A Heuristic Approach to Value-Driven Evaluation of Visualizations

Emily Wall, Meeshu Agnihotri, Laura Matzen, Kristin Divis, Michael Haass, Alex Endert, and John Stasko
Evaluating the utility of visualizations is difficult
Value of Visualization

• Move beyond ability to support (just) question-answering

 • Often evident in benchmark task-focused user studies

• Assess broader, more holistic benefits that communicates "big picture" importance and context of data
Value of Visualization

\[V_{\text{value}} = T_{\text{ime}} + I_{\text{nsight}} + E_{\text{ssence}} + C_{\text{onfidence}} \]
Value of Visualization

Value = Time + Insight + Essence + Confidence

Ability to minimize the total time needed to answer a wide variety of questions about the data
Value of Visualization

\[V_{value} = T_{ime} + I_{nsight} + E_{ssence} + C_{onfidence} \]

Ability to spur and discover **insights** or insightful questions about the data
Value of Visualization

\[V_{\text{value}} = T_{\text{ime}} + I_{\text{nsight}} + E_{\text{ssence}} + C_{\text{onfidence}} \]

Ability to convey an overall \textit{essence} or take-away sense of the data
Value of Visualization

\[\text{Value} = \text{Time} + \text{Insight} + \text{Essence} + \text{Confidence} \]

Ability to generate confidence and trust about the data, its domain and context.
Value of Visualization

\[V_{\text{value}} = T_{\text{ime}} + I_{\text{nsight}} + E_{\text{ssence}} + C_{\text{onfidence}} \]

Goal: Operationalize this conceptual approach
Design of the Methodology
1. Literature Review
1. Literature Review

2. Four Brainstorm Sessions
1. Literature Review

2. Four Brainstorm Sessions

3. Workshop

- Preliminary Vis Evaluation
- Refine Heuristics
1. Literature Review
2. Four Brainstorm Sessions
3. Workshop
 - Preliminary Vis Evaluation
 - Refine Heuristics
4. Affinity Diagram
1. Literature Review
2. Four Brainstorm Sessions
3. Workshop
 - Preliminary Vis Evaluation
 - Refine Heuristics
4. Affinity Diagram
 - Vis Evaluation
 - Refine Heuristics
5. Testing
Hierarchical Value Framework

4 high-level components

2-3 mid-level guidelines

1-3 low-level heuristics

21 total heuristics
| Insight | The visualization facilitates answering questions about the data | The visualization exposes individual data cases and their attributes
The visualization facilitates perceiving relationships in the data like patterns & distributions of the variables
The visualization promotes exploration of relationships among different aggregation levels of the data
The visualization helps generate data-driven questions
The visualization helps identify unusual or unexpected, yet valid, data characteristics or values
The visualization provides useful interactive capabilities to help investigate the data in multiple ways
The visualization shows multiple perspectives about the data
The visualization uses an effective representation of the data that shows related and partially related data cases |
| Time | The visualization affords rapid parallel comprehension for efficient browsing | The visualization provides a meaningful spatial organization of the data
The visualization provides key characteristics of the data at a glance
The interface supports reorganizing the visualization by the data’s attribute values
The visualization supports smooth transitions between different levels of detail in viewing the data
The visualization avoids complex syntactic querying by providing direct interaction |
| Essence | The visualization provides a big picture perspective of the data | The visualization provides an effective, comprehensive and accessible overview of the data
The visualization presents the data by providing a meaningful visual schema
The visualization facilitates generalizations and extrapolations of patterns and conclusions
The visualization helps understand how variables relate in order to accomplish different analytic tasks |
| Confidence | The visualization helps avoid making incorrect inferences | The visualization uses meaningful and accurate visual encodings to represent the data
The visualization avoids using misleading representations
The visualization promotes understanding data domain characteristics beyond the individual data cases and attributes
If there were data issues like unexpected, duplicate, missing, or invalid data, the visualization would highlight those issues |
<table>
<thead>
<tr>
<th>Insight</th>
<th>Time</th>
<th>Essence</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>The visualization facilitates answering questions about the data</td>
<td>The visualization affords rapid parallel comprehension for efficient browsing</td>
<td>The visualization provides a big picture perspective of the data</td>
<td>The visualization helps avoid making incorrect inferences</td>
</tr>
<tr>
<td>The visualization provides a new or better understanding of the data</td>
<td>The visualization provides mechanisms for quickly seeking specific information</td>
<td>The visualization provides an understanding of the data beyond individual data cases</td>
<td>The visualization facilitates learning more broadly about the domain of the data</td>
</tr>
<tr>
<td>The visualization helps generate data-driven questions</td>
<td>The visualization supports smooth transitions between different levels of detail in viewing the data</td>
<td>The visualization provides an effective, comprehensive and accessible overview of the data</td>
<td>The visualization helps understand data quality</td>
</tr>
<tr>
<td>The visualization helps identify unusual or unexpected, yet valid, data characteristics or values</td>
<td>The interface supports reorganizing the visualization by the data's attribute values</td>
<td>The visualization presents the data by providing a meaningful visual schema</td>
<td>The visualization uses meaningful and accurate visual encodings to represent the data</td>
</tr>
<tr>
<td>The visualization promotes exploration of relationships among different aggregation levels of the data</td>
<td>The visualization supports smooth transitions between different levels of detail in viewing the data</td>
<td>The visualization facilitates generalizations and extrapolations of patterns and conclusions</td>
<td>The visualization avoids using misleading representations</td>
</tr>
<tr>
<td>The visualization helps generate data-driven questions</td>
<td>The visualization avoids complex syntactic querying by providing direct interaction</td>
<td>The visualization helps understand how variables relate in order to accomplish different analytic tasks</td>
<td>If there were data issues like unexpected, duplicate, missing, or invalid data, the visualization would highlight those issues</td>
</tr>
<tr>
<td>The visualization provides useful interactive capabilities to help investigate the data in multiple ways</td>
<td>The visualization uses an effective representation of the data that shows related and partially related data cases</td>
<td>The visualization promotes understanding data domain characteristics beyond the individual data cases and attributes</td>
<td>The visualization avoids using misleading representations</td>
</tr>
</tbody>
</table>
Insight
Insight

The visualization provides opportunities for serendipitous discoveries
Insight

• The visualization provides useful interactive capabilities to help investigate the data in multiple ways

• The visualization shows multiple perspectives about the data

• The visualization uses an effective representation of the data that shows related and partially related data cases

• The visualization provides opportunities for serendipitous discoveries
Methodology

• Raters: people with substantial data visualization + domain knowledge

• 7-point likert ratings + n/a

• Scores averaged so each guideline & component counted equal

• Scope: Interactive visualizations
$V = T + I + E + C$
Assessing the Methodology
• 12 male, 3 female

• 6 researchers, 8 professors, 1 software engineer

• 7-30 years of experience (mean 14)
• Interactive

• Undergraduate course project

• US college dataset
Vis B
Vis C
Insight

The visualization facilitates answering questions about the data

- The visualization exposes individual data cases and their attributes
- The visualization facilitates perceiving relationships in the data like patterns & distributions of the variables
- The visualization promotes exploration of relationships among different aggregation levels of the data

The visualization provides a new or better understanding of the data

- The visualization helps generate data-driven questions
- The visualization helps identify unusual or unexpected, yet valid, data characteristics or values

<table>
<thead>
<tr>
<th>How would you rate your agreement with the following statements?</th>
<th>How would you rate your confidence in your response? (1 - very low to 4 - very high)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Disagree</td>
<td>Disagree</td>
</tr>
<tr>
<td>:---</td>
<td>-----------------</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>How would you rate your agreement with the following statements?</td>
<td>How would you rate your confidence in your response? (1 - very low to 4 - very high)</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>Disagree</td>
</tr>
<tr>
<td>:---</td>
<td>-----------------</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>
Based on course project grades...
Results
<table>
<thead>
<tr>
<th></th>
<th>Vis A</th>
<th>Vis B</th>
<th>Vis C</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>P15</td>
<td>6.09</td>
<td>6.01</td>
<td>5.00</td>
<td>5.70</td>
</tr>
<tr>
<td>P14</td>
<td>5.08</td>
<td>5.51</td>
<td>4.94</td>
<td>5.18</td>
</tr>
<tr>
<td>P10</td>
<td>4.45</td>
<td>5.99</td>
<td>4.74</td>
<td>5.06</td>
</tr>
<tr>
<td>P5</td>
<td>5.05</td>
<td>6.24</td>
<td>3.69</td>
<td>4.99</td>
</tr>
<tr>
<td>P1</td>
<td>5.11</td>
<td>5.30</td>
<td>3.95</td>
<td>4.79</td>
</tr>
<tr>
<td>P4</td>
<td>4.39</td>
<td>5.24</td>
<td>4.50</td>
<td>4.71</td>
</tr>
<tr>
<td>P3</td>
<td>4.52</td>
<td>5.71</td>
<td>3.76</td>
<td>4.66</td>
</tr>
<tr>
<td>P13</td>
<td>5.60</td>
<td>5.90</td>
<td>2.49</td>
<td>4.66</td>
</tr>
<tr>
<td>P8</td>
<td>4.08</td>
<td>5.89</td>
<td>3.55</td>
<td>4.51</td>
</tr>
<tr>
<td>P9</td>
<td>3.96</td>
<td>5.37</td>
<td>4.05</td>
<td>4.46</td>
</tr>
<tr>
<td>P2</td>
<td>4.20</td>
<td>4.58</td>
<td>4.44</td>
<td>4.41</td>
</tr>
<tr>
<td>P7</td>
<td>4.24</td>
<td>4.78</td>
<td>3.62</td>
<td>4.21</td>
</tr>
<tr>
<td>P11</td>
<td>4.42</td>
<td>4.11</td>
<td>4.10</td>
<td>4.21</td>
</tr>
<tr>
<td>P6</td>
<td>4.78</td>
<td>4.68</td>
<td>2.81</td>
<td>4.09</td>
</tr>
<tr>
<td>P12</td>
<td>4.23</td>
<td>4.06</td>
<td>3.98</td>
<td>4.09</td>
</tr>
<tr>
<td>Avg.</td>
<td>4.67</td>
<td>5.30</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vis A</td>
<td>Vis B</td>
<td>Vis C</td>
<td>Average</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>P15</td>
<td>6.09</td>
<td>6.01</td>
<td>5.00</td>
<td>5.70</td>
</tr>
<tr>
<td>P14</td>
<td>5.08</td>
<td>5.51</td>
<td>4.94</td>
<td>5.18</td>
</tr>
<tr>
<td>P10</td>
<td>4.45</td>
<td>5.99</td>
<td>4.74</td>
<td>5.06</td>
</tr>
<tr>
<td>P5</td>
<td>5.05</td>
<td>6.24</td>
<td>3.69</td>
<td>4.99</td>
</tr>
<tr>
<td>P1</td>
<td>5.11</td>
<td>5.30</td>
<td>3.95</td>
<td>4.79</td>
</tr>
<tr>
<td>P4</td>
<td>4.39</td>
<td>5.24</td>
<td>4.50</td>
<td>4.71</td>
</tr>
<tr>
<td>P3</td>
<td>4.52</td>
<td>5.71</td>
<td>3.76</td>
<td>4.66</td>
</tr>
<tr>
<td>P13</td>
<td>5.60</td>
<td>5.90</td>
<td>2.49</td>
<td>4.66</td>
</tr>
<tr>
<td>P8</td>
<td>4.08</td>
<td>5.89</td>
<td>3.55</td>
<td>4.51</td>
</tr>
<tr>
<td>P9</td>
<td>3.96</td>
<td>5.37</td>
<td>4.05</td>
<td>4.46</td>
</tr>
<tr>
<td>P2</td>
<td>4.20</td>
<td>4.58</td>
<td>4.44</td>
<td>4.41</td>
</tr>
<tr>
<td>P7</td>
<td>4.24</td>
<td>4.78</td>
<td>3.62</td>
<td>4.21</td>
</tr>
<tr>
<td>P11</td>
<td>4.42</td>
<td>4.11</td>
<td>4.10</td>
<td>4.21</td>
</tr>
<tr>
<td>P6</td>
<td>4.78</td>
<td>4.68</td>
<td>2.81</td>
<td>4.09</td>
</tr>
<tr>
<td>P12</td>
<td>4.23</td>
<td>4.06</td>
<td>3.98</td>
<td>4.09</td>
</tr>
<tr>
<td>Avg.</td>
<td>4.67</td>
<td>5.30</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vis A</td>
<td>Vis B</td>
<td>Vis C</td>
<td>Average</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>P15</td>
<td>6.09</td>
<td>6.01</td>
<td>5.00</td>
<td>5.70</td>
</tr>
<tr>
<td>P14</td>
<td>5.08</td>
<td>5.51</td>
<td>4.94</td>
<td>5.18</td>
</tr>
<tr>
<td>P10</td>
<td>4.45</td>
<td>5.99</td>
<td>4.74</td>
<td>5.06</td>
</tr>
<tr>
<td>P5</td>
<td>5.05</td>
<td>6.24</td>
<td>3.69</td>
<td>4.99</td>
</tr>
<tr>
<td>P1</td>
<td>5.11</td>
<td>5.30</td>
<td>3.95</td>
<td>4.79</td>
</tr>
<tr>
<td>P4</td>
<td>4.39</td>
<td>5.24</td>
<td>4.50</td>
<td>4.71</td>
</tr>
<tr>
<td>P3</td>
<td>4.52</td>
<td>5.71</td>
<td>3.76</td>
<td>4.66</td>
</tr>
<tr>
<td>P13</td>
<td>5.60</td>
<td>5.90</td>
<td>2.49</td>
<td>4.66</td>
</tr>
<tr>
<td>P8</td>
<td>4.08</td>
<td>5.89</td>
<td>3.55</td>
<td>4.51</td>
</tr>
<tr>
<td>P9</td>
<td>3.96</td>
<td>5.37</td>
<td>4.05</td>
<td>4.46</td>
</tr>
<tr>
<td>P2</td>
<td>4.20</td>
<td>4.58</td>
<td>4.44</td>
<td>4.41</td>
</tr>
<tr>
<td>P7</td>
<td>4.24</td>
<td>4.78</td>
<td>3.62</td>
<td>4.21</td>
</tr>
<tr>
<td>P11</td>
<td>4.42</td>
<td>4.11</td>
<td>4.10</td>
<td>4.21</td>
</tr>
<tr>
<td>P6</td>
<td>4.78</td>
<td>4.68</td>
<td>2.81</td>
<td>4.09</td>
</tr>
<tr>
<td>P12</td>
<td>4.23</td>
<td>4.06</td>
<td>3.98</td>
<td>4.09</td>
</tr>
<tr>
<td>Avg.</td>
<td>4.67</td>
<td>5.30</td>
<td>3.96</td>
<td></td>
</tr>
</tbody>
</table>
Inter-Rater Reliability

• Mean for each vis on each heuristic

• Results:
 • Vis A: $r = 0.68$, $t(13) = 3.33$, $p < 0.01$;
 • Vis B: $r = 0.75$, $t(13) = 4.06$, $p < 0.01$;
 • Vis C: $r = 0.54$, $t(13) = 2.29$, $p < 0.05$;
Inter-Rater Reliability

• Component-level analysis

• Results:
 • Insight: $r = 0.56$, $t(13) = 2.46$, $p < 0.05$;
 • Confidence: $r = 0.55$, $t(13) = 2.40$, $p < 0.05$;
 • Essence: $r = 0.49$, $t(13) = 2.03$, $p = 0.06^*$;
 • Time: $r = 0.58$, $t(13) = 2.55$, $p < 0.05$;
• Average confidence in heuristic: 3.22 ± 0.70

• None had an average confidence < 3

• Confidence rating of 1 given to a total of 5 heuristics
“The visualization promotes exploration of relationships among different aggregation levels of the data”
“The visualization promotes exploration of relationships among different aggregation levels of the data” between individual data cases as well as different groupings of data cases”
<table>
<thead>
<tr>
<th>Insight</th>
<th>Sentence 1</th>
<th>Sentence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>The visualization facilitates answering questions about the data</td>
<td>The visualization exposes individual data cases and their attributes</td>
<td>The visualization facilitates perceiving relationships in the data like patterns & distributions of the variables</td>
</tr>
<tr>
<td>The visualization provides a new or better understanding of the data</td>
<td>The visualization helps generate data-driven questions</td>
<td>The visualization helps identify unusual or unexpected, yet valid, data characteristics or values</td>
</tr>
<tr>
<td>The visualization provides opportunities for serendipitous discoveries</td>
<td>The visualization provides useful interactive capabilities to help investigate the data in multiple ways</td>
<td>The visualization shows multiple perspectives about the data</td>
</tr>
<tr>
<td>The visualization affords rapid parallel comprehension for efficient browsing</td>
<td>The visualization provides a meaningful spatial organization of the data</td>
<td>The visualization (shows) [emphasize] key characteristics of the data at a glance</td>
</tr>
<tr>
<td>The visualization provides mechanisms for quickly seeking specific information</td>
<td>The interface supports (using different attributes of the data to reorganize the visualization's appearance) [emphasize] the visualization by the data's attribute values</td>
<td>The visualization supports smooth transitions between different levels of detail in viewing the data</td>
</tr>
<tr>
<td>The visualization provides a big picture perspective of the data</td>
<td>The visualization provides (encompass) a comprehensive and accessible overview of the data</td>
<td>The visualization avoids complex (commands and textual queries) [emphasize] by providing direct interaction (with the data representation)</td>
</tr>
<tr>
<td>The visualization provides an understanding of the data beyond individual data cases</td>
<td>The visualization facilitates generalizations and extrapolations of patterns and conclusions</td>
<td>The visualization helps understand how variables relate in order to accomplish different analytic tasks</td>
</tr>
<tr>
<td>The visualization helps avoid making incorrect inferences</td>
<td>The visualization uses meaningful and accurate visual encodings to represent the data</td>
<td>The visualization avoids using misleading representations</td>
</tr>
<tr>
<td>The visualization facilitates learning more broadly about the domain of the data</td>
<td>The visualization promotes understanding data domain characteristics beyond the individual data cases and attributes</td>
<td></td>
</tr>
<tr>
<td>The visualization helps understand data quality</td>
<td>If there were data issues like unexpected, duplicate, missing, or invalid data, the visualization would highlight those issues</td>
<td></td>
</tr>
</tbody>
</table>
Discussion
Discussion

• Subjective interpretation of heuristics

• 5 raters

• Independence of components
Applications

• Grading visualization course projects

• Formative design feedback

• Low-cost evaluation in academic or commercial settings
VisValue.org

Thank you!

Value-Driven Visualization Evaluation

The V3T Methodology for Measuring the Value of a Visualization

Description

Having big visualizations is complex. We have developed a value-driven methodology called V3T to help researchers, designers, and practitioners determine the value of visualizations. This site contains links to the research papers describing the methodology, supplemental material about the study, and materials available for download so that others can use the methodology.

Materials

To conduct an evaluation of a visualization using our V3T Methodology, we provide the following materials:

1. Process: Fill out our request form to receive a set of materials.
2. Project: Download and review the project materials.
3. Materials: Use the materials to conduct an evaluation of the visualization.

Next, recruit participants to conduct the study. Each participant should select a description of the visualization and rate it on a scale of 1 to 5. Each participant should also rate the visualization on a scale of 1 to 5. The results should be compiled to determine the value of the visualization.

Each participant will fill out one V3T survey for every visualization being evaluated. Once each participant has completed the survey, the scores from the participants will be compiled to determine the value of the visualization.