
Distributed mediation of imperfectly sensed context in
aware environments

Anind K. Dey, Jennifer Mankoff and Gregory D. Abowd
College of Computing & Graphics, Visualization, & Usabilit y Center

Georgia Institute of Technology
Atlanta, GA 30332-0280

{ anind, jmankoff , abowd}@cc.gatech.edu

ABSTRACT
Current context-aware services make the assumption that
the context they are dealing with is correct. However, in
reality, both sensed and interpreted context is often imper-
fect. In this paper, we describe an architecture that supports
the building of context-aware services that assume context
is imperfect and allows for the refinement of this imperfect
context by mobile users in aware-environments. We discuss
the architectural mechanisms and design heuristics that
arise from supporting this refinement over space and time.
We ill ustrate the use of our architecture and heuristics
through two example context-aware services, an In-Out
Board for the home and a situation-aware reminder tool.

KEYWORDS: context-aware computing, distributed media-
tion, aware environments, ubiquitous computing, mobile
computing
INTRODUCTION
A characteristic of an aware environment is that it senses
context, information sensed about its occupants and their
activities, and reacts appropriately to this context, by pro-
viding context-aware services that facilit ate the occupants
in their everyday actions. Researchers have been trying to
build tools and architectures to facilit ate the creation of
these context-aware services by providing ways to more
easily acquire, represent and distribute sensed data. Our
experience shows that though sensing is becoming more
cost-effective and ubiquitous, it is still i mperfect and will
likely remain so. A challenge facing the development of
realistic context-aware services, therefore, is the abilit y to
handle imperfect context.

In this paper, we present an architectural solution for im-
plementing context-aware services that assume imperfect
information about the context of humans in mobile settings
and allows for the distributed, refinement of incorrect con-
text by humans in aware environments. This architecture
allows humans in an aware environment to detect errors in
sensed information about them and their intentions and cor-
rect those errors in a variety of ways. In previous work, we
have presented an architecture for the development of con-
text-aware services, but that context was assumed to be
perfect [8]. We have also developed an architecture to sup-
port the mediation of errors in recognition-based interfaces
[14]. The work presented here combines and expands those
previous solutions to confront additional challenges that
arise in highly mobile interactive environments.

Imperfectly sensed context produces errors similar to rec-
ognition-based interfaces, but there are additional chal-
lenges that arise from the inherent mobilit y of humans in
aware environments. Specifically, since users are likely to
be mobile in an aware environment, the interactions neces-
sary to alert them to possible context errors (from sensing
or the interpretation of sensed information) and allow for
the smooth correction of those errors must occur over some
time frame and over some physical space. We discuss some
of the new architectural mechanisms and heuristics that
come into play, since designing correction strategies over
time and space involves more than just an architecture that
supports error mediation.

After summarizing some related work, we will present brief
overviews of our own previous work that we have extended.
We overview the Context Toolkit, an infrastructure to sup-
port the rapid development of context-aware services,
which has assumed perfect context sensing in the past. We
then overview OOPS (Organized Option Pruning System),
an architecture for the mediation of errors in recognition-
based interfaces. We describe an extended Context Toolkit
that no longer assumes perfectly sensed context and ex-
pands on mechanisms from OOPS to allow for the media-
tion of imperfectly-sensed context.

We then describe two separate implemented scenarios that
use the extended Context Toolkit to facilit ate interactions in
aware environments that are sympathetic to errors. The first
example, set in a home, shows how low-level identity and
intention recognition can be corrected in a variety of ways.
To facilit ate this correction, the feedback and mediation
strategies must be distributed wisely. The second example,
set in an off ice, deals with higher-level human intentions,
something that will not likely ever be automatically and
perfectly sensed, and how an environment can make rea-
sonable assumptions of these intentions and allow for the
modification over time. We conclude the paper with a dis-
cussion of further challenges in context-aware computing
that deal with mediating interactions over time and space.

RELATED WORK
Over the past several years, there has been a number of
research efforts whose ultimate goal has been to create a
ubiquitous computing environment, as described by Weiser
[20]. We divide these efforts into three categories: aware
environments, architectures to support context-aware serv-
ices, and relevant context-aware services.

An aware environment is an environment that can automati-
cally or implicitly sense information or context about its
occupants and itself and can take action on this context. In
the Reactive Room project, a room used for video
conferencing was made aware of the context of both users
and objects in the room for the purpose of relieving the user
of the burden of controlli ng the objects [5]. For example,
when a figure is placed underneath a document camera, the
resulting image is displayed on a local monitor as well as on
remote monitors for remote users. Similarly, when a video-
tape is being played, the lights in the room will automati-
cally dim.

Along the same line, Mozer built the Neural Network
House, a house that uses neural networks to balance the
environmental needs of a user against the costs of heating
and lighting the house [15]. The house gradually learns
occupants’ patterns of heating and lighting control for vari-
ous locations in the house and various times of day. It uses
this knowledge to predict user needs and automatically
controls the heating and lighting, while, at the same time,
attempting to minimize the overall expense incurred from
them.

Environmental control was also a goal in the Intelli gent
Room project [4]. The Intelli gent Room uses automatically
sensed context along with explicit user input to adapt appli-
cations or services. Example services include turning off the
lights and turning on soothing music when an occupant lies
down on a sofa, and retrieving weather or news information
that are relevant to the current context.

Bobick et al. also built an aware environment called
KidsRoom [1]. KidsRoom was an interactive narrative
space for children. The elements of the narrative continued
based on the implicitly sensed activities of the children.
These activities included talking to and dancing with ava-
tars displayed on the walls.

These four aware environments all share the same property:
they use implicit sensing but ignore any uncertainty in the
sensed data and its interpretations. If the environment takes
an action on incorrectly sensed input, it is the occupant’s
responsibilit y to undo the incorrect action (if this is possi-
ble) and to try again.

A number of architectures that facilit ate the building of
context-aware services, such as those found in aware envi-
ronments, have been built [2,6,9,11,13,19]. Unfortunately,
as in the case of the aware environments, a simpli fying as-
sumption is made that the context being implicitly sensing
is 100% certain. Context-aware services that are built on
top of these architectures act on the provided context with-
out any knowledge that the context is potentially uncertain.

There are some exceptions to this assumption about cer-
tainty. We will examine two context-aware services that
ill ustrate how individual services have attempted to take
uncertainty of sensed input into account. The first is the
Remembrance Agent, a service that examines the user’s
location, identity of nearby individuals, and the current time
and date to retrieve relevant information [18]. The inter-

pretation of the sensed context into relevant information is
uncertain here. Rather than displaying the information with
the highest calculated relevance, the Remembrance Agent
instead presents the user with a list of the most relevant
pieces of information and the relevance factor for each. In
this way, the user can choose what is most relevant to the
current situation from a filtered set.

The second service we will discuss is Multimodal Maps, a
map-based application for travel planning [3]. Users can
determine the distances between locations, find the location
of various sites and retrieve information on interesting sites
using a combination of direct manipulation, pen-based
gestures, handwriting and speech input. When a user pro-
vides multimodal input to the application, the application
uses multimodal fusion to increase the likelihood of recog-
nizing the user’s input. Rather than take action on the most
likely input, if there is any uncertainty or ambiguity re-
maining after fusion, the application prompts the user for
more information. By prompting the user for additional
information, the system reduces the chance of making a
mistake and performing an incorrect action.

Rather than assuming that sensed input (and its interpreta-
tions) is perfect, the two services demonstrate two tech-
niques for allowing the user to correct uncertainty or
ambiguity in implicitly sensed input. Note that both systems
require explicit input on the part of the user before they can
take any action. The goal in our work is to provide an ar-
chitecture that supports a variety of techniques, ranging
from implicit to explicit, that can be applied to context-
aware services. By removing the simpli fying and incorrect
assumption that all context is certain, we are attempting to
facilit ate the building of more realistic context-aware serv-
ices.

EXISTING SUPPORT
Similar to the architectures described in the previous sec-
tion, we have built an architecture for the development of
context-aware services, but the context it used was assumed
to be perfect [8]. We have also developed an architecture
that supports the mediation of errors in recognition-based
interfaces [14]. We will now describe the relevant features
of both architectures. The next section will describe how
these architectures were combined and extended to support
users in mediating imperfectly sensed context.

The Context Toolkit
The Context Toolkit is a software toolkit that is aimed at
allowing others to build services that support mobile users
in aware environments. The Context Toolkit makes it easy
to add the use of context or implicit input to existing appli-
cations that don’ t use context.

The Context Toolkit consists of three basic building blocks:
context widgets, context aggregators and context interpret-
ers. Figure 1 shows the relationship between sample context
components and applications.

Figure 1: Context Toolkit components: arr ows indicate
data flow.

Context widgets encapsulate information about a single
piece of context, such as location or activity, for example.
They provide a uniform interface to components or appli-
cations that use the context, hiding the details of the under-
lying context-sensing mechanism(s), allowing them to treat
implicit and explicit input in the same manner. Context
widgets allow the use of heterogeneous sensors that sense
redundant input, regardless of whether that input is implicit
or explicit. Widgets maintain a persistent record of all the
context they sense. They allow other components to both
poll and subscribe to the context information they maintain.
Widgets are responsible for collecting information about
the environment.

A context interpreter is used to abstract or interpret context.
For example, a context widget may provide location context
in the form of latitude and longitude, but an application may
require the location in the form of a street name. A context
interpreter may be used to provide this abstraction. A more
complex interpreter may take context from many widgets in
a conference room to infer that a meeting is taking place.

A context aggregator is very similar to a widget, in that it
supports the same set of features as a widget. The differ-
ence is that an aggregator collects multiple pieces of con-
text. In fact, it is responsible for the entire context about a
particular entity (person, place, or object). Aggregation
facilit ates the access of context by applications that are in-
terested in multiple pieces of context about a single entity.

Context components are intended to be persistent, running
24 hours a day, 7 days a week. They are instantiated and
executed independently of each other in separate threads
and on separate computing devices. The Context Toolkit
makes the distribution of the context architecture transpar-
ent to context-aware applications, handling all communica-
tions between applications and components.

OOPS
OOPS is a GUI (graphical user interface) toolkit that pro-
vides support for building interfaces that make use of rec-
ognizers. Like sensing, recognition is ambiguous, and
OOPS provides support for tracking and resolving, or me-
diating, uncertainty.

Because OOPS provides support for building interfaces, our
focus in OOPS is on integrating recognition into the exist-

ing input dispatching system of subArctic [10], the GUI
toolkit that OOPS is built upon. This means that, for exam-
ple, if a recognizer produces text events, they will be dis-
patched through the same mechanism as characters
produced by a keyboard, and thus will be available to any-
thing that consumes keyboard input.

Additionally, OOPS provides an internal model of recog-
nized input, based on the concept of hierarchical events
[16], that allows separation of mediation from recognition
and from the application. As we will see, this is a key ab-
straction that we use in the extended Context Toolkit.

Our model uses a directed graph to keep track of source
events, and their interpretations (which are produced by one
or more recognizers). For example, when the user speaks, a
speech recognizer may take the audio (the source event)
and produce sentences as interpretations. These sentences
may be further interpreted, for example by a natural lan-
guage system, as nouns, verbs, etc. Figure 2 shows the re-
sulting graph.

Figure 2: Graph representing interpretations.

Note that there are two different sentences shown in this
graph, at most one of which is correct (i.e. is what the user
actually said). We call this situation ambiguous and media-
tion is used to resolve the ambiguity. In particular, a me-
diator will display feedback about one or more
interpretations to the user, who will t hen select one or re-
peat her input.

Once the correct input is known, OOPS updates the di-
rected graph to include information about which events
were accepted and rejected, and notifies the recognizer that
produced the events and any consumers of the events, of
what happened. At this point, consumers can act on an
event (for example, by executing the command specified by
the user in his speech).

To summarize, OOPS automatically identifies ambiguity in
input and intervenes between the recognizer and the appli-
cation by passing the directed graph to a mediator. Once the
ambiguity is resolved, OOPS allows processing of the input
to continue as normal.

MEDIATING IMPERFECT CONTEXT
As stated previously, the Context Toolkit consists of wid-
gets that implicitly sense context, aggregators that collect
related context, interpreters that convert between context

types, applications that use context and a communications
infrastructure that delivers context to these distributed com-
ponents. OOPS consists of applications (interfaces) that
produce input, recognizers that convert between input types
and applications that use input. We will now discuss how
the Context Toolkit and OOPS were combined and ex-
tended to support context-aware services that can deal with
ambiguous context.

In order to understand our extensions, consider a single
interaction. Initially, context is implicitly sensed by a con-
text widget. This context is sent to an interpreter that is
equivalent to a recognizer in OOPS. A context interpreter
now creates multiple ambiguous interpretations of that
context. Each interpretation is an event that contains a set of
attribute name-value pairs (a piece of context) and informa-
tion about what it is an interpretation of (its source) and
who produced it. The result is a directed graph, just like the
representation used in OOPS.

Once the widget receives the interpretations, it sends them
to all of its subscribers. Note that the widget does not send
the entire graph to subscribers, just those events that match
the subscription request. This is done in order to minimize
network calls (which can be quite extensive and costly) as a
graph is generated and mediated.

Since widgets and aggregators, as well as applications, may
subscribe to a widget, all of these components must now
include support for dealing with ambiguous events (and
mediation of those events). A subscriber in the Context
Toolkit receives data through an input handler, which is
responsible for dealing with distributed communications.
This input handler checks incoming context for ambiguity,
and, if necessary, sends the context to a mediator instead of
the subscribing component. Mediators intervene between
widgets (and aggregators) and applications in the same way
that they intervene between recognizers and applications in
OOPS. Since the subscriber may be an aggregator or a wid-
get, there is a need for distributed feedback services that are
separate from applications. For example, a mediator may
use the widget that generated the ambiguous event to com-
municate with the user (since sensors are usually co-located
with the things that they are sensing).

Once a mediator provides feedback to the user, the user
responds with additional input. The mediator uses this in-
formation to update the event graph. It does this by telli ng
the widget that produced the events to accept or reject them
as correct or incorrect. The widget then propagates the
changes to its subscribers. If ambiguity is resolved, the
events are delivered as normal and subscribers can act on
them. Otherwise, the mediation process continues.

Summary
We have ill ustrated the basic architecture of our extended
toolkit. The implications of adding mechanisms from OOPS
to the Context Toolkit are quite large. Even though the
high-level abstractions are similar, in practice the extended
Context Toolkit has to deal with new issues that were not
relevant to the design of OOPS.

First, because the Context Toolkit is a distributed system
and because mediation is an interactive process that re-
quires appropriate response times, only those portions of
the event graph that are subscribed to are passed across the
network. No single component can contain the entire graph
being used to represent ambiguity. Providing each widget,
aggregator and application with access to the entire graph
for each piece of context and having to update each one
whenever a change occurred (new event is added or an
event is accepted or rejected) impedes the system’s abilit y
to deliver context in a timely fashion, as is required to pro-
vide feedback and action on context.

Second, because input may be produced in many different
physical locations, the architecture supports distributed
feedback. This allows mediation to occur in the user’s loca-
tion (where the input was sensed). To support distributed
feedback, we have extended context widgets to support
feedback and action via output services. Output services are
quite generic and can range from sending a message to a
user to rendering some output to a screen to changing the
connections between context components to changing the
appearance of the environment. For example, we have some
output services that send email or text messages to arbitrary
display devices and others that can control appliances such
as lights and televisions.

EXPLORING DISTRIBUTED MEDIATION IN PRACTICE
In the previous section, we described modifications to the
Context Toolkit that will allow for human driven distributed
mediation of imperfectly sensed and interpreted context. In
this section, we want to demonstrate how the architectural
solutions provided by the modified Context Toolkit are put
into practice in more realistic aware environment interac-
tions. We will explore two different settings, a home and an
off ice, and two different forms of context, low-level identi-
fication and higher level intention. What we will show in
these two examples is not only the specifics of applying the
modified Context Toolkit, but a demonstration of important
heuristics that go beyond what an architecture can provide
and which come up in designing distributed mediation when
mobilit y is involved. Briefly, these heuristics fall i nto 3
categories:

Providing redundant mediation techniques: One of the
attractive features of context-aware computing is the
promise that it will allow humans to carry out their eve-
ryday tasks without having to provide additional explicit
cues to some computational service. Our experience
shows, however, that the more implicit the gathering of
context, the more likely it is to be in error. In designing
mediation techniques for correcting context, a variety of
redundant techniques should be provided simultaneously.
This redundant set not only provides a choice on the
form of user input and system feedback, but also the
relative positioning and accessibilit y to the user should
be carefully thought out to provide a smooth transition
from most implicit (and presumably least obtrusive) to
the most explicit [17].

Spatio-temporal relationship of input and output: Some

input must be sensed before any interpretation and sub-
sequent mediation can occur. Because we are assuming
user mobilit y, this means that the spatial relationship of
initial input sensors must mesh with the temporal con-
straints to interpret that sensed input before providing
initial feedback to the user. Should the user determine
that some mediation is necessary, that feedback needs to
be located within range of the sensing technologies used
to mediate the context. Mediating interactions should oc-
cur along the natural path that the user would take. In
some cases, this might require duplicate sensing tech-
nologies to take into account different initial directions in
which a user may be walking. In addition, the mediation
techniques may need to have a carefully calculated time-
out period, after which mediation is assumed not to hap-
pen.

Effective use of defaults: Sometimes the most effective
and pleasurable interactions are ones that do not have to
happen. Prudent choice of default interpretations can re-
sult in default mediated actions that occur when no addi-
tional correction is provided by the user. These defaults
could either provide some default action or provide no
action, based on the situation.

Example 1: Mediating simple identity and intention in
the Aware Home
The first service that we will describe is an In-Out Board
installed in a home. The purpose of this service is to allow
occupants of the home and others (who are authorized) out-
side the home to know who is currently in the home and
when each occupant was last in the home. This service may
be used by numerous other applications as well . It is a piece
of the Georgia Tech Broadband Residential Laboratory, a
house that is being instrumented to be a context-aware envi-
ronment [12].

Physical Setup
Occupants of the home are detected when they arrive and
leave through the front door, and their state on the In-Out
Board is updated accordingly. Figure 3 shows the front
door area of our instrumented home, taken from the living
room. In the photographs, we can see a small anteroom with
a front door and a coat rack. The anteroom opens up into
the living room, where there is a key rack and a small table
for holding mail – all typical artifacts near a front door. To
this, we have added two ceili ng-mounted motion detectors
(one inside the house and one outside), a display, a micro-
phone, speakers, a keyboard and a dock beside the key
rack.

When an individual enters the home, the motion detectors
detect his presence. The current time, the order in which the
motion detectors were set off and historical information
about people entering and leaving the home is used to infer
who the likely individual is and whether he is entering or
leaving. This inference is indicated to the person through a
synthesized voice that says “Hello Jen Mankoff ” or “Good-
bye Anind Dey” , for example. In addition, the wall display
shows a transparent graphical overlay (see figure 4) that
indicates the current state and how the user can correct it if
it is wrong: speak, dock or type. If the inference is correct,

the individual can simply continue on as usual and the In-
Out Board display will be updated with this new informa-
tion.

Figure 3: Photographs of In-Out Board physical setup.

Figure 4: In-Out Board with transparent graphical
feedback.

If the inference is incorrect, the individual has a number of
ways to correct the error. First, let us point out that the in-
ference can be incorrect in different ways. The direction,
identity or both may be wrong. The individual can correct
the inference using a combination of speech input, docking

Motion
detector

M icrophone

Speakers

iButton

dock

Display

Keyboard

with an iButton, and keyboard input on the display. These
three input techniques plus the motion detectors range from
being completely implicit to extremely explicit. Each of
these techniques can be used either alone, or in concert with
one of the other techniques. After each refinement, addi-
tional feedback is given indicating how the new information
is assimilated. There is no pre-defined order to their use.
Changes can continue to be made indefinitely, however, if
the user makes no change for a pre-defined amount of time,
mediation is considered to be complete and the service up-
dates the wall display with the corrected input. The timeout
for this interaction is set to 20 seconds.

For example, the user can say “No” , “No, I’m leav-
ing/arriving” , “No, it’s Anind Dey” , or “No, it’s Anind Dey
and I’m arriving/leaving” . The speech recognition is not
assumed to be 100% accurate, so the system again indicates
its updated understanding of the current situation via syn-
thesized speech.

Alternatively, an occupant can dock her iButton. An iBut-
ton is a button that contains a unique id that the system uses
to determine the identity of the occupant. The system then
makes an informed guess based on historical information as
to whether the user is coming or going. The user can further
refine this using any of the techniques described if it is
wrong.

Finally, the occupant can use the keyboard to correct the
input. By typing his name and a new state, the system’s
understanding of the current situation is updated.

Architecture
We will now discuss how the architecture facilit ated this
service. The following figure (Figure 5) shows the block
diagram of the components in this system.

Figure 5: Architecture diagram for In-Out Board.
There are 4 widgets providing context, two of which
have output services for feedback: speech output and
visual feedback display.

Input is captured via context widgets that detect presence,
using either the motion detectors, speech recognition,
iButton or keyboard as the input-sensing mechanism. All of
these widgets existed in the original Context Toolkit, but
were modified to be able to generate ambiguous as well as
unambiguous context information.

The motion detector-based widget uses an interpreter to
interpret motion information into user identity and direc-
tion. The interpreter uses historical information collected
about occupants of the house, in particular, the times at

which each occupant has entered and left the house on each
day of the week. This information is combined with the
time when the motion detectors were fired and the order in
which they were fired. A nearest-neighbor algorithm is then
used to infer identity and direction of the occupant. The
speech recognition-based widget uses a pre-defined gram-
mar to determine identity and direction.

When any of these widgets capture input, they produce not
only their best guess as to the current situation, but also
likely alternatives as well , creating an ambiguous event
graph. The wall display has subscribed to unambiguous
context information and is not interested in ambiguous in-
formation. When ambiguous information arrives, it is inter-
cepted by a mediator that resolves it so that it can be sent to
the application in its unambiguous form. The mediator uses
this ambiguous information to mediate (accept and reject)
or refine alternatives in the graph. The entire ambiguous
graph is not held by any one component. Instead, it is dis-
tributed among the four context widgets and the mediator.
Each component can obtain access to the entire graph, but it
is not necessary in this service.

The mediator creates a timer to create temporal boundaries
on this interaction. The timer is reset if additional input is
sensed before it runs out. As the mediator collects input
from the user and updates the graph to reflect the most
likely alternative, it provides feedback to the user. It does
this in two ways. The first method is to use a generic output
service provided by the Context Toolkit. This service uses
IBM ViaVoiceTM to produce synthesized speech to provide
feedback to the user. The second method is application-
specific and is the transparent graphical overlay on the wall
display shown in Figure 4. The transparent overlay indi-
cates what the most likely interpretation of the user’s status
is and what the user can do to change their status: e.g.
“Hello Anind Dey. Please dock, type, or speak if this is
wrong.” As the timer counts down, the overlay becomes
more transparent and fades away.

When all the ambiguity has been resolved in the event
graph and the timer has expired, the overlay will be faded
completely and the correct unambiguous input is delivered
to the wall display and the display updates itself with the
new status of the occupant. Also, the input is delivered back
to the interpreter so it has access to the updated historical
information to improve its abilit y to infer identity and di-
rection.

Design Issues
In this section, we will further investigate the design heu-
ristics, introduced in a previous section, that arose during
the development of this service. The first issue is how to
supply redundant mediation techniques. On the input side,
in an attempt to provide a smooth transition from implicit to
explicit input techniques, we chose motion detectors,
speech, docking and typing. In order to enter or leave the
house, users must pass through the doorway, so motion
detectors are an obvious choice to detect this activity. Often
users will have their hands full , so speech recognition is
added as a form of more explicit, hands-free input. iButton

docking provides an explicit input mechanism that is useful
if the environment is noisy. Finally, keyboard input is pro-
vided as an additional explicit mechanism and to support
the on-the-fly addition of new occupants and visitors.

A valid question to ask is why not use sensors that are more
accurate. Unfortunately in practice, due to both social and
technological issues, there are no sensors that are both reli-
able and appropriate. As long as there is a chance that the
sensors may make a mistake, we need to provide the home
occupants with techniques for correcting these mistakes.
None of the sensors we chose are foolproof either, but the
combination of all the sensors and the abilit y to correct er-
rors before applications take action is a satisfactory alterna-
tive.

On the output side, synthesized speech is used both to mir-
ror the speech recognition input and to provide an output
mechanism that is accessible (i.e. audible) to the user
throughout the entire interaction space. Visual output for
feedback is provided in the case of a noisy environment and
for action as a persistent record of the occupancy state.

The next design decision is where to place the input sensors
and the rendering of the output to address the spatio-
temporal characteristics of the physical space being used.
There are “natural” interaction places in this space, where
the user is likely to pause: the door, the coat rack, the key
rack and the mail table. The input sensors were placed in
these locations: motion sensors on the door, microphone in
the coat rack, iButton dock beside the key rack and key-
board in a drawer in the mail table. The microphone being
used is not high quality and requires the user to be quite
close to the microphone when speaking. Therefore the mi-
crophone is placed in the coat rack where the user is likely
to be leaning into when hanging up their coat. A user’s
iButton is carried on the user’s key chain, so the dock is
placed next to the key rack. The speakers for output are
placed between the two interaction areas to allow it to be
heard throughout the interaction space. The display is
placed above the mail table so it will be visible to individu-
als in the living room and provide visual feedback to occu-
pants using the iButton dock and keyboard.

Another design issue is what defaults to provide to mini-
mize required user effort. We use initial feedback to indi-
cate to the user that there is ambiguity in the interpreted
input. Then, we leave it up to the user to decide whether to
mediate or not. The default is set to the most likely inter-
pretation, as returned by the interpreter. Through the use of
the timeout, the user is not forced to confirm correct input
and can carry out their normal activities. This is to support
the idea that the least effort should be expended for the
most likely action. The length of the timeout, 20 seconds,
was chosen to allow enough time for a user to move
through the interaction space, while being short enough to
minimize between-user interactions.

We added the abilit y to deal with ambiguous context, in an
attempt to make these types of applications more realistic.
Part of addressing this realism is dealing with situations that
may not occur in a prototype research environment, but do

occur in the real world. An example of this situation is the
existence of visitors, or people not known to the service. To
deal with visitors, we assume that they are friendly to the
system, a safe assumption in the home setting. That means
they are willi ng to perform minimal activity to help keep
the system in a valid state. When a visitor enters the home,
the service provides feedback (obviously incorrect) about
who it thinks this person is. The visitor can either just say
“No” to remove all possible alternatives from the ambiguity
graph and cause no change to the display, or can type in
their name and state using the keyboard and add themselves
to the display.

Example 2: Mediating higher level intention with an of-
fice reminder system
The second service that we will describe is CybreMinder, a
situation-aware reminder tool [7]. It allows users to create a
reminder message for themselves or someone else and to
associate a situation with it. The reminder message will be
delivered when the associated situation has been satisfied.
The purpose of this tool is to trigger and deliver reminders
at more appropriate times than is currently possible.

Physical Setup
Various locations (building entrances and off ices) in two
buildings have been instrumented with iButton docks to
determine the location of building occupants. With each
dock is a computer screen on which reminder messages can
be displayed. Figure 6 shows an example installation.

Figure 6: Reminder display with iButton dock.

Interaction
Users can create situation-aware reminders on any net-
worked device. We will ill ustrate the interaction through the
use of a concrete example. Jen and Anind are working on a
paper for UIST 2000. Jen sent out a draft of the paper and
is waiting for comments. She creates a reminder message
for Anind to drop off his comments. She sets the situation
in which to deliver the reminder to be when Anind enters
the building.

When Anind enters the building (sensed by the appropriate
iButton dock), the reminder is delivered to him on the local
display (Figure 7). Just because the reminder was delivered
to Anind, does not mean that he will complete the action
detailed in the reminder. In fact, the most likely occurrence
in this setting is that a reminder will be put off until a later
time. The default status of this reminder is set to “still
pending” . This means that the reminder will be delivered
again, the next time Anind enters the building. However, if
Anind does enter Jen’s off ice within a pre-defined amount

Display

with

iButton

dock

of time, the system changes the previous incorrect reminder
status to “completed” (Figure 8a). Of course, if he was just
stopping by to say hello, he can dock again to return this
back to “still pending” (Figure 8b). Alternatively, Anind
can use a separate application, which displays all of his
reminders, to explicitly change the status of a reminder.

Figure 7: Reminder message delivered in appropr iate
situation.

(a)

(b)
Figure 8: Graphical feedback for reminder status. (a)
shows the feedback for a “delivered” status and (b)
shows the feedback for a “pending” status.

Architecture
We will now discuss how the architecture facilit ated this
service. The following figure (Figure 9) shows the block
diagram of the components in this system.

Figure 9: Architecture diagram for reminder service.
There are a number of widgets, one for each “ interest-
ing” location in the building. Each widget has two serv-
ices, one for displaying a reminder and one for
providing feedback about the reminder’s status.

Input is captured via context widgets that detect presence,
using iButtons as the input-sensing mechanism. When the
information from these widgets matches a situation for
which there is a reminder, the reminder is delivered to a
display closest to the recipient’s location. The reminder is
displayed using an output service that the widgets provide.

Initially, input in this service was treated as unambiguous in
[7]. Using the combination of the Context Toolkit and
OOPS, we have added the abilit y to deal with ambiguity.
Now, a pair of ambiguous events is created by the widget,
one indicating that the reminder is still pending and one
indicating that the reminder has been completed.

The reminder service has subscribed for unambiguous con-
text, so when the ambiguous events arrive, they are deliv-
ered to the mediator for the service. When the mediator
receives this input, it creates a timer to enforce temporal
boundaries on this interaction. The timer has a timeout
value of 10 minutes for this service. If the user does not
address and complete the reminder, the timer times out and
the most likely event is chosen, that of keeping the reminder
status as “still pending” . If the user does address the re-
minder, he can dock his iButton to indicate this. This
docking event is delivered to the mediator which swaps
which reminder status is most likely.

Feedback is provided to the user via an audio cue and on
the display that is closest to the user’s current location (Fig-
ure 8) using another output service provided by the local
widget. Each additional dock swaps the reminder status as
well and produces feedback for the user. Timely delivery of
docking events from the widget to the mediator and back to
the widget to provide feedback is essential for providing the
user with timely feedback. When the timer expires, the most
likely reminder status is passed to the service which updates
the reminder accordingly.

Design Issues
In this section, we will further investigate some of the inter-
esting design issues that arose during the development of
this service. In this service, input is provided to the system
using iButtons and docks, which comprise the location sys-
tem in our research building. The existing infrastructure
was leveraged for this service, both for simplicity of devel-
opment and to leverage off of user’s knowledge about the
system. Additionally, users can explicitly correct the status
of a reminder using a separate interface. Output comes in
the form of a simple audio cue, a beep, to get the user’s
attention, and a visual cue that indicates the current re-
minder status. Speech was not used in this setting because it
was a more public space than the home.

The choice of locations for input and output was again
guided by the space in which the service was deployed.
Natural locations for sensing input and providing feedback
were the entrances to rooms where users would naturally
stop to dock anyway. If a different location system were
used, the locations chosen might differ slightly. Entrances
to off ices would still be appropriate, as they are natural
stopping places where users knock on a door. But in a con-
ference room, the chairs where users site may be a better
choice.

In this service, as opposed to the previous one, the default
interpretation of user input is that no action was taken, and
that the reminder is still pending. This default was chosen
because the implicit user input received (a user entering the
building) only causes a reminder to be delivered, and does

not provide any indication as to whether the reminder has
been addressed and completed. There is really no sensor or
group of sensors that will enable us to accurately determine
when a reminder has been addressed. We must rely on our
users to indicate this. The interpretation that a reminder is
still pending is the most likely interpretation and therefore it
was made the default, requiring the least user action to be
accepted. The timeout for accepting the input was chosen in
a similar fashion as the first service, long enough to give the
user an opportunity to address the reminder, while short
enough to minimize overlap between individual interactions
(reminders).

When designing this service, we chose to address the ambi-
guity only at the level of whether the reminder was dealt
with or not. This was done in order to make the design sim-
pler for demonstration purposes. The underlying context
that is used to determine when a message should be deliv-
ered will also have ambiguous alternatives that may need
mediation. It should not be hard to see how we could com-
bine the type of service we demonstrated with the In-Out
Board with this reminder service, to make this possible.

FUTURE WORK
The extended Context Toolkit supports the building of
more realistic context-aware services, that are able to make
use of imperfect context. But, we have not yet addressed all
the issues raised by this problem.

Because multiple components may subscribe to the same
ambiguous events, mediation may actually simultaneously
in these components. When one component successfully
mediates the events, the other components need to be noti-
fied. We have already added the abilit y for input handlers to
keep track of what is being mediated locally in order to
inform mediators when they have been pre-empted. How-
ever, we still need to add a priority system that will allow
mediators to have some control over the global mediation
process.

An additional issue we need to further explore is how
events from different interactions can be separated and han-
dled. For example, in the In-Out Board service, it is as-
sumed that only one user is mediating their occupancy
status at any one time. If two people enter together, we need
to determine which input event belongs to which user in
order to keep the mediation processes separate.

Finally, we need to build more context-aware services using
this new architecture and put them into extended use. This
will l ead to both a better understanding of how users deal
with having to mediate their implicit input and a better un-
derstanding of the design heuristics involved in building
these context-aware services.

CONCLUSIONS
The extended Context Toolkit supports the building of re-
alistic context-aware services, ones that deal with imperfect
context and allow users to mediate the context. When users
are mobile in an aware environment, the mediation is dis-
tributed over both space and time. The toolkit extends the
original Context Toolkit and OOPS, providing support for

the timely delivery of context via partial delivery of the
event graph and distributed feedback via output services in
context widgets. We introduced design heuristics that play a
role in the building of distributed context-aware services.
We demonstrated the use of the extended Context Toolkit
and the design heuristics through two example context-
aware services, an In-Out Board for the home and a situa-
tion-aware reminder system.

ACKNOWLEDGMENTS
This work was supported in part by a NSF CAREER Grant
9703384 and a Motorola University Partnerships in Re-
search grant.

REFERENCES
1. Bobick, A. et al. The KidsRoom: A perceptually-based

interactive and immersive story environment.
PRESENCE: Teleoperators and Virtual Environments,
8(4), 1999, pp. 367-391.

2. Brown, P.J. The stick-e document: A framework for
creating context-aware applications, in Proceedings of
EP ’96.

3. Cheyer, A. & Julia, L. Multimodal maps: An agent-
based approach. In Proceedings of the International
Conference on Cooperative Multimodal Communication
(CMC ‘95), May 1995.

4. Coen, M. The future of human-computer interaction or
how I learned to stop worrying and love my intelli gent
room. IEEE Intelli gent Systems 14(2), 1999, p. 8-10.

5. Cooperstock, J., Fels, S., Buxton, W. & Smith, K. Re-
active environments: Throwing away your keyboard and
mouse, CACM 40(9), 1997, pp. 65-73.

6. Davies, N., Wade, S.P., Friday, A. & Blair, G.S. Limbo:
A tuple space based platform for adaptive mobile appli-
cations, in Proceedings of Conference on Open Distrib-
uted Processing/Distributed Platforms, (ICODP ‘97).

7. Dey, A.K. & Abowd, G.D. CybreMinder: A Context-
Aware System for Supporting Reminders. In submis-
sion.

8. Dey, A.K., Salber, D., & Abowd, G.D. A Context-based
infrastructure for smart environments. In Proceedings of
the International Workshop on Managing Interactions in
Smart Environments (MANSE ‘99), pp. 114-128.

9. Harter, A. et al. The Anatomy of a Context-Aware Ap-
plication. In Proceedings of Mobicom ’99.

10. Hudson, S. and Smith, I. Supporting dynamic down-
loadable appearances in an extensible user interface
toolkit. In Proceedings of the Symposium on User Inter-
face Software and Technology, (UIST ‘97), pp. 159-
168.

11. Hull , R., Neaves, P. & Bedford-Roberts, J. Towards
situated computing. In Proceedings of 1st

 International
Symposium on Wearable Computers (ISWC ’97).

12. Kidd, C.D. et al. The Aware Home: A living laboratory
for ubiquitous computing research. In Proceedings of

the Second International Workshop on Cooperative
Buildings, (CoBuild ‘99).

13. Korteum, G., Segall , Z. & Bauer, M. Context-aware,
adaptive wearable computers as remote interfaces to
‘ intelli gent’ environments, in Proceedings of 2nd Inter-
national Symposium on Wearable Computers (ISWC
‘98), pp. 58-65.

14. Mankoff , J., Hudson, S.E. & Abowd, G.D. Providing
integrated toolkit-level support for ambiguity in recog-
nition-based interfaces. In Proceedings of CHI 2000, pp.
368-375.

15. Mozer, M. C. The neural network house: An environ-
ment that adapts to its inhabitants. In Proceedings of the
American Association for Artificial Intelli gence Spring
Symposium on Intelli gent Environments, pp. 110-114.

16. Myers, B.A. and Kosbie, D.S. Reusable hierarchical
command objects. In Proceedings of CHI ‘96, pp. 260-
267.

17. Rhodes, B. Margin Notes: Building a contextually aware
associative memory. In Proceedings of the International
Conference on Intelli gent User Interfaces (IUI ‘00).

18. Rhodes, B. The Wearable Remembrance Agent: A sys-
tem for augmented memory Personal Technologies
(1997) 1(1), pp. 218-224.

19. Schilit , W.N., System architecture for context-aware
mobile computing, Ph.D. Thesis, Columbia University,
May 1995.

20. Weiser, M. The computer for the 21st century. Scientific
American 265(3), 1991, pp. 66-75.

