
Research Statement
Wei Jin

http://www.cc.gatech.edu/˜wjin6

Quality-assurance activities, such as software testing and analysis, are notoriously difficult, expensive, and time-
consuming. As a result, software products are typically released with faults or missing functionality. The ever increasing
complexity of today’s software is making the situation even worse; because software is increasingly dynamic, config-
urable, and portable, the behaviors of deployed applications in the field may be very different from those observable in
house, during testing. In some cases, these different behaviors may be totally legitimate behaviors that simply were not
exercised in-house. In other cases, however, such behaviors may be anomalous and result in field failures, failures of the
software that occur after deployment, while the software is running on user machines. Field failures are both difficult to
foresee and difficult, when not impossible, to reproduce and debug outside the time and place in which they occurred.
These challenges and difficulties in reproducing and debugging field failures motivate my work. The overarching goal of
my research is to develop automated techniques that help developers investigate field failures, understand their causes,
and ultimately eliminate such causes.

My general area of research is software engineering, with emphasis on software analysis and debugging. My interests
include the development of techniques for helping developers improve the quality, reliability, and security of their soft-
ware, especially deployed software. Due to the practical nature of the problems I target, I strongly believe in developing
techniques that have solid technical foundations and still are practically applicable to problems in real scenarios. There-
fore, two important steps in my research are (1) implementing prototype tools to evaluate my techniques in real-world
settings and (2) making these tools freely available to facilitate future research.

In the rest of this document, I discuss the research contributions of my PhD work on automated support for (1)
reproducing and (2) debugging field failures. I then conclude with a concise discussion of ongoing and future work.
Note that the research described in the following sections is joint work with my advisor, Alessandro Orso, and some
external collaborators, as indicated in the references.

1 Reproducing Field Failures
A recent survey among developers of the Apache, Eclipse, and Mozilla projects revealed that most developers con-

sider information on how to reproduce failures (e.g., stack traces, steps to follow, and ideally even inputs) to be the most
valuable information in a bug report. Unfortunately, this information is usually difficult to obtain in practice. The press-
ing need to collect this information is demonstrated by the emergence, in the last decade, of several reporting systems
that collect information (e.g., stack traces and register dumps) when a program crashes and send it back to software
producers. Although useful, the information collected by these systems is often too limited to allow for reproducing a
failure. Even more sophisticated techniques for capturing data from deployed applications tend to either collect too little
information, and thus be ineffective for reproducing and debugging field failures, or too much information, and thus be
impractical for deploying.

To address these limitations in state-of-the-art techniques, I developed BugRedux [1], a general technique for (1)
collecting different kinds of execution data and (2) using the collected data to synthesize executions that can reproduce
failures observed in the field. More precisely, BugRedux can synthesize, given a program P , a field execution E of P
that results in a failure F , and a set of execution data D for E, an in-house execution E′ as follows. First, E′ results in
a failure F ′ that is analogous to F , that is, F ′ has the same observable behavior of F . Second, E′ is an actual execution
of P , that is, the approach is sound and generates an actual input that, when provided to P , results in E′. Finally, the
approach generates E′ using only P and D, with no need for additional information. Intuitively, BugRedux can be seen
as a general framework parameterized along two dimensions: the kind of execution data collected and the technique
used for synthesizing a failing execution. I developed four variations, or instances, of BugRedux that all share the same
synthesis technique (i.e., symbolic execution) but differ in the kind of execution data they use. Specifically, I consider
four types of increasingly rich execution data: points of failure, call stacks, call sequences, and complete program
traces. When applied to 16 failures of 14 real-world programs, BugRedux was able to synthesize in-house executions
that reproduced all of the failures observed when limited field execution data (i.e., sequences of call sites) is provided.
In addition to BugRedux, I also worked with other collaborators to define another technique, SBFR [4], that is based on
genetic programming for reproducing field failures. The results of SBFR indicate that it can be a good complementary

Wei Jin Research Statement (November 2014) Page 1

http://www.cc.gatech.edu/~wjin6


technique to BugRedux; SBFR was able to reproduce some failures that were problematic for BugRedux due to inherent
limitations of symbolic execution.

2 Fault Localization for Field Failures
Another related challenging problem for developers is to debug field failures. Although BugRedux can help devel-

opers reproduce field failures, similar to many other failure reproduction techniques, it does not provide any specific
support for understanding the recreated failures and their causes. Developers are therefore left with no alternative but to
perform traditional manual debugging.

To address this limitation, I developed F 3 [2], a technique that builds on BugRedux and extends it with support for
fault localization. Specifically, F 3 extends previous techniques in two main ways: first, I modified BugRedux so that
it generates multiple failing and passing executions similar to the observed field failure; second, I added to BugRedux
debugging capabilities by combining it with a customized fault-localization technique that is tailored for field failures. I
also implemented F 3 and applied it to a set of real-world programs and field failures: for all the failures considered, F 3

was able to (1) synthesize passing and failing executions and (2) successfully use the synthesized executions to perform
fault localization and, ultimately, help debugging.

3 Efficient Formula-based Debugging
I am also very interested in developing more principled debugging techniques that can explain the causes of failures

in a more fundamental way. For example, I worked with other collaborators to define a new technique, MIMIC [5], that
applies an anomaly detection technique on the passing and failing executions generated by F 3 to better help developers
locate and understand bugs.

More recently, I worked on improving a family of formula-based debugging techniques that can provide developers
with the possible location of the fault together with a mathematical explanation of the failure. Although effective,
existing formula-based approaches are computationally expensive, which limits their practical applicability. Moreover,
they tend to focus on failing test cases alone, thus ignoring the wealth of information provided by passing tests.

In a paper currently under submission [3], I proposed two techniques to mitigate these issues: on-demand formula
computation (OFC) and clause weighting (CW). OFC improves the overall efficiency of formula-based debugging by
exploring all and only the parts of a program that are relevant to a failure. CW improves the accuracy of formula-
based debugging by leveraging statistical fault-localization information that accounts for passing tests. Our empirical
results show that both techniques are effective and can improve the state of the art in formula-based debugging. The
combination of these two techniques was able to produce more precise and mathematical explanation of potential causes
of failures, as well as to handle practical failures that could not be handled by traditional formula-based techniques.
Overall, CW and OFC are promising steps towards more practically applicable formula-based debugging techniques
and motivate further research in this direction.

4 Ongoing and Future Work
In the future, I plan to continue my work along the directions discussed earlier and also to investigate new directions.

In particular, I plan to develop (1) automated debugging techniques that can generate better failure explanation and (2)
techniques that leverage field information to improve security and reliability of mobile and web applications.

For the first direction, I am currently investigating techniques that can improve the results of anomaly detection by
synthesizing executions that can identify legitimate program behaviors that are erroneously reported as anomalous. For
instance, generating passing (benign) executions that exercise behaviors reported as anomalous by an anomaly detection
technique can help filter out false positives, which could indirectly lead to better explanation of the causes of a failure.
I am also working on developing techniques that can improve the scalability of sophisticated debugging techniques,
such as formula-based debugging. The basic idea is to divide a faulty program into small modules and divide a failing
executions into parts that correspond to such modules, using a combination of various program analysis techniques
possibly together with information provided by developers. We would then apply the debugging technique at hand to
these different parts of the failing execution independently (as much as possible) and summarize and combine their
results.

As far as practical techniques for leveraging field information are concerned, I designed a system, during a semester-
long internship at Google, that can collect and aggregate anonymous runtime profile data from Android devices. These
data can then be used to improve several security analyses for Android apps and provide better development support
to Android developers. In my initial investigation, in particular, I found that aggregated anonymous profile data can

Wei Jin Research Statement (November 2014) Page 2



be used to improve malware detection. A paper that summarizes the design of the system and this initial investigation
results is currently under submission.

In general, I believe that my past and ongoing research has the potential to make considerable impact on the way we
will develop and verify software in the future. The collection of dynamic information from the field and the use of such
information can become important steps in software development, as they allow for improving software quality in ways
that would simply not be possible otherwise. Also, automated debugging support can improve developers’ understanding
of the cause of a failure and significantly reduce the developer effort required for debugging such failures.

What follows is the set of my publications cited in this research statement. For a complete list, please refer to my CV.

References
[1] W. Jin and A. Orso. BugRedux: Reproducing Field Failures for In-house Debugging. In Proceedings of the 34th

International Conference on Software Engineering, pages 474–484, 2012.

[2] W. Jin and A. Orso. F3: Fault Localization for Field Failures. In Proc. of the 2013 International Symposium on
Software Testing and Analysis, pages 213–223, 2013.

[3] W. Jin and A. Orso. Improving Efficiency and Scalability of Formula-based Debugging. In Proceedings of the
International Conference on Software Engineering, 2015. Under submission.

[4] F. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella. Reproducing field failures for programs with complex
grammar-based input. In Software Testing, Verification and Validation (ICST), 2014 IEEE Seventh International
Conference on, pages 163–172, March 2014.

[5] D. Zuddas, W. Jin, F. Pastore, L. Mariani, and A. Orso. Mimic: Locating and understanding bugs by analyzing
mimicked executions. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, pages 815–826, New York, NY, USA, 2014. ACM.

Wei Jin Research Statement (November 2014) Page 3


	1 Reproducing Field Failures
	2 Fault Localization for Field Failures
	3 Efficient Formula-based Debugging
	4 Ongoing and Future Work

