1 Approximation Algorithms

Karp (see Figure 1) introduced NP-complete problems. Unless P = NP, the optimization versions of these problems admit no algorithms that simultaneously (1) find optimal solution (2) in polynomial time (3) for all instances.

Definition 1. Let A be an algorithm for an optimization problem. Let $A(I)$ and $\text{Opt}(I)$ be the solution returned by A and the optimal solution for the instance I respectively.

Then Algorithm A is α-approximation if

- $\text{Opt}(I) \leq A(I) \leq \alpha \cdot \text{Opt}(I)$ (for minimization problem)
- $\alpha \cdot \text{Opt}(I) \leq A(I) \leq \text{Opt}(I)$ (for maximization problem).

Here α is referred to as the approximation ratio, approximation factor or the performance guarantee of A.

Different problems have different approximability. Some problem such as TSP are inapproximable and some other problems such as Bin Packing admit PTAS.

Definition 2. A polynomial time approximation scheme (PTAS) is a family of algorithms $\{A_\epsilon\}$, where for each $\epsilon > 0$ there is an algorithm A_ϵ that is $(1 + \epsilon)$-approximation algorithm (for minimization problems) or $(1 - \epsilon)$-approximation algorithm (for maximization problems).

So, for any small constant ϵ (say 0.0001), we can get a 1.0001 approximation for any problem that admit PTAS.
Why study approximation algorithms?

- We need fast solution for practical problems.
- Provides mathematical rigor to study and analyze heuristics.
- Gives a metric for difficulty of different discrete optimization problems.
- It's cool!

We will study approximation algorithms for three such NPC problems:

- Set Cover
- *Metric* Traveling Salesman Problem
- Max Cut.

2 Set Cover

In the *Set Cover problem*, we are given a ground set of n elements $E = \{e_1, e_2, \ldots, e_n\}$ and a collection of m subsets of E: $S := \{S_1, S_2, \cdots, S_m\}$ and a nonnegative weight function $\text{cost} : S \to \mathbb{Q}^+$. We will sometimes use $w_j = \text{cost}(S_j)$. The goal is to find a minimum weight collection of subsets that covers all elements in E. Formally we want to find a set cover C that minimizes $\Sigma_{S_j \in C} w_j$ subject to $\bigcup_{S_j \in C} S_j = E$. If $w_j = 1$ for all j, then the problem is called the *unweighted set cover problem*.

- Set Cover is a problem *whose study has led to the development of fundamental techniques for the entire field of approximation algorithms* [2].
- It is a generalization of many other important NPC problems such as *vertex cover* and *edge cover*.
- It is used in the development of antivirus products, VLSI design and many other practical problems.

3 A Greedy Algorithm for Set Cover

3.1 Algorithm

1. Initialize $C \leftarrow \phi$.

2. While C does not cover all elements in E do

 (a) Define cost-effectiveness of each set $S \in S$ as $\alpha_S = \frac{\text{cost}(S)}{|S \setminus C|}$
 (b) Find S, the most cost-effective set in the current iteration.
 (c) Pick S and for all newly covered elements $e \in S \setminus C$, set $\text{price}(e) = \alpha_S$.
 (d) $C \leftarrow C \cup S$.

3. Output C.

3.2 Analysis

- Returns a valid set cover in polynomial time.
- In any iteration, leftover sets of the optimal solution can cover the remaining elements \(E \setminus C \) at a cost of \(\text{Opt} \).
- Among these sets one must have cost-effectiveness \(\leq \frac{\text{Opt}}{|E \setminus C|} \).
- W.l.o.g. assume that the elements are numbered in the order in which they were covered by the algorithm, resolving ties arbitrarily. Let \(e_1, e_2, ..., e_n \) be this numbering in the order they are covered by the greedy algorithm.
- Assume element \(e_k \) was covered by the most cost-effective set at some iteration \(i \leq k \). At most \((k-1) \) items were covered before the iteration \(i \). Thus at least \(n - (k-1) \) elements were not covered before the iteration \(i \) and \(|E \setminus C| \geq (n - k + 1) \).
- \(\text{price}(e_k) \leq \frac{\text{Opt}}{|E \setminus C|} \leq \frac{\text{Opt}}{n-k+1} = \frac{\text{Opt}}{p} \) where \(p = (n-k+1) \).
- \(\text{price} \) is just distribution of set weights into the items. So the total cost of set cover \(\sum_{S_i \in C} \text{cost}(S_i) = \sum_{e_i \in E} \text{price}(e_i) \).
- Now, \(\sum_{e_k \in E} \text{price}(e_k) \leq \sum_{k=1}^{n} \frac{\text{Opt}}{n-k+1} \leq \sum_{p=1}^{n} \frac{\text{Opt}}{p} \leq H_n \cdot \text{Opt} \).
- Thus the greedy algorithm has \(H_n \) or \(O(\log n) \) approximation ratio where \(H_n \) is the \(n \)'th Harmonic number.
- Note: Finding a good lower bound on \(\text{Opt} \) is a basic starting point in the design of an approximation algorithm for a minimization problem.

3.3 Tight Example for Analysis:

- See Figure 3.3 for a tight example for the greedy algorithm for the set cover.
- Optimal solution has only one set of cost \((1 + \epsilon) \) where \(\epsilon(<< 1) \) is a very small constant close to 0.
- The greedy algorithm will return \(n \) singleton sets with total cost = \(\frac{1}{n} + \frac{1}{(n-1)} + \ldots + 1 = H_n \).
- So, approximation ratio for this example is \(H_n/(1 + \epsilon) \approx H_n \) as we can take \(\epsilon \) to be arbitrarily small.
- Thus the analysis gave a upper bound of \(H_n \) and this example gave a lower bound of \(H_n \) for the greedy algorithm. As the upper and lower bound matches, we call it a tight example and the analysis is tight.

![Figure 2: Tight example for Greedy Algorithms for Set Cover](image)
3.4 Hardness:

- Is there any other polynomial time algorithm that achieves $(1 - o(1)) \ln n$-approximation assuming $P \neq NP$?

- No! [Feige 1998]. The proof is quite complex and use probabilistic checkable proof systems (PCPs).

4 Resources:

I am following chapter 1 of [1] for the lectures. The book is freely available online: http://www.designofapproxalgs.com/. You can also see chapter 2 (Set Cover) from [2].

References
