment.

A context interpreter is used to abstrad or interpret context.
For example, a context widget may provide locaion context
in the form of latitude and longitude, but an appli cation may
require the location in the form of a stre¢ hame. A context
interpreter may be used to provide this abstradion. A more
complex interpreter may take mntext from many widgets in
a onferenceroom to infer that a medingistaking place

A context aggregator is very similar to a widget, in that it
supparts the same set of feaures as a widget. The differ-
enceis that an aggregator colleds multiple pieces of con-
text. In faq, it is responsible for the etire context about a
particular entity (person, place or objed). Aggregation
fadlit ates the accesof context by applications that are in-
terested in multi ple pieces of context about asingle antity.

Context components are intended to be persistent, runring
24 hours a day, 7 days a week. They are instantiated and
exeauted independently of ead other in separate threals
and on separate mmputing devices. The Context Tod kit
makes the distribution of the context architedure transpar-
ent to context-aware gplications, handling all communica-
tions between appli cations and components.

OOPS

OOPS is a GUI (graphicd user interface toalkit that pro-
vides suppart for building interfaces that make use of rec-
ognizers. Like sensing, recognition is ambiguous, and
OOPS provides suppart for tradking and resolving, or me-
diating, uncertainty.

Because OOPS provides sippart for buildinginterfaces, our
focus in OOPS is on integrating recognition into the exist-

ing input dispatching system of subArctic [10], the GUI
toolkit that OOPS is built upon. This means that, for exam-
ple, if arecognizer produces text events, they will be dis-
patched through the same mechanism as charaders
produced by a keyboard, and thus will be avail able to any-
thing that consumes keyboard input.

Additionally, OOPS provides an internal model of reg-
nized input, based on the concept of hierarchicd events
[16], that allows separation of mediation from recognition
and from the gplicaion. As we will seg thisis a key ab-
straction that we use in the extended Context Toalkit.

Our model uses a direded graph to keep tradk of source
events, and their interpretations (which are produced by one
or more recgnizers). For example, when the user spe&ks, a
speed recmgnizer may take the audio (the source event)
and produce sentences as interpretations. These sentences
may be further interpreted, for example by a natura lan-
guage system, as nouns, verbs, etc. Figure 2 shows the re-

sulting gaph.

Figure 2: Graph representing interpretations.

Note that there ae two dfferent sentences wown in this
graph, at most one of which is corred (i.e. is what the user
acdually said). We cdl this stuation ambiguous and media-
tion is used to resolve the ambiguity. In particular, a me-
diator will display feedbadk about one or more
interpretations to the user, who will then seled one or re-
ped her input.

Once the rred input is known, OOPS updates the di-
reded graph to include information about which events
were acceted and rejeded, and notifies the recognizer that
produced the events and any consumers of the events, of
what happened. At this point, consumers can ad on an
event (for example, by exeauting the command spedfied by
theuser in his peed).

To summarize, OOPS automaticdly identifies ambiguity in
input and intervenes between the recognizer and the gpli-
caion by passng the direded graph to a mediator. Oncethe
ambiguity is resolved, OOPS all ows processng of the input
to continue & normal.

MEDIATING IMPERFECT CONTEXT

As gated previoudly, the Context Toolkit consists of wid-
gets that implicitly sense antext, aggregators that colled
related context, interpreters that convert between context

types, applications that use context and a mmmunications
infrastructure that delivers context to these distributed com-
ponents. OOPS consists of applicaions (interfaces) that
produce input, recognizers that convert between input types
and applications that use input. We will now discuss how
the Context Todkit and OOPS were @mbined and ex-
tended to suppart context-aware services that can ded with
ambiguous context.

In order to understand our extensions, consider a single
interadion. Initially, context isimplicitly sensed by a con-
text widget. This context is ent to an interpreter that is
equivalent to a recognizer in OOPS. A context interpreter
now creaes multiple ambiguous interpretations of that
context. Each interpretation is an event that contains a set of
attribute name-value pairs (a pieceof context) and informa-
tion about what it is an interpretation of (its urce) and
who produced it. Theresult isadireaed graph, just like the
representation used in OOPS.

Once the widget receves the interpretations, it sends them
to all of its subscribers. Note that the widget does not send
the entire graph to subscribers, just those events that match
the subscription request. This is done in order to minimize
network cdls (which can be quite extensive and costly) as a
graph is generated and mediated.

Since widgets and aggregators, as well as applications, may
subscribe to a widget, al of these mmponents must now
include suppart for deding with ambiguous events (and
mediation of those events). A subscriber in the Context
Toolkit recaeves data through an input handler, which is
responsible for deding with distributed communicaions.
This input handler chedks incoming context for ambiguity,
and, if necessary, sends the context to a mediator instead of
the subscribing component. Mediators intervene between
widgets (and aggregators) and applications in the same way
that they intervene between recognizers and applicaions in
OOPS. Sincethe subscriber may be an aggregator or a wid-
get, thereis anedl for distributed feedbadk servicesthat are
separate from applicaions. For example, a mediator may
use the widget that generated the anbiguous event to com-
municae with the user (since sensors are usually co-located
with the things that they are sensing).

Once amediator provides feedbad to the user, the user
responds with additional input. The mediator uses this in-
formation to update the event graph. It does this by telling
the widget that produced the eventsto accept or regjed them
as corred or incorred. The widget then propagates the
changes to its subscribers. If ambiguity is resolved, the
events are delivered as normal and subscribers can ad on
them. Otherwise, the mediation processcontinues.

Summary

We have ill ustrated the basic achitecure of our extended
toalkit. The implications of adding mechanisms from OOPS
to the Context Toodkit are quite large. Even though the
high-level abstradions are similar, in pradice the extended
Context Toolkit has to ded with new isales that were not
relevant to the design of OOPS.

First, because the Context Toalkit is a distributed system
and because mediation is an interadive process that re-
quires appropriate response times, only those portions of
the event graph that are subscribed to are passed acossthe
network. No single cmomponent can contain the entire graph
being wsed to represent ambiguity. Providing ead widget,
aggregator and applicdion with accessto the entire graph
for eat piece of context and having to update eab one
whenever a change occurred (new event is added o an
event is acceted o rejeded) impedes the system’s ability
to deliver context in a timely fashion, asis required to pro-
vide feedbadk and adion on context.

Seaond, because input may be produced in many different
physicd locdions, the achitedure suppats distributed
feadbadk. This alows mediation to occur in the user’s loca-
tion (where the input was ®nsed). To suppat distributed
feedbadk, we have extended context widgets to suppart
feedbadk and adion via output services. Output services are
quite generic and can range from sending a message to a
user to rendering some output to a screen to changing the
connedions between context components to changing the
appeaance of the environment. For example, we have some
output services that send email or text messages to arbitrary
display devices and athers that can control appliances such
as lights and televisions.

EXPLORING DISTRIBUTED MEDIATION IN PRACTICE

In the previous fdion, we described modifications to the
Context Toadlkit that will allow for human driven distributed
mediation of imperfedly sensed and interpreted context. In
this sdion, we want to demonstrate how the achitedural
solutions provided by the modified Context Todlkit are put
into pradice in more redistic avare environment interac-
tions. We will explore two dfferent settings, ahome and an
office and two different forms of context, low-level identi-
fication and higher level intention. What we will show in
these two examples is not only the spedfics of applying the
modified Context Toalkit, but a demonstration of important
heuristics that go beyond what an architedure can provide
and which come up in designing distributed mediation when
mobility is involved. Briefly, these heuristics fall into 3
cdegories:

Providing redundant mediation techniques: One of the
attradive feaures of context-aware computing is the
promise that it will allow humans to carry out their eve-
ryday tasks withou having to provide alditional explicit
cues to some @mputational service Our experience
shows, however, that the more implicit the gathering o
context, the more likely it isto be in error. In designing
mediation techniques for correding context, a variety of
redundant techniques soud be provided simultaneously.
This redundant set not only provides a choice on the
form of user inpu and system feedbadk, but aso the
relative positioning and accesshility to the user shoud
be caefully thought out to provide asmoath transition
from most implicit (and presumably least ohtrusive) to
the most explicit [17].

Spatio-temporal relationship of input and output: Some

inpu must be sensed before any interpretation and sub-
sequent mediation can occur. Becaise we ae as3uming
user mobhility, this means that the spatial relationship of
initial input sensors must mesh with the temporal con-
straints to interpret that sensed input before providing
initial feedbadk to the user. Shoud the user determine
that some mediation is necessary, that feedbadk neels to
be located within range of the sensing techndogies used
to mediate the mntext. Mediating interadions soud oc-
cur aongthe natural path that the user would take. In
some ca&es, this might require dudicae sensing tech-
nologiesto take into acourt different initial diredionsin
which a user may be walking. In addition, the mediation
techniques may need to have a caefully cdculated time-
out period, after which mediation is assumed na to hap-
pen.

Effedive use of defaults: Sometimes the most effedive
and deasurable interadions are ones that do nd have to
happen. Prudent choice of default interpretations can re-
sult in default mediated adions that occur when no addi-
tional corredionis provided by the user. These defaults
could either provide some default adion a provide no
adion, based onthe situation.

Example 1. Mediating simple identity and intention in

the Aware Home

The first service that we will describe is an In-Out Board

installed in a home. The purpose of this rviceis to allow

occupants of the home and athers (who are aithorized) out-
side the home to know who is currently in the home and
when ead occupant was last in the home. This srvice may
be used by numerous other applicaions aswell. It isapiece

of the Georgia Tech Broadband Residential Laboratory, a

house that is being instrumented to be a ontext-aware envi-

ronment [12].

Physical Setup

Occupants of the home ae deteced when they arrive and
leave through the front doar, and their state on the In-Out
Board is updated acwrdingly. Figure 3 shows the front
doar areaof our instrumented home, taken from the living
room. In the photographs, we can see asmall anteroom with
a front doar and a wat radk. The anteroom opens up into
the living room, where there is a key radk and a small table
for holding mail — all typicd artifads nea afront doa. To
this, we have added two celling-mounted motion detedors
(one inside the house and one outside), a display, a micro-
phone, spedkers, a keyboard and a dock beside the key
rack.

When an individual enters the home, the motion detedors
deted his presence The airrent time, the order in which the
motion detedors were set off and historicd information
about people entering and leaving the home is used to infer
who the likely individual is and whether he is entering or
leaving. This inferenceis indicated to the person through a
synthesized voice that says “Hello Jen Mankoff” or “Good-
bye Anind Dey”, for example. In addition, the wall display
shows a transparent graphicd overlay (see figure 4) that
indicates the aurrent state and how the user can corred it if
it iswrong: spe&, dock or type. If the inferenceis corred,

the individual can simply continue on as usual and the In-
Out Board display will be updated with this new informa-
tion.

]

Figure 3: Photographs of In-Out Board physical setup.

[Who's home? =13
Goodbye Gregory
Please dock, speak, or type

if this is wrong
Cory Kidd

§

Out 5:59pm

Anind Dey
Tanisha Hall Out 5:59pm

Out 5:59pm

HKent Lyons Out 5:59pm

Out 5:59pm

Jen Mankoff Out 5:59pm

David Nguyen

Rob Orr

Out 5:59pm

Daniel Salber Out 5:59pm

Brad Singletary Out 5:59pm Randy and Steve Out 5:59pm

Khai Truong Out 5:59pm Out 5:59pm

[Enter your name;

Gregory Abowd

Figure 4. In-Out Board with transparent graphical

If the inferenceis incorred, the individua has a number of
ways to corred the aror. Firgt, let us point out that the in-
ference can be incorred in different ways. The diredion,
identity or both may be wrong. The individual can corred
the inference using a cmbination of speed input, docking

with an iButton, and keyboard input on the display. These
threeinput techniques plus the motion detectors range from
being completely implicit to extremely explicit. Each of
these techniques can be used either alone, or in concert with
one of the other techniques. After ead refinement, addi-
tional feedbad is given indicating how the new information
is asdmilated. There is no pre-defined order to their use.
Changes can continue to be made indefinitely, however, if
the user makes no change for a pre-defined amourt of time,
mediation is considered to be cmplete and the service up-
dates the wall display with the mrreded input. The timeout
for thisinteradion is st to 20seconds.

For example, the user can say “No”, “No, I'm leas-
ingarriving’, “No, it’'s Anind Dey”, or “No, it's Anind Dey
and I'm arriving/leaving’. The speed recognition is not
assumed to be 100% acaurate, so the system again indicaes
its updated understanding of the aurrent situation via syn-
thesized speed.

Alternatively, an occupant can dock her iButton. An iBut-
ton is a button that contains a unique id that the system uses
to determine the identity of the occupant. The system then
makes an informed guessbased on historicd information as
to whether the user is coming or going. The user can further
refine this using any of the tedhniques described if it is
wrong.

Finally, the occupant can use the keyboard to corred the
input. By typing his name axd a new state, the system’s
understanding of the aurrent situation is updated.

Architecture

We will now discuss how the achitedure fadlitated this
service The following figure (Figure 5) shows the block
diagram of the @mmponentsin this g/stem.

Figure 5. Architedure diagram for In-Out Board.
There are 4 widgets providing context, two of which
have output services for feadback: speed output and
visual feedback display.

Input is captured via mntext widgets that deted presence,
using either the motion detedors, speed reaognition,
iButton or keyboard as the input-sensing mechanism. All of
these widgets existed in the original Context Tooalkit, but
were modified to be ale to generate anbiguous as well as
unambiguous context information.

The motion detedor-based widget uses an interpreter to
interpret motion information into user identity and drec-
tion. The interpreter uses historicd information colleced
about occupants of the house, in particular, the times at

which ead occupant has entered and left the house on ead
day of the week. This information is combined with the
time when the motion detedors were fired and the order in
which they were fired. A neaest-neighbor algorithmis then
used to infer identity and dredion of the occupant. The
speed reaognition-based widget uses a pre-defined gram-
mar to determine identity and diredion.

When any of these widgets capture input, they produce not
only their best guess as to the arrent situation, but also
likely aternatives as well, creaing an ambiguous event
graph. The wall display has subscribed to unambiguous
context information and is not interested in ambiguous in-
formation. When ambiguous information arrives, it is inter-
cepted by a mediator that resolves it so that it can be sent to
the goplication in its unambiguous form. The mediator uses
this ambiguous information to mediate (accet and rejeq)
or refine dternatives in the graph. The entire anbiguous
graph is not held by any one cwmponent. Instea, it is dis-
tributed among the four context widgets and the mediator.
Each component can obtain accessto the entire graph, but it
isnot necessary in this ®rvice

The mediator creaes a timer to creae temporal boundaries
on this interadion. The timer is reset if additional input is
sensed before it runs out. As the mediator colleds input
from the user and updates the graph to refled the most
likely aternative, it provides feedbad to the user. It does
thisin two ways. The first method isto use ageneric output
service provided by the Context Todlkit. This srvice uses
IBM ViaVoice™ to produce synthesized speed to provide
feaedbadk to the user. The second method is application-
spedfic and is the transparent graphicd overlay on the wall
display shown in Figure 4. The transparent overlay indi-
caes what the most likely interpretation of the user’s datus
is and what the user can do to change their status: e.g.
“Hello Anind Dey. Please dock, type, or spe& if this is
wrong.” As the timer counts down, the overlay becomes
more transparent and fades away.

When al the ambiguity has been resolved in the event
graph and the timer has expired, the overlay will be faded
completely and the arred unambiguous input is delivered
to the wall display and the display updates itself with the
new status of the occupant. Also, the input is delivered bad
to the interpreter so it has accessto the updated historicd
information to improve its ability to infer identity and di-
redion.

Design Issues

In this dion, we will further investigate the design heu-
rigtics, introduced in a previous fdion, that arose during
the development of this srvice The first ise is how to
supply redundant mediation techniques. On the input side,
in an attempt to provide asmoaoth transition from implicit to
explicit input techniques, we cose motion detedors,
speed, docking and typing. In order to enter or lease the
house, users must pass through the doaway, so motion
detedors are an obvious choiceto deted this adivity. Often
users will have their hands full, so speed reaognition is
added as a form of more explicit, hands-freeinput. iButton

docking provides an explicit input mechanism that is useful
if the environment is noisy. Finaly, keyboard input is pro-
vided as an additional explicit mechanism and to suppart
the on-the-fly addition of new occupants and visitors.

A valid question to ask is why not use sensors that are more
acarrate. Unfortunately in pradice due to bah social and
technologicd isaues, there ae no sensors that are bath reli-
able and appropriate. As long as there is a chance that the
sensors may make amistake, we need to provide the home
occupants with techniques for correding these mistakes.
None of the sensors we chose ae foolproof either, but the
combination of all the sensors and the adility to corred er-
rors before gplicaionstake adion is a satisfadory alterna-
tive.

On the output side, synthesized speed is used bah to mir-
ror the speed recognition input and to provide an output
medhanism that is accessble (i.e. audible) to the user
throughout the ettire interadion space Visual output for
feadbad is provided in the cae of anoisy environment and
for adion as a persistent record of the occupancy state.

The next design dedsion is where to placethe input sensors
and the rendering of the output to address the spatio-
tempora charaderistics of the physicd spacebeing used.
There ae “natural” interadion places in this pace where
the user is likely to pause: the doar, the mat rad, the key
rack and the mail table. The input sensors were placed in
these locations. motion sensors on the doar, microphone in
the at radk, iButton dock beside the key radk and key-
board in a drawer in the mail table. The microphone being
used is not high quality and requires the user to be quite
close to the microphone when spe&ing. Therefore the mi-
crophone is placed in the mat radk where the user is likely
to be leaiing into when hanging W their coat. A user's
iButton is caried on the user's key chain, so the dock is
placal next to the key rack. The spedkers for output are
placal between the two interadion aress to alow it to be
head throughout the interadion space The display is
placal above the mail table so it will be visible to individu-
alsin the living room and provide visual feedbadk to occu-
pants using the iButton dock and keyboard.

Another design isaue is what defaults to provide to mini-
mize required user effort. We use initial feedbadk to indi-
cde to the user that there is ambiguity in the interpreted
input. Then, we leare it up to the user to dedde whether to
mediate or not. The default is st to the most likely inter-
pretation, as returned by the interpreter. Through the use of
the timeout, the user is not forced to confirm corred input
and can cary out their normal adivities. Thisis to suppart
the idea that the least effort should be expended for the
most likely adion. The length of the timeout, 20 seconds,
was chosen to alow enough time for a user to move
through the interadion space while being short enough to
minimize between-user interadions.

We alded the aility to ded with ambiguous context, in an
attempt to make these types of applications more redistic.
Part of addressng this redism is deding with situations that
may not occur in a prototype reseach environment, but do

occur in the red world. An example of this stuation is the
existence of visitors, or people not known to the service To
ded with visitors, we asaume that they are friendly to the
system, a safe aumption in the home setting. That means
they are willi ng to perform minimal adivity to help keep
the system in a valid state. When a visitor enters the home,
the service provides feedbadk (obviously incorred) about
who it thinks this person is. The visitor can either just say
“No” to remove dl posshle dternatives from the anbiguity
graph and cause no change to the display, or can type in
their name and state using the keyboard and add themselves
to the display.

Example 2: Mediating higher level intention with an of-
fice reminder system

The second service that we will describe is CybreMinder, a
Situation-aware reminder todl [7]. It allows usersto crede a
reminder message for themselves or someone dse and to
asciate asituation with it. The reminder message will be
delivered when the associated situation has been satisfied.
The purpose of this toadl is to trigger and deliver reminders
at more gpropriate times than is currently possble.

Physical Setup

Various locaions (building entrances and dffices) in two
buildings have been instrumented with iButton docks to
determine the location of building occupants. With ead
dock isa computer screen on which reminder messages can
be displayed. Figure 6 shows an example install ation.

Figure 6: Reminder display with iButton dock.

Interaction

Users can crede Situation-aware reminders on any net-
worked device We will ill ustrate the interadion throughthe
use of a mncrete example. Jen and Anind are working on a
paper for UIST 200Q Jen sent out a draft of the paper and
is waiting for comments. She aedes a reminder message
for Anind to drop df his comments. She sets the situation
in which to deliver the reminder to be when Anind enters
the buil ding.

When Anind enters the building (sensed by the gpropriate
iButton dock), the reminder is delivered to him on the locd
display (Figure 7). Just because the reminder was delivered
to Anind, does not mean that he will complete the adion
detailed in the reminder. In fad, the most likely occurrence
in this stting is that a reminder will be put off urtil a later
time. The default status of this reminder is st to “till
pending’. This means that the reminder will be delivered
again, the next time Anind enters the building. However, if
Anind daes enter Jen's office within a pre-defined amount

of time, the system changes the previous incorred reminder
status to “completed” (Figure 8a). Of course, if he was just
stoppng by to say hello, he can dock again to return this
badk to “dill pending’ (Figure 8b). Alternatively, Anind
can wse aseparate gplication, which displays al of his
reminders, to explicitly change the status of areminder.

Eﬁf’,ﬂ'ﬂeminder: Comments on the UIST draft =]
To: Anind Dey

Subject: Comments on the UIST draft

From: Anind Dey

Priority: Highest

Message:

Situation:

Figure 7: Reminder message delivered in appropriate
situation.

I [=1 B3

The status of your reminder 'Comments an the LIST draft' is now: delivered

Egj Reminder Status Update

(@)

[E3 Reminder Status Update o [=] E3
The status of your reminder ‘Comments on the LIST draft' is now: pending

(b)
Figure 8: Graphical feedback for reminder status. (a)
shows the fealback for a “delivered” status and (b)
showsthe feedback for a “pending” status.

Architecture

We will now discuss how the achitedure faalitated this
service The following figure (Figure 9) shows the block
diagram of the cmponentsin this gystem.

Figure 9: Architedure diagram for reminder service
There are a number of widgets, one for each “interest-
ing” location in the building. Each widget has two serv-
ices, one for displaying a reminder and one for
providing feedback about the reminder’s gatus.

Input is captured via mntext widgets that deted presence,
using iButtons as the input-sensing mechanism. When the
information from these widgets matches a situation for
which there is a reminder, the reminder is delivered to a
display closest to the redpient’s locaion. The reminder is
displayed using an output service that the widgets provide.

Initialy, input in this service was treated as unambiguous in
[7]. Using the combination of the Context Toolkit and
OOPS, we have alded the aility to ded with ambiguity.
Now, a pair of ambiguous events is creaed by the widget,
one indicating that the reminder is dill pending and one
indicaing that the reminder has been completed.

The reminder service has subscribed for unambiguous con-
text, so when the ambiguous events arrive, they are deliv-
ered to the mediator for the service When the mediator
receves this input, it creaes a timer to enforce temporal
boundaries on this interadion. The timer has a timeout
value of 10 minutes for this rvice If the user does not
addressand complete the reminder, the timer times out and
the most likely event is chosen, that of kegoing the reminder
status as “still pending’. If the user does address the re-
minder, he can dock his iButton to indicae this. This
docking event is delivered to the mediator which swaps
which reminder statusis most likely.

Fealbad is provided to the user via an audio cue axd on
the display that is closest to the user’s current location (Fig-
ure 8) using another output service provided by the locd
widget. Each additional dock swaps the reminder status as
well and produces feedbadk for the user. Timely delivery of
docking events from the widget to the mediator and badk to
the widget to provide feedbadk is esential for providing the
user with timely feedbadk. When the timer expires, the most
likely reminder statusis passd to the service which updates
the reminder acordingly.

Design Issues

In this £dion, we will further investigate some of the inter-
esting design isaues that arose during the development of
this srvice In this srvice input is provided to the system
using iButtons and dacks, which comprise the locaion sys-
tem in our reseach building The existing infrastructure
was leveraged for this rvice both for simplicity of devel-
opment and to leverage off of user’s knowledge aout the
system. Additionally, users can explicitly corred the status
of a reminder using a separate interface Output comes in
the form of a simple audio cue, a bee, to get the user's
attention, and a visual cue that indicaes the airrent re-
minder status. Speed was not used in this stting because it
was a more publi c spacethan the home.

The doice of locaions for input and output was again
guided by the spacein which the service was deployed.
Natural locdions for sensing input and providing feedbacdk
were the entrances to rooms where users would naturally
stop to dack anyway. If a different locaion system were
used, the locaions chosen might differ dightly. Entrances
to offices would still be gpropriate, as they are natural
stoppng places where users knock on adoar. But in a mn-
ference room, the dairs where users ste may be abetter
choice

In this srvice, as oppased to the previous one, the default
interpretation of user input is that no acion was taken, and
that the reminder is gill pending. This default was chosen
because the implicit user input receved (a user entering the
building) only causes a reminder to be delivered, and dces

not provide ay indicaion as to whether the reminder has
been addressed and completed. There is redly no sensor or
group of sensors that will enable us to acairately determine
when a reminder has been addressed. We must rely on our
users to indicate this. The interpretation that a reminder is
gtill pendingisthe most likely interpretation and therefore it
was made the default, requiring the least user adion to be
acceted. The timeout for accepting the input was chosen in
asimilar fashion as the first service, long enoughto give the
user an oppatunity to address the reminder, while short
enoughto minimize overlap between individual interadions
(reminders).

When designing this srvice, we chose to addressthe ambi-
guity only at the level of whether the reminder was dedt
with or not. This was done in order to make the design sim-
pler for demonstration purposes. The underlying context
that is used to determine when a message should be deliv-
ered will also have anbiguous aternatives that may need
mediation. It should not be hard to seehow we @uld com-
bine the type of service we demonstrated with the In-Out
Board with this reminder service to make this possble.

FUTURE WORK

The etended Context Toodkit supparts the building of
more redistic context-aware services, that are ale to make
use of imperfed context. But, we have not yet addressd all
theisauesraised by this problem.

Because multiple components may subscribe to the same
ambiguous events, mediation may adually simultaneously
in these components. When one component successully
mediates the events, the other components need to be noti-
fied. We have dready added the aility for input handlersto
keep tradk of what is being mediated locdly in order to
inform mediators when they have been pre-empted. How-
ever, we till need to add a priority system that will allow
mediators to have some mntrol over the global mediation
process

An additional issile we neal to further explore is how
events from diff erent interadions can be separated and han-
dled. For example, in the In-Out Board service, it is as-
sumed that only one user is mediating their occupancy
status at any one time. If two people enter together, we need
to determine which input event belongs to which user in
order to keep the mediation processes sparate.

Finally, we need to huild more mntext-aware services using
this new architecure and put them into extended use. This
will lead to bah a better understanding of how users ded
with having to mediate their implicit input and a better un-
derstanding of the design heuristics involved in building
these mntext-aware services.

CONCLUSIONS

The extended Context Toolkit supparts the building of re-
alistic context-aware services, ones that ded with imperfea
context and allow users to mediate the context. When users
are mobile in an aware environment, the mediation is dis-
tributed over both space ad time. The toalkit extends the
original Context Todlkit and OOPS, providing suppart for

the timely delivery of context via partia delivery of the
event graph and distributed feadbad via output services in
context widgets. Weintroduced design heuristics that play a
role in the building of distributed context-aware services.
We demonstrated the use of the extended Context Toalkit
and the design heuristics through two example mntext-
aware services, an In-Out Board for the home and a situa-
tion-aware reminder system.

ACKNOWLEDGMENTS

Thiswork was supparted in part by a NSF CAREER Grant
9703384and a Motorola University Partnerships in Re-
seach grant.

REFERENCES

1. Bobick, A. et al. The KidsRoom: A perceptuall y-based
interadive ad immersive story environment.
PRESENCE: Teleoperators and Virtua Environments,
8(4), 1999 pp. 367-391

2. Brown, P.J. The stick-e document: A framework for
creding context-aware gplications, in Proceadings of
EP’96.

3. Cheyer, A. & Julia, L. Multimodal maps. An agent-
based approach. In Procealings of the International
Conference on Cooperative Multimodal Communicaion
(CMC‘'95), May 1995

4. Coen, M. The future of human-computer interadion or
how | leaned to stop worrying and love my intelli gent
room. |[EEE Intelli gent Systems 14(2), 1999 p. 8-10.

5. Cooperstock, J., Fels, S., Buxton, W. & Smith, K. Re-
adive environments: Throwing away your keyboard and
mouse, CACM 40(9), 1997, pp. 65-73.

6. Davies, N., Wade, S.P., Friday, A. & Blair, G.S. Limba:
A tuple spacebased platform for adaptive mohile gpli-
caions, in Procealings of Conference on Open Distrib-
uted Processing/Distributed Platforms, (ICODP ‘97).

7. Dey, AK. & Abowd, G.D. CybreMinder: A Context-
Aware System for Supparting Reminders. In submis-
sion.

8. Dey, AK., Saber, D., & Abowd, G.D. A Context-based
infrastructure for smart environments. In Proceeadings of
the International Workshop an Managing Interadionsin
Smart Environments (MANSE ‘99), pp. 114128

9. Harter, A. et al. The Anatomy of a Context-Aware Ap-
plication. In Proceadings of Mobicom ’99.

10.Hudson, S. and Smith, |I. Suppating dynamic down-
loadable gpeaances in an extensible user interface
toalkit. In Proceedings of the Symposium on User Inter-
face Software and Technology, (UIST ‘97), pp. 159
168

11 Hull, R., Neaves, P. & Bedford-Roberts, J. Towards
situated computing. In Proceadings of 1% International
Sympaosium on Weaable Computers (ISWC ' 97).

12.Kidd, C.D. et al. The Aware Home: A living laboratory
for ubiquitous computing reseach. In Proceeadings of

the Semnd International Workshop on Cooperative
Buildings, (CoBuild ‘99).

13.Korteum, G., Segall, Z. & Bauer, M. Context-aware,
adaptive weaable mmputers as remote interfaces to
‘intelli gent’ environments, in Procealings of 2™ Inter-
national Symposium on Weaable Computers (ISWC
‘98), pp. 58-65.

14.Mankoff, J., Hudson, S.E. & Abowd, G.D. Providing
integrated toolkit-level suppart for ambiguity in recmg-
nition-based interfaces. In Procealings of CHI 200Q pp.
368375

15.Mozer, M. C. The neura network house: An environ-
ment that adapts to its inhabitants. In Procealings of the
American Assciation for Artificial Intelli gence Spring
Sympaosium on Intelli gent Environments, pp. 110-114.

16.Myers, B.A. and Koshie, D.S. Reusable hierarchicd
command oljeds. In Procealings of CHI ‘96, pp. 260-
267.

17.Rhodes, B. Margin Notes: Building a mntextually aware
associative memory. In Procealings of the International
Conference on Intelli gent User Interfaces (1UI *00).

18.Rhodes, B. The Weaable Remembrance Agent: A sys-
tem for augmented memory Personal Tedhnologies
(1997 1(1), pp. 218224

19.Schilit, W.N., System architecture for context-aware
mobile cmputing, Ph.D. Thesis, Columbia University,
May 1995

20.Weiser, M. The computer for the 21st century. Scientific
American 265(3), 1991, pp. 66-75.

