Predicting Future Observations of Functional and Structural Measurements in Glaucoma Using a Two-Dimensional State-based Progression Model

Yu-Ying Liu1, Hiroshi Ishikawa2,3, Gadi Wollstein2, Richard A. Bilonick2,4, James G. Fujimoto5, Cynthia Mattox6, Jay S. Duker6, Joel S. Schuman2,3, James M. Rehg1

1College of Computing, Georgia Institute of Technology, Atlanta, GA; 2UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA; 3Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA; 4Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA; 5Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA; 6New England Eye Center, Tufts Medical Center, Boston, MA

Purpose: Future observation prediction based on 2D continuous-time hidden Markov model (2D CT-HMM)

- **Glaucoma progression**: structural (retinal nerve fiber loss) and functional (visual field loss) degeneration processes often occur asynchronously over the disease course.
- **The proposed 2-D state-based CT-HMM model**:
 * Define disease states based on joint structural and functional measures, and model their transition intensities to capture their intricate dynamic relationship.
 * The learned state transition intensities, and state dwelling time distribution, can be intuitively visualized for progression understanding.
 * Covariate (such as age, treatments, etc.) effects can also be learned and incorporated into the model for individual-specific disease state decoding and future state path prediction.

Methods: Learn the state transition intensities from the longitudinal data for state-based future path prediction

- **2-D disease state definition**: visual field index (VFI) and global mean circumpapillary retinal nerve fiber layer (RNFL) thickness from OCT.
- **The likelihood function for one individual with unknown parameters q_i (Q matrix)**:

$$p(O, S^* | \lambda) = \max_{S_{t=1}^{t_{k-1}}} \prod_{t=1}^{t_{k-1}} p(o_t | S_t) p(S_t | S_{t-1}) (t_k - t_{k-1})$$

where $P(d) = e^{Qd}$ is the state transition probability matrix with duration d, computed from the matrix exponential of intensity matrix Q. The $P(d)$ entry represents the probability that if the current state is s_i, then after duration d, the state will be s_j (there can be many state jumps in the time interval).

- **Maximize the overall likelihood from all individuals to estimate the parameters**:
 * Expectation-Maximization (EM)-based method to find the instantaneous state transition rates q_i for each link, which defines the transition intensity matrix Q.
- **Future state prediction**: decode the hidden disease state path from the noisy history data using Viterbi algorithm, then predict the future state given any future time t by $j = \max_j P_j(t)$, where j denotes the current state.

Results: 2D CT-HMM method outperforms linear regression (LR) prediction

- **Dataset**: 81 glaucomatous eyes from 46 patients followed for 12.4±4.3 years; each eye has at least 6 visits (average 8.5±2.9 visits).
- **Testing**: 10-fold cross validation; for a testing eye, the first 5 visits were used as history data to decode the hidden states, then used for future observation prediction.
- **Performance assessment**: mean absolute error (MAE) between the predicted values and the actual measurements.

Results: 2D CT-HMM outperforms LR (t-test, p<0.001)

<table>
<thead>
<tr>
<th>MAE</th>
<th>Linear Regression</th>
<th>t-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFI</td>
<td>4.88 ± 8.44</td>
<td>5.95 ± 9.79</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>RNFL</td>
<td>8.25 ± 7.89</td>
<td>16.34 ± 19.65</td>
<td>p < 0.001</td>
</tr>
</tbody>
</table>

Conclusion and Future Work

- **Conclusion**: the proposed state-based model resulted in more accurate estimates of future observations (VFI and RNFL thickness) compared to linear regression method.
- **Future work**: incorporate covariates (age, treatment, etc.) for individual-level prediction.

Financial disclosure: Yu-Ying Liu, None; Hiroshi Ishikawa, None; Gadi Wollstein, None; Richard Bilonick, None; James G. Fujimoto, Zeiss (P); Optovue (P); Cynthia Mattox, None; Jay Duker, None; Joel S. Schuman, Zeiss (P); Zeiss (C); James M. Rehg, None

Support: NIH R01-EY013178, R01-EY011289, P30/EY08908; Eye and Ear Foundation (Pittsburgh, PA); Research to Prevent Blindness (New York, NY)