
2
Queue-Proportional Sampling: A Better Approach to Crossbar
Scheduling for Input-Queued Switches

LONG GONG, Georgia Institute of Technology
PAUL TUNE, University of Adelaide

LIANG LIU, Georgia Institute of Technology
SEN YANG, Georgia Institute of Technology
JUN (JIM) XU, Georgia Institute of Technology

Most present day switching systems, in Internet routers and data-center switches, employ a single input-queued crossbar to

interconnect input ports with output ports. Such switches need to compute a matching, between input and output ports, for

each switching cycle (time slot). The main challenge in designing such matching algorithms is to deal with the unfortunate

tradeoff between the quality of the computed matching and the computational complexity of the algorithm. In this paper,

we propose a general approach that can significantly boost the performance of both SERENA and iSLIP, yet incurs only

O(1) additional computational complexity at each input/output port. Our approach is a novel proposing strategy, called

Queue-Proportional Sampling (QPS), that generates an excellent starter matching. We show, through rigorous simulations, that

when starting with this starter matching, iSLIP and SERENA can output much better final matching decisions, as measured

by the resulting throughput and delay performance, than they otherwise can.

CCS Concepts: • Mathematics of computing → Matchings and factors; Queueing theory; • Theory of computation →

Scheduling algorithms; • Networks → Network resources allocation;

Additional Key Words and Phrases: Crossbar scheduling, input-queued switch, queue-proportional sampling, matching

ACM Reference format:
Long Gong, Paul Tune, Liang Liu, Sen Yang, and Jun (Jim) Xu. 2017. Queue-Proportional Sampling: A Better Approach to

Crossbar Scheduling for Input-Queued Switches. Proc. ACM Meas. Anal. Comput. Syst. 1, 1, Article 2 (June 2017), 33 pages.
DOI: http://dx.doi.org/10.1145/3084440

1 INTRODUCTION
Most present day switching systems, in Internet routers and data-center switches, employ a single crossbar to

interconnect input ports with output ports. A generic input-queued switch is shown in Figure 1, with N input

and N output ports interconnected by a crossbar. Each input port has N Virtual Output Queues (VOQs). A VOQ j
at input port i serves as a buffer for packets going from input port i to output port j. The use of VOQs solves the
Head-of-Line (HOL) blocking issue [13], which severely limits the throughput of the switch system.

We thank Prof. Bill Lin for sharing with us the simulation code for iSLIP and SERENA. This work is supported in part by US NSF grants

CNS-1423182, CNS-1302197 and, Australian Research Council grant DP110103505.

Author’s addresses: L. Gong, L. Liu, and J. Xu, School of Computer Science, College of Computing, Georgia Institute of Technology. P. Tune,

School of Mathematical Sciences, University of Adelaide. S. Yang, School of Electrical and Computer Engineering, College of Engineering,

Georgia Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2017 ACM. 2476-1249/2017/6-ART2 $15.00

DOI: http://dx.doi.org/10.1145/3084440

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:2 • L. Gong et al.

VOQ 1

VOQ N

Input 1
Output 1Crossbar

VOQ 1

VOQ N

Input N
Output N

Fig. 1. Generic input-queued crossbar switch.

In an input-queued switch, each input port can be connected to only one output port, and vice versa, in each

switching cycle, or time slot. Hence, input-queued switches need to compute, per time slot, a one-to-onematching
between input and output ports. With the relentless growth in the volume of network traffic across the Internet

and in data-centers, switches capable of connecting a large number of ports and operating at very high port/link

speeds are badly needed. The primary research challenge when designing such large single-crossbar switch

architectures is to develop algorithms that can compute “high quality” matchings – i.e., those that result in high

switch throughput (ideally 100%) and low queueing delays for packets – at high speeds.

Unfortunately, there appears to be a tradeoff between the quality of a matching and the time needed to

compute it (i.e., computational complexity). Maximum Weight Matching (MWM), with a suitable weight measure,

is known to produce (empirically) optimal matchings in terms of queueing delay for a large variety of traffic

patterns [34]. Each matching decision however takesO(N 3) time to compute [7]. Researchers have been searching

for alternatives that have complexity much lower than O(N 3), but have performance (mostly in terms of delay)

close enough to MWM.

SERENA [10] is one such algorithm. It outputs excellent matching decisions resulting in 100% switch throughput

and queueing delay close to that of MWM. Each matching decision takesO(N) time to compute. Another example

is iSLIP [17], a distributed iterative algorithm where input and output ports compute a matching in parallel

through multiple iterations of message exchanges. iSLIP has a per-port computational complexity of O(log2 N)

(O(logN) iterations that each has O(logN) circuit depth) that is lower than SERENA’s overall complexity of

O(N). However, iSLIP computes a different type of matching called Maximum-Size Matching (MSM), which is of

lower quality than MWM. Hence iSLIP cannot achieve 100% throughput except under uniform traffic, and has

much longer queueing delays than SERENA under heavy nonuniform traffic.

1.1 Starter Matching and Its Importance
In SERENA, a starter (partial) matching is first generated, via a proposing process, then populated into a full

matching, and finally refined into the final matching. The proposing process works as follows. Each input port

“proposes” to an output port that it would like to match with by sending the output port a message containing

the length of the corresponding VOQ. An output port, upon receiving proposals from one or more input ports,

accepts the one whose corresponding VOQ is the longest.

SERENA’s proposing strategy is the so-called arrival graph: each input port proposes to an output port

corresponding to the destination of a packet that arrived in the previous time slot, if applicable. This is a sensible

strategy because, in the steady state, an output port is proposed to with a probability proportional to the packet

arrival rate of the corresponding VOQ.

However, this proposing strategy has a subtle shortcoming: it is oblivious to the current lengths of N VOQs at

each input port, so not enough attention is devoted to reducing the lengths of longest VOQs. For example, a VOQ

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:3

with many packets but without recent arrivals, which could happen under bursty traffic (see §6), will mostly be

denied service until it has new arrivals.

1.2 Queue-Proportional Sampling (QPS)
In this paper, we propose a general approach that can significantly boost the performance of both SERENA and

iSLIP, yet incurs only O(1) additional computational complexity at each input/output port. Our approach is a

novel proposing strategy, called Queue-Proportional Sampling (QPS), that generates an excellent starter matching,
better than the arrival graph used by SERENA. Scheduling algorithms that start from “scratch” (i.e., an empty

matching), such as iSLIP, may also benefit significantly from QPS, by instead starting from a QPS-generated

starter matching.

Our proposing strategy, QPS, at any input port, is extremely simple to state: the input port proposes to an

output port with a probability proportional to the length of the corresponding VOQ. QPS’s name comes from

the fact that the output port proposed to by any input port is sampled, out of all N output ports, using the

queue-proportional distribution at the input port. We note that, although this general approach – of serving

queues at rates/probabilities proportional to their lengths – to resource allocation is classical [8], QPS is a novel

application of this approach to crossbar scheduling.

We will show in §4 that QPS is also extremely cheap to execute: we developed an O(1) data structure and
algorithm for generating such a sample at each input port. This may be surprising to readers, since even to “read”

the lengths of all N VOQs at an input port takes O(N) time. Due to its O(1) (per port) computational complexity,

any QPS-augmented algorithm has the same asymptotic complexity as the original algorithm.

In this work, we consider two QPS-augmented algorithms: QPS-iSLIP and QPS-SERENA, which combine QPS

with iSLIP [17] and SERENA [10] respectively. Both QPS-augmented algorithms are shown to outperform the

original algorithms, in both throughput and delay, under various load conditions and traffic patterns, by a wide

margin in §6. As the QPS approach is very general, it can be used to augment other low-complexity switching

algorithms in the future.

We make the following three major contributions in this work. First, we propose QPS, a simple yet effective

approach to crossbar scheduling, and use it to augment both iSLIP and SERENA. Second, we propose a data

structure that carries out each QPS operation with onlyO(1) computation per port. Third, for proving the stability

of QPS-SERENA, we derive a new and stronger theorem for proving the stability of a large family of switching

algorithms.

The rest of this paper is organized as follows. In §2, we provide some background on input-queued crossbar

scheduling. In §3, we describe the QPS proposing strategy and two QPS-augmented crossbar scheduling algorithms,

namely QPS-iSLIP and QPS-SERENA. In §4, we show how to carry out each QPS operation with only O(1)
computation. In §5, we prove that QPS-SERENA can achieve 100% throughput. In §6, we evaluate the throughput

and delay performance of QPS-iSLIP and QPS-SERENA against other competing algorithms. In §7, we describe

related work before concluding the paper in §8.

2 BACKGROUND
In this section, we provide an overview of the input-queued crossbar switch architecture and formulate the

research problem of crossbar scheduling.

2.1 Input-Queued Crossbar Architecture
In an input-queued switch, packets arriving at an input port are queued first in their respective VOQs before

being switched to their respective output ports by the crossbar. In this work, we adopt the standard assumption

that all incoming variable-size packets are segmented into fixed-size packets (sometimes referred to as cells),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:4 • L. Gong et al.

which are then reassembled when leaving the switch. Hence we consider the switching of only fixed-size packets

in the sequel, and each such fixed-size packet takes exactly one time slot to transmit. We also make the following

standard homogeneity assumption that every input or output link/port has the same maximum transmission rate

(normalized to 1), which is equal to that of a transmission line or crosspoint in the crossbar (also normalized to 1).

An N × N crossbar is generally modeled as a weighted complete bipartite graph, with the N input ports and

the N output ports represented as the two disjoint vertex sets respectively. An edge between an input port i and
an output port j corresponds to the VOQ j at the input port i , and its weight is the queue length (i.e., the number

of packets buffered) of the VOQ. A valid schedule, or matching, is a set of edges between the N input ports and

the N output ports, in which no two distinct edges share a vertex. Since there can be at most N edges in any

such matching, the crossbar can switch at most N packets to their respective output ports during each time slot.

Each matching can also be represented as an N × N sub-permutation matrix
1 S =

(
si j

)
, in which si j = 1 if and

only if the input port i is matched with the output port j.

2.2 Performance Metrics
The research objective of crossbar scheduling is to design scheduling algorithms that select a good matching, as

measured by certain performance metrics, in each time slot, with a reasonable amount of computation. Typically,

scheduling algorithms are evaluated on three performance metrics: throughput, delay, and complexity.

Throughput: Normalized throughput is defined as the average number of packets that exit an output port during

each time slot. It is a value between 0 and 1 (i.e., 100%). Throughout this work, we mean normalized throughput

whenever we use the word “throughput”.

We say a switch, employing a certain crossbar scheduling algorithm, is stable [19] – under a certain workload

– if its total queue (VOQ) length ∥Q(t)∥1 satisfies sup

0≤t<∞
E
[
∥Q(t)∥1

]
< ∞. A crossbar scheduling algorithm is said

to achieve 100% throughput, if the switch is stable under any traffic arrival process that is admissible (defined

next) and satisfies certain other mild conditions (see §5.1). For example, SERENA can achieve 100% throughput

under any such admissible arrival process, whereas iSLIP generally cannot.

Delay: We define delay as the number of time slots elapsed since the arrival of a packet to its eventual departure

from the switch. An ideal scheduling algorithm has 100% throughput and low delay. Achieving 100% throughput

is relatively easier than achieving low delay. For instance, in TASS [33], 100% throughput is achieved, at the cost

of high delays, using a simple randomized adaptive algorithm that we will describe in §5.2.

Complexity: Another criterion for evaluating a scheduling algorithm is the time complexity of computing a

matching. Asmentioned earlier, folklore suggests a tradeoff between the quality ofmatching and the computational

complexity. A key contribution of our QPS approach is to strike better performance-complexity tradeoffs than

existing approaches such as iSLIP and SERENA.

2.3 Admissible Traffic Patterns
Let λi j be the normalized (to the percentage of the rate of an input/output link) mean arrival rate of packets to

the jth VOQ (i.e., those destined for output port j) at input port i . Then the traffic pattern, represented by an

N × N traffic matrix Λ = {λi j }N×N , is called admissible if

λ(in)i ,
∑
j

λi j < 1 ∀1 ≤ i ≤ N (1)

λ(out)j ,
∑
i

λi j < 1 ∀1 ≤ j ≤ N (2)

1
An N × N sub-permutation matrix is an N × N 0-1 matrix where at most one element in each row or column can take value 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:5

Equivalently, we say Λ is admissible, if and only if ρ < 1, where ρ, defined as

ρ , max

{
max

1≤i≤N
{λ(in)i }, max

1≤j≤N
{λ(out)j }

}
(3)

is the maximum normalized load imposed on any input or output port. Clearly, ρ < 1 is a necessary condition for

any crossbar scheduling algorithm to ensure the stability of a switch.

Now we state a well-known fact that has been used, usually without a proof, in almost every switch stability

proof in the literature.

Fact 1. For each N × N admissible traffic matrix Λ, whose maximum per input/output load is ρ (defined in (3)),
there exist N × N matching (sub-permutation) matricesMn , n = 1, 2, . . . ,K such that

Λ =
K∑
n=1

αnMn (4)

where K ≤ N 2 − 2N + 2, αn > 0 and
∑K

n=1 αn ≤ ρ.

This fact follows from the fact thatΛ/ρ is a sub-stochasticmatrix, which can be expressed as a linear combination

of sub-permutation matrices with positive coefficients summing up to a value no larger than 1, known as the

Birkhoff–von Neumann decomposition [6, 21, 23].

3 QUEUE-PROPORTIONAL SAMPLING
In this section, we first describe the QPS proposing strategy in details. Then we explain how to augment iSLIP

and SERENA using QPS. We next compare QPS with ShakeUp [11], another “add-on” technique that can be used

to augment iterative switching algorithms such as iSLIP and iLQF [16]. In Appendix A, we discuss a QPS variant

called FQPS, which samples a VOQ with a probability proportional to a function of the VOQ length.

3.1 The QPS Proposing Strategy
In all QPS-augmented crossbar scheduling algorithms, the first step is for input ports and output ports to perform

one iteration of message exchanges to generate a starter matching. This iteration consists of two phases, namely,

a QPS-proposing phase and an accepting phase.

Proposing phase. In this phase, each input port proposes to exactly one output port – decided by the QPS

strategy – unless it has no packet to transmit. Algorithm 1 shows the pseudocode of the QPS proposing strategy

at input port 1; that at any other input port is identical. Denote asm1,m2, · · · ,mN the respective lengths of N
VOQs at input port 1, and asm their total (i.e.,m ,

∑N
k=1mk). Input port 1 simply samples an output port j with

probability
mj
m (line 2), i.e., proportional to the length of the corresponding VOQ; it then proposes the valuemj to

output port j (line 3).

Accepting phase. We adopt the same accepting strategy as in SERENA: “longest VOQ first”. The pseudocode of

the accepting phase, at output port 1, is shown in Algorithm 2; that at any other output port is identical. The

action of output port 1 depends on the number of proposals it receives. If it receives exactly one proposal from

an input port, it will accept the proposal and (tentatively) match with the input port. However, if it receives

proposals from multiple input ports, it will accept the proposal accompanied with the highest VOQ length, with

ties broken uniformly at random.

The computational complexity of this accepting strategy is O(1) in practice although in theory an output port

could receive up to N proposals and have to compare their accompanying VOQ lengths. This is because the

probability for an output port to receive proposals from more than several (say 5) input ports is tiny, and even if

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:6 • L. Gong et al.

1 Procedure QPS-Propose()
2 Sample an output port j with probability

mj
m

3 Sendmj (length of VOQ j) to output port j

ALGORITHM 1: Proposing phase at input port 1.

1 Procedure Accept()
2 if one or more proposals are received then
3 Accept the one with largest VOQ length

ALGORITHM 2: Accepting phase at output port 1.

this rare event happens, the output port can ignore/drop all proposals beyond the first several (say 5) without

affecting the quality of the final matching much. In our evaluations, we indeed set this threshold to 5.

We have also considered and experimented with another accepting strategy: accepting each competing proposal

with a probability proportional to the length of the corresponding VOQ, which we refer to as Proportional Accepting
(PA). The advantage of PA over “longest VOQ first” above is that when the switch is severely overloaded (i.e.,
with offered load > 100%), PA could provide better fairness to competing input ports and help prevent certain

starvation situations. For example, consider the pathological scenario in which, for a fairly long period of time (say

1 minute), packets destined for an output j would arrive at input ports i1 and i2 with rates 1 and 0.1 respectively.
Under “longest VOQ first”, the output port j would keep accepting proposals from input port i1 (because its VOQ
length is longer) and hence starve input port i2, whereas under PA, the output port j would accept proposals

from input port i2 with roughly 1/11 probability.

However, we prefer “longest VOQ first” over PA because, as we will show in Appendix E.3, the former generally

has better average delay performance, albeit slightly, and guarantees almost the same fairness and lack of

starvation, under all admissible workloads. We believe the primary mission of a crossbar scheduling algorithm

is to deliver excellent performance under admissible workloads; such “grace under fire” (proportional fairness

and lack of starvation even when severely overloaded) is a secondary consideration and can be better achieved

through other “knobs or levers” orthogonal to switching such as congestion control, packet scheduling, or traffic

policing/shaping. This said, we prove in Appendix D that QPS-SERENAwith PA can also achieve 100% throughput

just like QPS-SERENA with “longest VOQ first”, in case the former is preferred in certain application scenarios.

Message Complexity. The message complexity of each “propose-accept” iteration is O(1) messages per input

or output port, because each input/output port transmits no more than one message during the propose/accept

phase.

3.2 Augmenting iSLIP and SERENA
Now we describe, in QPS-iSLIP and QPS-SERENA respectively, how iSLIP and SERENA are augmented using

QPS. We also describe iLQF [16] in this section, because it is closely related to iSLIP, and its performance will be

compared against QPS-iSLIP in §6.

3.2.1 iSLIP, QPS-iSLIP, and iLQF. The iSLIP algorithm computes an approximate MSM (Maximum Size

Matching) via multiple iterations of message exchanges between the input and output ports. Each iteration

consists of three stages: request, grant, and accept. In the request stage, each input port sends requests to all

output ports whose corresponding VOQs are not empty. In the grant stage, each output port, upon receiving

requests from multiple input ports, grants to one in a round-robin order. This round-robin order is enforced

through a grant pointer that records the identifier of the input port – to whom a grant was accepted in the first

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:7

iteration – during the most recent time slot when this situation occurred. Finally, in the accept stage, each input

port, upon receiving accepts from multiple output ports, accepts one in a round-robin order, enforced similarly

through an accept pointer.
QPS-iSLIP can be viewed as adding a “0

th
iteration” to iSLIP. In this 0

th
iteration, QPS is executed to generate

a starter matching. Then iSLIP is called to match only those input/output ports not matched in the 0
th

iteration,

through multiple request-grant-accept iterations. We specify that in QPS-iSLIP, it is those ports matched in the

1
st
iteration (by iSLIP), not those matched in the 0

th
iteration (by QPS), who update the values of their grant

or accept pointers. The rationale is that the aforementioned objective of enforcing the round-robin order is not

accomplished in the QPS iteration.

iLQF [16] operates in the same way as iSLIP, except that (1) it is aware of the edge weights (i.e., lengths
of VOQs), and (2) it favors the request or grants with the heaviest weight (i.e., greedy) in the grant or accept

stage respectively. Hence, iLQF can be viewed as a greedy approach to approximately compute the MWM. iLQF

generally performs better than iSLIP, but has a higher computational complexity of O(N) per port (compared to

O(log2 N) for iSLIP). We show in §6 that our QPS-iSLIP algorithm has a similar performance as iLQF, but the

same per-port complexity as iSLIP.

3.2.2 SERENA and QPS-SERENA. As described earlier, SERENA derives a starter matching from the arrival

graph. This starter matching, which is typically partial, is then populated into a full matching by pairing the

unmatched nodes in the bipartite graph uniformly at random. SERENA then combines, using a MERGE procedure,

this full matching with the matching used in the previous time slot, to arrive at a new matching that is at least as

heavy as both matchings. This new matching will then be used for the current time slot. We omit the details

of this MERGE procedure, since it is not related to how QPS augments SERENA. Finally, to precisely specify

QPS-SERENA, it suffices to note that the only difference between QPS-SERENA and SERENA is that QPS-SERENA

uses a QPS-generated starter matching, instead of one derived from the arrival graph.

3.3 QPS vs. ShakeUp
As we have shown, QPS is used mainly as an “add-on” to certain switching algorithms. In the literature, the

only other add-on technique that we are aware of is ShakeUp [11]. ShakeUp is a set of randomized algorithms

designed to boost the performance of certain iterative switching algorithms, such as iSLIP and iLQF. It does so by

preventing these iterative algorithms from getting stuck at (locally) maximal matchings during their iterative

executions. ShakeUp is typically used as follows: a ShakeUp-augmented switching algorithm alternates between

an iteration of the underlying switching algorithm (e.g., iSLIP) and a ShakeUp iteration.

There are two types of ShakeUp algorithms: unweighted and weighted [11]. The unweighted ShakeUp is

designed to augment switching algorithms that do not consider VOQ lengths in their decision-making, such as

Parallel Iterative Matching (PIM) [2] and iSLIP [17]. In each unweighed ShakeUp iteration, unmatched input ports

are first permuted in a random order. From this (random) order, each unmatched input port sends a request to an

output port uniformly at random (i.e., unweighted) chosen from the set of output ports to which the corresponding

VOQs are nonempty. An output port, upon receiving such a request, must now pair with this input port, even

if it was already paired with another input port. If an output port receives multiple requests during the same

ShakeUp iteration, it selects one of them uniformly at random. The iSLIP scheme augmented this way was

called SLIP-SHAKE in [11]. In §6, we will compare the its performance (renamed to iSLIP-ShakeUp) with that of

QPS-iSLIP.

The weighted ShakeUp [11] is designed to augment switching algorithms that incorporate VOQ lengths in their

decision-making, such as iLQF [16]. In each weighed ShakeUp iteration, each unmatched input port, one after

another in the above-mentioned randomly order, sends a request to an output port with a probability proportional

to the length of the corresponding VOQ.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:8 • L. Gong et al.

Admittedly, weighted ShakeUp’s proposing strategy sounds very similar to our QPS strategy. However, there

are four key differences: how they are used, how widely applicable they are, their intended purpose, and how they

are implemented. First, in ShakeUp, only unmatched input ports execute this strategy to “shake up” an existing

suboptimal matching, whereas in QPS, all input ports execute the strategy at the very beginning to generate a

starter matching for other switching algorithms to build on. In a sense, ShakeUp is designed for “post-processing”

whereas QPS is designed for “pre-processing”. Second, while our QPS scheme can easily augment a non-iterative

algorithm such as SERENA, it is not known whether ShakeUp, weighted or unweighted, can do the same. Third,

it was never suggested in [11] that this (weighted) strategy might be suitable for “weight-oblivious” switching

algorithms such as PIM or iSLIP; only the unweighed ShakeUp was “prescribed” for PIM or iSLIP. Last, unlike in

our work, there was no mention of how the queue-proportional proposing strategy could be carried out in O(1)
time (per port), and no data structure was proposed for doing so [11].

...
mj

...
j B j E j · · · A j · · · F j /

G • • • B • • • A • • • C D

head

tail

sampled packet

HOL packet

m

(a) Before scheduling

...
mj

...
j E j · · · A j · · · F j /

G • • • D • • • A • • • C

head tail

m− 1

(b) After scheduling

Fig. 2. Illustrating the action of the QPS data structures on a single input port.

4 QPS IMPLEMENTATION
In this section, we describe the data structure and algorithm that allows an input port to sample a VOQ in the

queue-proportional manner (i.e., line 2 of Algorithm 1), and, if needed, to remove the Head-of-Line (HOL) packet

of any VOQ (for receiving switching service), both with O(1) (per port) computational complexity. This data

structure is extremely simple, although we have so far not been able to find anything sufficiently similar in the

literature.

The memory overhead of the QPS data structure is no more than 20 bytes per packet; the detailed “accounting”

is shown in Appendix B. Assuming an average packet size of 500 bytes, the amount of memory consumed by the

QPS data structure is no more than 4% of what is needed for storing the actual packets. This is a modest space

overhead ratio to pay, for the significant improvements in switching performance.

4.1 Overview of the Sampling Algorithm
We first provide a high-level overview of the sampling algorithm. It consists of two steps. In the first step, we

sample a packet, out of all packets currently queued at the input port, uniformly at random. Specifically, if there

are a total ofm packets across all N VOQs at the input port, each packet is sampled with probability 1/m. With

such uniform sampling, the jth VOQ, which has lengthmj , will have one of packets sampled with probability

mj/m. This is precisely the QPS behavior called for in line 2 of Algorithm 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:9

Suppose a packet is thus sampled. A part of the second step is to find out which VOQ this packet belongs to so

that the input port can propose to the corresponding output port with its queue length (see line 3 of Algorithm 1).

However, more effort is still required. Since all switching algorithms serve packets in a VOQ strictly in the

FIFO order, if this proposal is successful (i.e., accepted by the output port), and the input and output port pair

is eventually a part of the final matching, the HOL packet of this VOQ, which may or may not be the sampled

packet, needs to be located and serviced. Hence, the other part of the second step is to locate the HOL packet of

this VOQ.

Before going into the details, we list two other basic operations that this data structure needs to also support.

The first operation is that any new incoming packet must be recorded in the data structure so that it is logically

“added to the end of the VOQ that it belongs to”. The second operation is that, when the scheduling algorithm

eventually decides to pair the input port with a different output port than was proposed to, which could happen

due to either the proposal being rejected or the initially accepted proposal being overridden by the scheduling

algorithm (e.g., during SERENA’s MERGE operation in the case of QPS-SERENA), the HOL packet of the (new)

corresponding VOQ needs to be located and removed for receiving the switching service. Both operations can be

supported with O(1) complexity, as will be shown next.

4.2 The Detailed Data Structure
We show that the two steps of the QPS proposing strategy can be performed inO(1) time, at any input port, via a

main and an auxiliary data structures, that are the same for all input ports. Figure 2(a) and Figure 2(b) present the

data structures, at a single input port, before and after the HOL packet of its jth VOQ is chosen for (switching)

service. The top half and bottom half of the figures show the main and the auxiliary data structures respectively.

The main data structure. The main data structure is an array of N records, corresponding to the N VOQs at

the input port. Each record j (i.e., array entry j) is associated with a linked list, which corresponds to (pointers

to) packets queued at a VOQ in the order they arrived, starting with the HOL packet. Each node in the linked

list contains two pointers encoded as “⟨letter ⟩” (e.g., A); one points to the actual packet (e.g., packet A) in the

packet buffer (not shown in the figure) and the other to the corresponding entry (e.g., entry A) in the auxiliary

data structure, which we refer to as a back pointer.
For simplicity, Figure 2 shows only record j (corresponding to VOQ j). Each record contains a head and a tail

pointers that point to the head node and the tail node of the linked list respectively. The head pointer is needed

for locating and for removing the head node (i.e., the HOL packet) in O(1) time; it is also needed for locating and

replacing the array entry that corresponds to the HOL packet in the auxiliary data structure. The tail pointer is

needed for inserting a newly arrived packet to the “end of the VOQ” (i.e., the first basic operation) in O(1) time.

The auxiliary data structure. The bottom half of Figure 2 shows the auxiliary data structure used for performing

the sampling. Suppose there are a total ofm packets queued across all N VOQs at the input port. The auxiliary

data structure is simply an array ofm entries, each of which is a pointer that points to a distinct (packet) node

(e.g., node A) in one of the N linked lists in the main data structure.

Despite arrivals and departures of packets over time, the auxiliary data structure always occupies a contiguous

block of array entries, the boundaries of which are identified by a head and a tail pointer as shown in the bottom

half of Figure 2. This contiguity allows any array entry (packet) to be sampled uniformly at random in O(1) time,

an aforementioned key step of QPS. Hence this contiguity needs to be maintained in the event of packet arrivals

and departures. The case of a packet arrival is easier: the entry corresponds to the new packet is inserted after the

current tail position, and the tail pointer updated. The case of a packet departure is only slightly trickier: if the

departing packet leaves a “hole” in the block, the tail entry is moved to fill this hole, and the tail pointer updated.

In the case of a packet departure, the (packet) node in the main data structure that is pointed to by the former

tail entry (now moved to “fill the hole”) needs to have its back pointer updated to the offset of the former hole,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:10 • L. Gong et al.

where the former tail entry now is. This is clearly an O(1) procedure. A similar procedure can be used to support

the second basic operation in O(1) time.

An illustrative example. To see how the main and the auxiliary data structures work together to facilitate

QPS, consider the example shown in Figure 2. In Figure 2(a), the packet A was sampled out ofm packets in the

auxiliary data structure. However, it is not the HOL packet, so its destination (output) port (i.e., VOQ identifier) is

checked, which turns out to be j. By accessing the jth record in the main data structure, which corresponds to

VOQ j, the HOL packet is packet B. Now, the input port proposes to match with output port j. In Figure 2(b), if

the proposal is accepted by, and the input port is eventually matched to, output port j, packet B will depart (for

output port j) in the current time slot. The head pointer in the jth record of the main data structure is updated to

(point to) E, the new HOL packet. These operations, i.e., the search for the HOL packet, and the updates to both

data structures, all take O(1) time.

5 STABILITY PROOF OF QPS-SERENA
In this section, we prove that the QPS-SERENA algorithm is stable (i.e., can achieve 100% throughput) under any

arrival processes that are admissible and satisfy certain mild conditions. In §5.1, we introduce some background

information and notations that we need in the stability proofs. In §5.2, we describe a theorem used in [33] to

prove the stability of the TASS algorithm. Unfortunately, this theorem is not applicable to QPS-SERENA, because

QPS-SERENA in general does not satisfy the so-called Property P, a condition required by the theorem. In §5.3, we

state a stronger theorem that requires only a weaker condition than Property P, which is satisfied by QPS-SERENA.

5.1 Background and Notations
We first define three N × N matrices Q(t), A(t), and S(t). Let Q(t) =

(
qi j (t)

)
be the queue length matrix where

qi j (t) is the length of the jth VOQ at input port i during time slot t . Let A(t) =
(
ai j (t)

)
be the traffic arrival matrix

where ai j (t) is the number of packets arriving at the input port i destined for output port j during time slot t ,
which can be viewed as the counting process associated with underlying traffic arrival process. Let S(t) =

(
si j (t)

)
be the schedule (matching) matrix for time slot t output by the crossbar scheduling algorithm. As we explained

earlier, each S(t) is a 0-1 matrix in which si j (t) = 1 if and only if input port i is matched with output j during
time slot t . Then, the queue length matrix Q evolves over time as follows. For ∀1 ≤ i, j ≤ N ,

qi j (t + 1) =
[
qi j (t) + ai j (t) − si j (t)

]+
(5)

where [·]+ is defined as max{ · , 0}. With a slight abuse of the notation, we rewrite (5), into the matrix form, as

Q(t + 1) = [Q(t) +A(t) − S(t)]+.
Like in [34], we assume that, for each 1 ≤ i, j ≤ N , {ai j (t)}

∞
t=0 is a sequence of i.i.d. random variables, and

the second moment of their common distribution (= E
[
a2i j (0)

]
) is finite. Note that, the same or even stronger

assumptions (e.g., Bernoulli i.i.d. arrivals) were made for proving the stabilities of TASS [33] and SERENA [10]

respectively. For ease of presentation, we refer to such an A(t) as an i.i.d. arrival (counting) process in the sequel.

Now we flatten the N × N matrices Q , A, and S into N 2
-dimensional vectors in the row-major order, i.e., the

first row of the matrix becomes the first N scalars in the vector, the second row becomes the next N scalars,

and so on. Now that Q , A, and S are vectors, we can take their inner products, denoted as ⟨·, ·⟩, in the following

derivations. For example, ⟨S(t),Q(t)⟩ is the weight of the schedule (matching) S(t), w.r.t. the queue length vector

Q(t), at time slot t .

5.2 TASS, SERENA, and Their Stability
5.2.1 The Adaptive and Non-Degenerative Family. The idea of TASS [33], shown below, is very simple: generate

a “fresh” (i.e., independent of all other random vectors) random matching R(t), compare its weight with that of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:11

S(t − 1), the matching used in the previous time slot, and use the winner as the matching for the current time

slot (i.e., S(t)). Here R(t) is a random vector whose distribution is parameterized only by the current VOQ length

vector Q(t). Amazingly, such a simple adaptive algorithm can achieve 100% throughput, albeit at the cost of

higher delays.

S(t) =

{
R(t) if ⟨R(t),Q(t)⟩ ≥ ⟨S(t − 1),Q(t)⟩

S(t − 1) otherwise

(6)

Note that the TASS algorithm is also by definition (i.e., (6)) non-degenerative, defined next.

Definition 5.1. A scheduling algorithm is non-degenerative if it guarantees that for any time slot t ≥ 1, we have

⟨S(t),Q(t)⟩ ≥ ⟨S(t − 1),Q(t)⟩

5.2.2 Generalized Algorithm Family Π̃. Denote Π as the family of adaptive algorithms defined by (6). For the

TASS’ stability proof and theorem to apply also to SERENA, we need to generalize the family of Π to Π̃ that is

defined by

S(t) = F
(
R(t), S(t − 1),Q(t)

)
(7)

where F is an operator, the resulting S(t) satisfies the non-degenerative property defined above, and R(t) is a
random schedule whose probability distribution is a function only of Q(t). To ease proving our result, we also

force S(t) = R(t) when all queues (VOQs) are empty at time slot t , i.e., to “forget the previous schedule S(t − 1)”

and reset to the “default random schedule” R(t).
In TASS, this F is clearly the “MAX operator”, that is, choosing the heavier schedule w.r.t. Q(t), between

R(t) and S(t − 1). In SERENA, this F is the MERGE operator, that is, S(t) = MERGE
(
R(t), S(t − 1),Q(t)

)
. As we

explained in §3.2.2, the MERGE operator combines two matchings into one that is at least as heavy, w.r.t. Q(t),
as either, so the SERENA algorithm, like TASS, is also non-degenerative. Hence, SERENA also belongs to this

extended family Π̃. Now it is clear that QPS-SERENA also belongs to Π̃ because it differs from SERENA only in

how the random schedule R(t) is computed, and in QPS-SERENA this R(t) is generated in the “Q(t)-proportional”
manner (so its probability distribution is a function only of Q(t)).

We claim that, given any switching algorithmπ ∈ Π̃, the joint queueing and scheduling process
{(
Q(t), S(t)

)}∞
t=0,

resulting from π and any i.i.d. arrival processA(t) (not necessarily admissible), is a Markov chain. This property is

clear from the following two facts. First, by (7), S(t) is a function of only Q(t) and S(t − 1) (note R(t) is a function
only of Q(t)). Second, by (5), Q(t) is a function of only Q(t − 1), S(t − 1), and the random packet arrival vector

A(t) that is independent of all other random vectors.

5.2.3 Stability Theorem for Family Π̃. The following theorem, concerning the stability of the family of switching

algorithms Π̃, was proven in [33].

Theorem 5.2. For any (randomized) algorithm π ∈ Π̃ that satisfies Property P, defined next, and under any
admissible i.i.d. arrival process A(t) (defined in §5.1), the joint queueing and scheduling process

{(
Q(t), S(t)

)}∞
t=0 is

an ergodic Markov chain, and as a consequence, the queueing process {Q(t)}∞t=0 converges in distribution to a random
vector Q̂ . Furthermore,

E[∥Q̂ ∥1] < ∞

where ∥ · ∥1 is the 1-norm.

Fix a randomized switching algorithm π . LetW (t) , ⟨S(t),Q(t)⟩ be the weight of the schedule output by π at

time slot t . Denote asWQ the weight of the MWM w.r.t. a queue length vector Q , i.e.,WQ , max

S
{⟨S,Q⟩}. Let SQ

be one of the schedules that attain this maximum weight (i.e., ⟨SQ ,Q⟩ =WQ).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:12 • L. Gong et al.

Definition 5.3 (Property P [33]). A switching algorithm π satisfies Property P if at any time slot t ,

P
[
W (t) =WQ (t)

]
≥ δ

where δ > 0 is a constant independent of the time slot t and the queue length vector Q(t).

In other words, π satisfies Property P if, at any time slot t , the schedule S(t) output by π is a MWM with at

least a constant probability δ . Both TASS and SERENA satisfy Property P because there is a constant (w.r.t. Q(t))
probability for R(t) to be a MWM in both cases, and when this happens, S(t) remains a MWM after a “MAX” or

“MERGE” operation. Since both TASS and SERENA also belong to family π ∈ Π̃, Theorem 5.2 implies that both

can achieve 100% throughput.

5.3 Stability of QPS-SERENA

Although QPS-SERENA also belongs to family Π̃, Theorem 5.2 is not applicable to QPS-SERENA, because it

can be shown that QPS-SERENA does not satisfy Property P. We establish a stronger theorem that allows us

to prove that QPS-SERENA can achieve 100% throughput. More specifically, we first show in Lemma 5.1 that

QPS-SERENA satisfies a weaker condition called (ϵ,δ)-MWM, defined next
2
. Then we show in Theorem 5.5 that

this weaker condition, combined with the Π̃ family membership, is sufficient for a switching algorithm to achieve

100% throughput.

Definition 5.4. A switching algorithm π is called (ϵ,δ)-MWM, if ∀ϵ > 0, there exists a constant 0 < δ ≤ 1 s.t.

P
[
W (t) ≥ (1 − ϵ)WQ (t)

]
≥ δ

where δ is a constant independent of the time slot t and the queue length vector Q(t). Note this δ can depend on

ϵ and other (constant) system parameters such as N . Here,W (t) andWQ (t) are similarly defined as before.

In other words, an algorithm π is called (ϵ,δ)-MWM if, at any time slot t , the schedule S(t) output by π is

within (1 − ϵ) of the optimal (i.e., MWM) with at least a constant probability δ . This condition is clearly weaker

than Property P, which requires S(t) to be optimal (i.e.,MWM) with at least a constant probability.

The following Lemma shows that QPS alone is (ϵ,δ)-MWM. Since at any time slot t , QPS-SERENA merges

S(t − 1) with the schedule R(t) output by QPS, resulting in a schedule S(t) that is at least as heavy as R(t),
QPS-SERENA is also (ϵ,δ)-MWM. Therefore, by Theorem 5.5 below, we conclude that QPS-SERENA can achieve

100% throughput.

Lemma 5.1. QPS is (ϵ,δ)-MWM.

We defer its proof of to Appendix D in the interest of space.

Theorem 5.5. For every algorithm π ∈ Π̃ that is (ϵ,δ)-MWM, the conclusion of Theorem 5.2 (i.e., convergence to
a stationary distribution with finite first moment) continues to hold, under admissible i.i.d. arrivals.

We defer its proof to Appendix C in the interest of space.

Remarks: Like Theorem 5.5 above, Theorem 1 in [20] also establishes stability with conditions weaker than

that are needed in Theorem 5.2. However, they weaken different parts of the assumptions made in Theorem 5.2,

and hence their proofs are very different. Theorem 5.5 above weakens Property P in Theorem 5.2 above to

(ϵ,δ) −MWM . In contrast, Theorem 1 in [20] requires Property P, but weakens the non-degenerative requirement

(see Theorem 5.1) in Theorem 5.2 above, by allowing it to be violated with a tiny probability.

2
Note that, the definition of (ϵ, δ)-MWM is quite different than that of the 1-APRX (to MWM) defined in [28].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:13

6 EVALUATION
In this section, we compare the performance of two QPS-augmented algorithms, QPS-iSLIP and QPS-SERENA,

against the iterative Longest Queue First (iLQF) [16], iSLIP-ShakeUp (iSLIP augmented by ShakeUp [11]), and the

two original algorithms, iSLIP [17] and SERENA [10]. We evaluate, through simulations, their throughputs and

delays under various load conditions and traffic patterns. Maximum Weight Matching (MWM) is also simulated

to provide a benchmark for these comparisons.

The evaluation results show conclusively that QPS-iSLIP and QPS-SERENA outperform iSLIP and SERENA

respectively in both throughput and delay. They also show that QPS-iSLIP brings about the same amount

of performance improvement to iSLIP as iLQF, even though QPS-iSLIP is far less computationally expensive

(O(log2 N) per port) than iLQF (O(N) per port), thus giving the “same bang for less buck”. Furthermore, they

show QPS-iSLIP overall performs better than iSLIP-ShakeUp.

6.1 Simulation Setup
In all our simulations, we set the number of input/output ports N = 32. Note that we have also investigated how

the mean delay performance of various switching algorithms scales with respect to N ; these results are shown in

Appendix E.2. For the accurate measurement of throughput and delay, each VOQ is assumed to have infinite

buffer, so that there is no packet drop at any input port. Every simulation run lasts 6, 000 × N 2
(= 6.144 × 10

6
)

time slots. This duration is chosen so that every simulation run enters the steady state after a tiny fraction of this

duration and stays there for the rest. The throughput and delay measurements are taken after the simulation run

enters the steady state.

We initially assume Bernoulli i.i.d. traffic arrivals: the distributions of arrivals to different input ports are

i.i.d., and in each time slot, there is a probability ρ ∈ (0, 1) that a packet will arrive. We will then look at bursty

traffic arrivals further below. The following 4 standard types of load matrices (i.e., traffic patterns) are used for

generating the switch’s workloads:

1. Uniform: packets arriving at any input port go to each output port with probability
1

N .

2. Quasi-diagonal: packets arriving at input port i go to output port j = i with probability
1

2
and go to any

other output port with probability
1

2(N−1)
.

3. Log-diagonal: packets arriving at input port i go to output port j = i with probability
2
(N−1)

(2N)−1
and go to any

other output port j with probability equal
1

2
of the probability of output port j − 1 (note: output port 0

equals output port N).

4. Diagonal: packets arriving at input port i go to output port j = i with probability
2

3
, or go to output port

(j modN) + 1 with probability
1

3
.

The load matrices are listed in order of how skewed the volumes of traffic arrivals to different output ports are:

from uniform being the least skewed, to diagonal being the most skewed.

In both iSLIP and iLQF, the total number of iterations in a time slot is usually set to log
2
N . However, to

achieve a fair comparison between iSLIP, iLQF, and QPS-iSLIP, in simulating these algorithms, the total number

of iterations in a time slot is set to 1 + log
2
N . For instance, with QPS-iSLIP, this means that we ran 1 iteration of

QPS followed by log
2
N iterations of iSLIP. In doing so, we emphasize that the outperformance of QPS-iSLIP

does not come from an extra iteration. Note that, with 1 + log
2
N iterations, the complexity of both iSLIP and

QPS-iSLIP remains O(log2 N) per port and that of iLQF remains O(N) per port.

For iSLIP-ShakeUp, we alternate between an iSLIP iteration and a ShakeUp iteration also for a total of log
2
N +1

iterations (i.e., log
2
N+1
2

iterations for each). This algorithmic setting and parameter setting both follow the

guidelines provided in [11] for iSLIP-ShakeUp, and the throughput numbers we have obtained (shown in Table 1)

match those reported in [11].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:14 • L. Gong et al.

Traffic Uniform Quasi-diag Log-diag Diag

iSLIP 100.00% 81.70% 83.85% 83.47%

QPS-iSLIP 100.00% 99.38% 96.46% 88.36%

iSLIP-ShakeUp 99.98% 91.08% 92.73% 92.41%

iLQF 100.00% 99.41% 96.47% 89.32%

Table 1. Maximum throughput.

We consider two performance metrics: throughput and delay. We measure two types of delays: the mean delay

and the 95
th

percentile delay. The 95
th

percentile delay is the delay value exceeded by exactly 5% of the packets.

This 95
th

percentile delay gauges whether a crossbar scheduling algorithm sacrifices the delay performance

of packets in the longest VOQs when evacuating other VOQs. In our simulations, the 95
th

percentile delay is

measured by using the high dynamic range (HDR) histograms [1].

6.2 QPS Throughput Results
We have measured the maximum achievable throughput of iSLIP, QPS-iSLIP, iSLIP-ShakeUp and iLQF, under

the 4 different load matrices and an offered load close to 100%. The results are presented in Table 1. We do not

include the throughputs of MWM, SERENA and QPS-SERENA in Table 1 because they provably achieve 100%

throughput.

There are three important observations from Table 1. First, for non-uniform traffic patterns, where iSLIP

does poorly, QPS-iSLIP significantly boosts the throughput performance of iSLIP, increasing it by an additive

term of 0.1768, 0.1261, and 0.0489 for the quasi-diagonal, log-diagonal, and diagonal load matrices respectively.

Moreover, for non-uniform traffic, the throughput of QPS-iSLIP are very close to those of iLQF, which is much

more expensive computationally. Second, the throughput of QPS-iSLIP is higher than that of iSLIP-ShakeUp

under all load matrices except diagonal. Third, just like iSLIP, QPS-iSLIP can achieve 100% throughput under

uniform traffic.

We highlight a subtle fact that may sound counterintuitive to some readers: That a switch (running a scheduling

algorithm) has a throughput of µ < 1 when the offered load is 100% does not imply that the switch is stable

under any offered load (say ρ) smaller than µ. This is because the extra 1 − ρ “switching resource” freed up by

the reduced offered load may not all be efficiently utilized by the scheduling algorithm to clear up the longest

queues. For example, iSLIP-ShakeUp is not stable under Quasi-diagonal traffic when the offered load is 90% (see

the corresponding missing point in Figure 3 (1
st
row, 2

nd
from left)), even though its throughput under 100%

offered load is 91.08%. In the sequel, we use the terms “load”, “normalized load”, “offered load”, “traffic load” and

“load factor” interchangeably.

6.3 QPS Delay Performance Results
6.3.1 Bernoulli arrivals. Figure 3 (the 1st row) presents the mean delays of iSLIP, QPS-iSLIP, iSLIP-ShakeUp,

iLQF, and MWM under the 4 different load matrices. Since iSLIP, QPS-iSLIP, iSLIP-ShakeUp, and iLQF generally

cannot achieve 100% throughput, we only measure their delay performance under the offered loads that make them

stable; in all figures in the sequel, each “missing point” on a curve indicates that the corresponding scheduling

algorithm is not stable under the corresponding offered load.

Figure 3 (the 1
st
row) clearly shows that QPS-iSLIP has much lower mean delays than iSLIP under all load

matrices, especially when the load factor is high (e.g., 80%); we note that the differences between the curves

unfortunately look smaller on a log scale (on the y-axis) than they actually are. In addition, the mean delays of

QPS-iSLIP are very close to those of iLQF, the more expensive algorithm computationally, under all load matrices

and factors.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:15

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

M
e
a
n
 D

e
la

y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2
Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

M
e
a
n
 D

e
la

y

Uniform
SERENA QPS-SERENA MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4
Diagonal

Fig. 3. Mean delays under Bernoulli i.i.d. traffic arrivals with the 4 load matrices.

Figure 3 (the 1
st

row) also shows that QPS-iSLIP has either similar or slightly higher mean delays than iSLIP-

ShakeUp under all load matrices, when the traffic load is low to moderate. However, when the traffic load is high

(say > 80%), the iSLIP-ShakeUp either becomes unstable or has higher mean delays than QPS-iSLIP, under all

load matrices.

Figure 3 (the 2
nd

row) presents the mean delays of SERENA, QPS-SERENA, and MWM under the 4 different

load matrices. We can see that QPS-SERENA outperforms SERENA under all load matrices for all load factors.

More specifically, QPS-SERENA outperforms SERENA by a wide margin, under uniform and diagonal load

matrices for all load factors; it does so also under quasi-diagonal and log-diagonal load matrices for load factors

that are not too high (≤ 0.8).
Figure 3 (the 2

nd
row) also shows that the relative difference of the mean delay between QPS-SERENA and

SERENA generally becomes larger as the traffic load becomes lighter. This phenomena is due to the choice of the

starter matching. In SERENA, the starter matching is the arrival graph, and when the load is light, the arrival

graph does not provide enough “cue” for the scheduling algorithm to select the longest VOQs. QPS-SERENA, on

the other hand, has a better starter matching that accounts for the VOQ lengths under any load conditions, and

thus beats SERENA in mean delay. The outperformance of QPS-SERENA over SERENA reinforces our message

about the importance of choosing a good starter matching.

Figure 4 (the 1
st
row) shows the 95

th
percentile delays of iSLIP, QPS-iSLIP, iSLIP-ShakeUp, iLQF, and MWM

under the 4 different load matrices. Due to the presence of delay values that are very close to 0, which would

severely “deform” all the curves if they were plotted in a log scale on the y-axis, Figure 4 is plotted in the linear

scale on the y-axis. Figure 4 (the 1
st
row) shows that QPS-iSLIP and iLQF achieve much lower 95

th
percentile

delays than iSLIP and iSLIP-ShakeUp, especially under heavy loads.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:16 • L. Gong et al.

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

500

1000

1500

2000

2500

3000

3500

9
5

th
 P

e
rc

e
n
ti
le

 D
e
la

y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

25

50

75

100

125

150

175

200
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

70

140

210

280

350

420

490

560
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

15

30

45

60

75

90

105

120
Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

200

400

600

800

1000

1200

9
5

th
 P

e
rc

e
n
ti
le

 D
e
la

y

Uniform
SERENA QPS-SERENA MWM

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

500

1000

1500

2000

2500

3000

3500

4000
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

100

200

300

400

500

600

700

800
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

0

500

1000

1500

2000

2500

3000

3500
Diagonal

Fig. 4. 95th percentile delay under Bernoulli i.i.d. traffic arrivals with the 4 load matrices.

Figure 4 (the 2
nd

row) shows the 95
th

percentile delays of QPS-SERENA, SERENA, and MWM under the 4

different load matrices. Again QPS-SERENA outperforms SERENA by a wide margin under all four load matrices

for almost all load factors.

6.3.2 Bursty arrivals. In real networks, packet arrivals are likely to be bursty. In this section, we evaluate

the performance of these scheduling algorithms under bursty traffic, generated by a two-state ON-OFF arrival

process described in [10]. The durations of each ON (burst) stage and OFF (no burst) stage are geometrically

distributed: the probabilities the ON and OFF state lasts for t ≥ 0 time slots are given by

PON (t) = p(1 − p)t and POF F (t) = q(1 − q)t ,

with the parameters p,q ∈ (0, 1) respectively. As such, the average duration of the ON and OFF states are (1−p)/p
and (1 − q)/q time slots respectively.

In an OFF state, an incoming packet’s destination (i.e., output port) is generated according to the corresponding
load matrix. In an ON state, all incoming packet arrivals to an input port would be destined to the same output

port, thus simulating a burst of packet arrivals. By adjusting p, we can control the desired average burst size

while by adjusting q, we can control the load of the traffic.

We first compare QPS-iSLIP against iSLIP, iSLIP-ShakeUp, iLQF, and MWM, with average burst sizes ranging

from 1 to 1024 packets, on an offered load of 0.75. We use this load factor because iSLIP is not stable under certain

load matrices when the offered load is larger than or equal to 0.8.
The simulation results are shown in Figure 5 (the 1

st
row). We can see that QPS-iSLIP beats iSLIP, and is on

par with iLQF and QPS-ShakeUp, under all load matrices for all burst sizes. Furthermore, QPS-iSLIP beats iSLIP

by a wide margin, under quasi-diagonal and log-diagonal load matrices. In fact, the starter matching generated

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:17

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4

M
e
a
n
 D

e
la

y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Quasi-diagonal

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Log-diagonal

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Diagonal

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5

M
e
a
n
 D

e
la

y

Uniform
SERENA QPS-SERENA MWM

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5
Quasi-diagonal

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5
Log-diagonal

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5
Diagonal

Fig. 5. Mean delays under bursty traffic with the 4 load matrices.

by QPS for iSLIP is so superior that QPS-iSLIP is only slightly worse than MWM in the mean delay performance

under all load matrices for all burst sizes.

We then evaluate QPS-SERENA’s mean delay performance against SERENA’s and MWM’s. Figure 5 (the 2
nd

row) presents the results with average burst sizes ranging from 1 to 1024 packets under an offered load of 0.95,
under the 4 load matrices respectively. Performance under other heavy loads, such as at 0.9, is similar to this case.

We can see from Figure 5 (the 2
nd

row) that the mean delay increases for all scheduling algorithms when

the burst size increases, under all 4 load matrices, which is not surprising. However, Figure 5 (the 2
nd

row) also

clearly shows that QPS-SERENA handles highly bursty traffic much better than SERENA, as we will elaborate

next.

We make the following two observations from Figure 5 (the 2
nd

row). First, QPS-SERENA outperforms SERENA

by an increasingly wider margin, in both absolute and relative terms, as the burst size becomes larger. Second,

the gap between QPS-SERENA and MWM shrinks rapidly as the burst size becomes larger. Our explanation

for the first observation is that, because QPS-SERENA obtains information directly from the current lengths of
the VOQs, rather than indirectly from the current arrivals, QPS-SERENA reacts to the rapid build-up of packets

in a VOQ from a past traffic burst much more promptly than SERENA. For the second observation, the reason

is as follows. When the burst size increases, the longest one or two VOQs at every input port account for an

increasingly higher percentage of all packets queued at the input port, and hence have an increasingly higher

chances of being sampled by QPS, so the resulting starter matching becomes increasingly closer to an MWM.

7 RELATED WORK
In this section, we first provide a brief survey of crossbar scheduling algorithms or policies, besides those we have

already described earlier (including MWM [34], iSLIP [17], iLQF [16], SERENA [10], and ShakeUp [11]), focusing

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:18 • L. Gong et al.

on those directly related to our work. Then in §7.2, we compare our QPS strategy with other queue-proportional

resource allocation policies.

7.1 Crossbar Scheduling Algorithms
We order the presentations of these algorithms/policies roughly by their (total) computational complexities.

7.1.1 Belief Propagation Algorithms. As explained earlier, although MWM is an ideal algorithm in terms of

performance, its most efficient implementation [7] has a prohibitively high computational complexity of O(N 3).

Note that MWM-α [14] and MWM-0
+
[31] are variants that only explore the MWM policy space by adopting

different edge weight functions; they contain no algorithmic innovations that would reduce theO(N 3) complexity

of MWM.

One family of approximate MWM is the family of distributed iterative algorithms [4, 5] based on belief-

propagation (BP). In this family, the input ports engage in multiple iterations of message exchanges with the

output ports to learn enough information about the lengths of all N 2
VOQs so that each input port can decide on

a distinct output port to match with. The resulting matching either is, or is close to, the MWM. Note that the

BP-based algorithms are simply parallel algorithms to compute the MWM: the total amount of computation, or

the total number of messages needed to be exchanged, is still O(N 3), but is distributed evenly across the input

and the output ports (i.e., O(N 2) work for each input/output port).

A technique called BP-assisted scheduling was proposed in a recent work [3], in which BP is used to boost the

performance of certain distributed iterative algorithms (called “carrier” algorithms) that are not BP-based such

as iLQF [16]. Its idea is to replace the contents of the messages exchanged between input and output ports by

those that would be exchanged in a BP-based algorithm. The “BP assistance” part alone has a total computational

complexity of O(N 2), so it is best suited for a carrier algorithm that has the same asymptotical complexity, such

as iLQF.

7.1.2 MVM and LHPF. Another approach to reducing the complexity toO(N 2.5) while achieving performance

similar to MWM is the family of Maximum Vertex-weighted Matching (MVM) policies [18]. The MVM family

was later extended to a larger family called Lazy Heaviest Port First (LHPF) [12] that also hasO(N 2.5) complexity.

In a standard MVM policy, each input or output port, denoted as a vertex, is assigned a weight that is equal to

the total number of packets (across all N VOQs) queued at the vertex. The weight of an edge (i, j) is the sum of

the weights of its two vertices i and j, if there is at least one packet in the corresponding VOQ (i.e., qi j), and is 0

otherwise. An MVM policy dictates that the heaviest (vertex-weighted) matching be used for crossbar scheduling.

MVM can achieve 100% throughput, and has a delay performance quite close to that of MWM.

7.1.3 Lower-Complexity Randomized Algorithms. Several randomized algorithms, starting with TASS [33] and

culminating in SERENA [10, 27] were proposed to push the total complexity further down to O(N) (i.e., linear
complexity). We have described in earlier sections both TASS and SERENA in details.

A randomized scheduling algorithm specialized for switching variable-size packets was proposed in [38]

that has O(1) total computational complexity (per switch). It belongs to a family of randomized algorithms

(e.g., [9, 22, 24, 29]) primarily designed for computing a collision-free transmission schedule, which corresponds

to an independent set in the interference graph, in a wireless network. These algorithms all build upon a Markov

Chain Monte-Carlo (MCMC) technique called Glauber dynamics [36] for computing independent sets (convertible

to bipartite matchings in the switching context).

The algorithm in [38] for computing, at each time slot t , the matching for the next time slot S(t + 1), works
follows. It samples one of the N 2

VOQs (edges) uniformly at random. Suppose the sampled VOQ (edge) is the

jth VOQ at input port i (i.e., edge (i, j)). Then, with probability ew/(ew + 1), it adds the edge (i, j) (i.e., pairing
input port i with output port j) to or keeps the edge in S(t + 1), if neither i nor j is currently matched (in S(t))

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:19

or (i, j) already belongs to the S(t). Here the weight w is set to the celebrated slowly varying weight function

ln(ln(e + x)) proposed in [24], where x is the weight of the edge (i, j) (i.e., the length of the corresponding VOQ).

Clearly, the algorithm makes at most one change (hence O(1) total complexity), from any time slot t to the next,

to the configuration of the crossbar (i.e., the matching).

It was proven in [24] that all such algorithms that use this weight function, including the algorithm in [38], can

achieve 100% throughput. However, our simulation results (presented in Appendix E.4) show that, when used for

switching fixed-size packets, the algorithm in [38] has very poor delay performance and the total queue length

does not stabilize (i.e., keeps increasing) until after a very large number of time slots. These simulation results are

not surprising: all algorithms that adopt this ln ln(e + ·) weight function have similar poor delay performance,

because as explained in [9], the ln ln(e + ·) weight function, aimed at achieving 100% throughput [24], reacts very

slowly to changes in queue lengths and hence allows long queues to build up.

7.2 Queue-Proportional Resource Allocation
Serving queues at rates or probabilities proportional to their (queue) lengths is an intuitively appealing resource

allocation approach that has been used in various computer and communications systems for many years. For

example, in [8], a simple queue-proportional scheduler was proposed for scheduling transmissions in wireless

broadcast channels, and a geometric programming based formulation of this problem specialized to the Gaussian

broadcast channel was later established in [25, 26]. However, unlike our QPS strategy, in which an input port

proposes to an output port with a probability proportional to the length of the corresponding VOQ, the scheduler

in [8, 25, 26] dictates that each link receives an service rate proportional to its current queue length during

each time slot. As a result, it has to solve a convex optimization problem that has a much higher computational

complexity.

In [15], B. Li et al. proposed a generalized version of the above queue-proportional scheduler called Queue-

Proportional Rate Allocation (QPRA), with the objective of achieving maximum throughput in a multi-hop

wireless network. As the QPRA algorithm is generally hard to implement in practice, they further proposed a

low-complexity version called LC-QPRA to make their scheme more practical. The LC-QPRA algorithm resembles

the proposing step in our QPS scheme in that, during each time slot, a sender proposes (attempts to transmit) to

each receiver with a probability proportional to the length of the corresponding “VOQ”.

There are three key differences between QPRA and QPS however. First, in QPRA, during any time slot, the

probability with which each sender proposes (to any receiver) is also proportional to its total queue length,

whereas in QPS, this probability is 1 for any sender unless its total queue length is 0. Second, in QPRA, if two

senders propose (transmit) to the same receiver during a time slot, both transmissions are corrupted, whereas in

QPS, only one is allowed to eventually transmit a packet to the receiver. Third, in QPRA, the outcomes (successful

or corrupted) of these proposals (attempted transmissions) define the final matching, whereas QPS only generates

a starter matching that will be further refined into a full or more complete matching.

Finally, another policy was proposed in [37] for scheduling packets in a single-hop network, where crossbar

scheduling is a special case. However, this policy is closely related to MWM-0
+
[31], and is unrelated to QPRA or

QPS.

8 CONCLUSION
In this paper, we propose a new proposing strategy, called queue-proportional sampling (QPS), that generates

superior starter matchings than all other known strategies. We use QPS to augment two existing crossbar

scheduling algorithms, namely SERENA and iSLIP. We show that the augmented algorithms, namely QPS-

SERENA and QPS-iSLIP, outperform the original algorithms by a wide margin, under various load conditions and

traffic patterns. These performance enhancements come at virtually no additional computational cost due to QPS

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:20 • L. Gong et al.

being an O(1) algorithm (per port). Finally, to prove that QPS-SERENA can achieve 100% throughput, we have

proved a new and stronger stability theorem.

REFERENCES
[1] HdrHistogram: A High Dynamic Range (HDR) Histogram. https://github.com/HdrHistogram/HdrHistogram.

[2] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker. 1993. High-speed Switch Scheduling for Local-area Networks. ACM Trans.
Comput. Syst. 11, 4 (Nov. 1993), 319–352.

[3] S. Atalla, D. Cuda, P. Giaccone, and M. Pretti. 2013. Belief-Propagation-Assisted Scheduling in Input-Queued Switches. IEEE Trans.
Comput. 62, 10 (Oct. 2013), 2101–2107. DOI:http://dx.doi.org/10.1109/TC.2012.198

[4] M. Bayati, B. Prabhakar, D. Shah, and M. Sharma. 2007. Iterative Scheduling Algorithms. In Proceedings of the IEEE INFOCOM. Anchorage,

AK, USA, 445–453. DOI:http://dx.doi.org/10.1109/INFCOM.2007.59

[5] M. Bayati, D. Shah, and M. Sharma. 2008. Max-Product for Maximum Weight Matching: Convergence, Correctness, and LP Duality.

IEEE Transactions on Information Theory 54, 3 (Mar. 2008), 1241–1251. DOI:http://dx.doi.org/10.1109/TIT.2007.915695
[6] G. Birkhoff. 1946. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. A 5 (1946), 147–151.

[7] J. Edmonds and R. M. Karp. 1972. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. ACM 19, 2 (Apr.

1972), 248–264. DOI:http://dx.doi.org/10.1145/321694.321699
[8] A. Eryilmaz, R. Srikant, and J. R. Perkins. 2001. Throughput-optimal scheduling for broadcast channels. In Proceedings of ITCom

(Modeling and Design of Wireless Networks). Denver, CO. DOI:http://dx.doi.org/10.1117/12.434468
[9] J. Ghaderi and R. Srikant. 2010. On the design of efficient CSMA algorithms for wireless networks. In 49th IEEE Conference on Decision

and Control (CDC). 954–959. DOI:http://dx.doi.org/10.1109/CDC.2010.5717965
[10] P. Giaccone, B. Prabhakar, and D. Shah. 2003. Randomized scheduling algorithms for high-aggregate bandwidth switches. IEEE Journal

on Selected Areas in Communications 21, 4 (May 2003), 546–559.

[11] M. W. Goudreau, S. G. Kolliopoulos, and S. B. Rao. 2000. Scheduling algorithms for input-queued switches: randomized techniques and

experimental evaluation. In Proceedings of the IEEE INFOCOM. 1634–1643 vol.3.

[12] G. R. Gupta, S. Sanghavi, and N. B. Shroff. 2009. Node Weighted Scheduling. In Proceedings of the ACM SIGMETRICS. Seattle, WA, USA,

97–108.

[13] M. Karol, M. Hluchyj, and S. Morgan. 1987. Input Versus Output Queueing on a Space-Division Packet Switch. IEEE Transactions on
Communications 35, 12 (Dec. 1987), 1347–1356. DOI:http://dx.doi.org/10.1109/TCOM.1987.1096719

[14] I. Keslassy and N. McKeown. 2001. Analysis of scheduling algorithms that provide 100% throughput in input-queued switches. In

Proceedings of the Allerton Conference on Communication, Control and Computing.
[15] B. Li and R. Srikant. 2015. Queue-Proportional Rate Allocation with Per-Link Information in Multihop Networks. In Proceedings of the

ACM SIGMETRICS. Portland, OR, USA, 97–108. DOI:http://dx.doi.org/10.1145/2745844.2745864
[16] N. McKeown. 1995. Scheduling Algorithms for Input-Queued Cell Switches. Ph.D. Dissertation. University of California at Berkeley.

[17] N. McKeown. 1999. The iSLIP Scheduling Algorithm for Input-queued Switches. IEEE/ACM Transactions on Networking 7, 2 (Apr. 1999),

188–201. DOI:http://dx.doi.org/10.1109/90.769767
[18] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. 1999. Achieving 100% throughput in an input-queued switch. IEEE

Transactions on Communications 47, 8 (Aug. 1999), 1260–1267. DOI:http://dx.doi.org/10.1109/26.780463
[19] A. Mekkittikul and N. McKeown. 1998. A practical scheduling algorithm to achieve 100% throughput in input-queued switches. In

Proceedings of the IEEE INFOCOM. 792–799 vol.2.

[20] E. Modiano, D. Shah, and G. Zussman. 2006. Maximizing Throughput in Wireless Networks via Gossiping. In Proceedings of the Joint
International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’06/Performance ’06). ACM, New York, NY,

USA, 27–38. DOI:http://dx.doi.org/10.1145/1140277.1140283
[21] J. v. Neumann. 1953. A certain zero-sum two-person game equivalent to the optimal assignment problem. Contributions to the Theory of

Games 2 (1953), 5–12.
[22] J. Ni, B. Tan, and R. Srikant. 2012. Q-CSMA: Queue-Length-Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low

Delay in Wireless Networks. IEEE/ACM Transactions on Networking 20, 3 (June 2012), 825–836. DOI:http://dx.doi.org/10.1109/TNET.
2011.2177101

[23] I. Olkin and A. W. Marshall. 2016. Inequalities: theory of majorization and its applications. Academic press.

[24] S. Rajagopalan, D. Shah, and J. Shin. 2009. Network Adiabatic Theorem: An Efficient Randomized Protocol for Contention Resolution.

In Proceedings of the Eleventh International Joint Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’09). ACM,

New York, NY, USA, 133–144. DOI:http://dx.doi.org/10.1145/1555349.1555365
[25] K. Seong, R. Narasimhan, and J. M. Cioffi. 2006. Queue Proportional Scheduling in Gaussian Broadcast Channels. In 2006 IEEE International

Conference on Communications, Vol. 4. 1647–1652. DOI:http://dx.doi.org/10.1109/ICC.2006.254955

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

https://github.com/HdrHistogram/HdrHistogram
http://dx.doi.org/10.1109/TC.2012.198
http://dx.doi.org/10.1109/INFCOM.2007.59
http://dx.doi.org/10.1109/TIT.2007.915695
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1117/12.434468
http://dx.doi.org/10.1109/CDC.2010.5717965
http://dx.doi.org/10.1109/TCOM.1987.1096719
http://dx.doi.org/10.1145/2745844.2745864
http://dx.doi.org/10.1109/90.769767
http://dx.doi.org/10.1109/26.780463
http://dx.doi.org/10.1145/1140277.1140283
http://dx.doi.org/10.1109/TNET.2011.2177101
http://dx.doi.org/10.1109/TNET.2011.2177101
http://dx.doi.org/10.1145/1555349.1555365
http://dx.doi.org/10.1109/ICC.2006.254955

Queue-Proportional Sampling • 2:21

[26] K. Seong, R. Narasimhan, and J. M. Cioffi. 2006. Queue proportional scheduling via geometric programming in fading broadcast channels.

IEEE Journal on Selected Areas in Communications 24, 8 (Aug 2006), 1593–1602. DOI:http://dx.doi.org/10.1109/JSAC.2006.879404
[27] D. Shah, P. Giaccone, and B. Prabhakar. 2002. Efficient randomized algorithms for input-queued switch scheduling. IEEE Micro 22, 1

(Jan. 2002), 10–18. DOI:http://dx.doi.org/10.1109/40.988685
[28] D. Shah and M. Kopikare. 2002. Delay bounds for approximate maximum weight matching algorithms for input queued switches. In

Proceedings of the IEEE INFOCOM, Vol. 2. 1024–1031 vol.2.

[29] D. Shah and J. Shin. 2012. RANDOMIZED SCHEDULING ALGORITHM FOR QUEUEING NETWORKS. The Annals of Applied Probability
22, 1 (2012), 128–171. http://www.jstor.org/stable/41408096

[30] D. Shah, N. Walton, and Y. Zhong. 2012. Optimal Queue-size Scaling in Switched Networks. In Proceedings of the ACM SIGMETRICS.
ACM, New York, NY, USA, 17–28. DOI:http://dx.doi.org/10.1145/2254756.2254762

[31] D. Shah and D. Wischik. 2006. Optimal Scheduling Algorithms for Input-Queued Switches. In Proceedings of the IEEE INFOCOM.

Barcelona, Spain, 1–11. DOI:http://dx.doi.org/10.1109/INFOCOM.2006.238

[32] D. Shah and D. Wischik. 2006. Optimal Scheduling Algorithms for Input-Queued Switches. In Proceedings of the IEEE INFOCOM. 1–11.

[33] L. Tassiulas. 1998. Linear complexity algorithms for maximum throughput in radio networks and input queued switches. In Proceedings
of the IEEE INFOCOM. San Francisco, CA, USA, 533–539.

[34] L. Tassiulas and A. Ephremides. 1992. Stability properties of constrained queueing systems and scheduling policies for maximum

throughput in multihop radio networks. IEEE Trans. Automat. Control 37, 12 (Dec. 1992), 1936–1948.
[35] R. Tweedie. 1983. The existence of moments for stationary Markov chains. Journal of Applied Probability (1983), 191–196.

[36] E. Vigoda. 2001. A note on the Glauber dynamics for sampling independent sets. Electronic Journal of Combinatorics 8, 1 (2001), 1–8.
[37] N. Walton. 2014. Concave Switching in Single and Multihop Networks. In Proceedings of ACM SIGMETRICS. Austin, TX, USA, 139–151.

DOI:http://dx.doi.org/10.1145/2591971.2591987
[38] S. Ye, T. Shen, and S. Panwar. 2010. An O (1) Scheduling Algorithm for Variable-Size Packet Switching Systems. In Proceedings of the

48th Annual Allerton Conference. 1683–1690.

A QPS VARIANTS
The success we have with QPS leads us to wonder if we can obtain better switching performance by using

other proportional sampling strategies. For example, instead of setting sampling probabilities proportional to the

lengths of the VOQs, we may set them proportional to the squares of the lengths of the VOQs. More generally,

we can set the sampling probabilities proportional to any arbitrary function f (·) of the lengths of the VOQs. We

refer to this family of strategies as FQPS, where QPS is a special case (using a linear weight function f (x) = x).
To some readers, FQPS may sound similar to MWM-α [14]. They are, however, fundamentally different. The

MWM-α work studies the performances of MWM when the weight of a VOQ queue of length x is set to xα ;
it does not care how a MWM is computed. FQPS, on the other hand, is about how to better generate a starter

matching that can result in a final matching that is as close to the MWM as possible, after a reasonable amount of

further computation (e.g., O(N)).

We have evaluated the performance of several FQPS variants through simulations. Simulation results (see

Appendix E.1) show that the delay performance of QPS can be slightly improved with certain nonlinear weight

functions (e.g., with f (x) = x2). However, whereas the computational complexity of QPS isO(1) per packet, other
FQPS variants all have a higher computational complexity of O(logN) per packet. Hence we conclude that QPS

overall remains the best practical solution.

B SPACE COMPLEXITY OF QPS
Each node (packet) in the main data structure contains 3 pointers (2 pointers encoded as “⟨letter ⟩” plus 1 for the
linked list) and the index of the VOQ (the value j in every node in Figure 2), which needs log

2
N bits to store

(typically less than 2 bytes). Each array entry (packet) in the auxiliary data structure is also a pointer. Note that, in

the main data structure, we need an array entry (record) for each VOQ, not for each packet; since the maximum

number of packets at an input port is typically much larger than N , the number of VOQs, the memory overhead

of these array entries (record), is no more than 2 bytes per packet. Therefore, the memory overhead of the data

structures is no more than 4 pointers (4 bytes each) plus 4 bytes, or 20 bytes, per packet.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

http://dx.doi.org/10.1109/JSAC.2006.879404
http://dx.doi.org/10.1109/40.988685
http://www.jstor.org/stable/41408096
http://dx.doi.org/10.1145/2254756.2254762
http://dx.doi.org/10.1109/INFOCOM.2006.238
http://dx.doi.org/10.1145/2591971.2591987

2:22 • L. Gong et al.

C PROOF OF Theorem 5.5
We have explained in §5 that, given any switching algorithm π ∈ Π̃, its joint queueing and scheduling process{(
Q(t), S(t)

)}∞
t=0, under any i.i.d. arrival processes A(t) (not necessarily admissible), is a Markov chain. We claim

this Markov chain is irreducible and aperiodic, when π is furthermore (ϵ,δ)-MWM and A(t) is furthermore

admissible. Here we provide only a sketchy justification. To justify the irreducibility, we show that Q(t), starting
from any state (i.e., queue lengths) it is currently in, will with a nonzero probability return to the “all-queues-empty”

state in a finite number of time slots. To show this property, we claim that, for any integer τ > 0, the switch could,

with a nonzero probability, have no packet arrivals to any of its VOQs during [t , t + τ]. This claim is true because,

the arrival process A(t) is i.i.d., and for any 1 ≤ i ≤ N and 1 ≤ j ≤ N , we have βi j , P[ai j (t) = 0] > 0 (otherwise

the process ai j (t) is not admissible). Hence, when there are no packet arrivals during [t , t + τ], which happens

with a nonzero probability, a “reasonably good” switching algorithm (being non-degenerative and (ϵ,δ)-MWM)

can clear all the queues during [t , t + τ], with a sufficiently large τ , and return the Q(t) part of the Markov chain

to the “all-queues-empty” state. As to the S(t) part of the Markov chain, the algorithm resets (i.e., returns) S(t) to
the default random schedule R(t) when all queues are empty, as explained earlier. Therefore, the Markov chain is

irreducible. To justify the aperiodicity of the Markov chain, we note that there is a nonzero probability for the

Markov chain to stay at “all-queues-empty” for at least two consecutive time slots.

Now that the Markov chain is irreducible and aperiodic, to prove Theorem 5.5, it remains to show that (1)

the Markov chain is positive recurrent and hence converges to a stationary distribution, and (2) the stationary

distribution has a finite first moment. We accomplish both by analyzing the following Lyapunov function V (·) of

Y (t) =
(
Q(t), S(t)

)
:

V (Y) = V1(Y) +V2(Y) (8)

whereV1(Y) = ∥Q ∥2
2
,V2(Y) =

(
[⟨ρ∗SQ − S,Q⟩]+

)
2

. Here, ∥ · ∥2 is the 2-norm, SQ is a schedule/matching achieving

maximum weight w.r.t.Q , and ρ∗ = 1

2
(1+ ρ), where ρ < 1 is the maximum normalized load imposed on any input

or output port as defined in (3). It is clear that ρ∗ < 1.

Note that, in [33], V1(Y) is defined in the same way as in this work, whereas V2(Y) is defined as V2(Y) ,(
⟨SQ − S,Q⟩

)
2

, which is quite different than in this work. We must define V2(Y) differently here because if its

definition in [33] were used instead, there would be an additional positive drift term c4V1(Y (t)) on the RHS of (11)

(in Lemma C.3) which is asymptotically larger than the negative drift term −ϵ1
√
V1(Y (t)) on the RHS of (10)

(in Lemma C.2), resulting in an overall positive drift on the RHS of (9) when Lemma C.2 and Lemma C.3 are

combined to prove Lemma C.1.

The proof of Theorem 5.5 relies on the following drift condition of V (Y).

Lemma C.1. If the arrivals are admissible i.i.d., then there exists B, ϵ > 0 such that, if V
(
Y (t)

)
> B, we have,

E
[
V
(
Y (t + 1)

)
−V

(
Y (t)

)
| Y (t)

]
< −ϵ ∥Q(t)∥2 (9)

The proof of Lemma C.1 in turn relies on the following two lemmas.

Lemma C.2. If the arrivals are admissible i.i.d., then the drift of the function V1 satisfies the following inequality

E
[
V1

(
Y (t + 1)

)
−V1

(
Y (t)

)
| Y (t)

]
≤ − ϵ1

√
V1

(
Y (t)

)
+ 2

√
V2

(
Y (t)

)
+ c1

(10)

Here, ϵ1 =
1−ρ
N , c1 = E

[
∥A(t) + 1∥2

2
] and 1 is the vector with all its elements equal to 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:23

Lemma C.3. If the arrivals are admissible i.i.d., then the drift of the function V2 satisfies the following inequality

E
[
V2

(
Y (t + 1)

)
−V2

(
Y (t)

)
| Y (t)

]
≤ − ϵ2V2

(
Y (t)

)
+ c2

√
V2

(
Y (t)

)
+ c3 (11)

Here, ϵ2 > 0 is a constant, c2 = 4(ρ + 2)N , c3 = 4E
[(
⟨1,A(t)⟩ + 2N

)
2
]
.

C.1 Proof of Lemma C.2
By simple calculations and using (5), we have

E
[
V1

(
Y (t + 1)

)
−V1

(
Y (t)

)
| Y (t)

]
=E

[
∥Q(t + 1)∥2

2
− ∥Q(t)∥2

2
| Y (t)

]
≤ E

[
⟨A(t) − S(t), 2Q(t)⟩ | Y (t)

]
+ E

[
∥A(t) − S(t)∥2

2
| Y (t)

]
(12)

Here, we use the fact that ∥Q(t + 1)∥2
2
= ∥[Q(t) +A(t) − S(t)]+∥2

2
≤ ∥Q(t) +A(t) − S(t)∥2

2
.

Focusing on the first term E
[
⟨A(t) − S(t), 2Q(t)⟩ | Y (t)

]
above, we have

E
[
⟨A(t) − S(t), 2Q(t)⟩ | Y (t)

]
= ⟨Λ − S(t), 2Q(t)⟩

= 2⟨Λ − ρ∗SQ (t),Q(t)⟩ + 2⟨ρ
∗SQ (t) − S(t),Q(t)⟩ (13)

According to Fact 1 (see (4)), we can decompose Λ as follows: Λ =
K∑
n=1

αnMn , where K ≤ N 2 − 2N + 2, αn > 0

for n = 1, 2, ...,K , and
K∑
n=1

αn ≤ ρ.

Hence, we have

⟨Λ − ρ∗SQ (t),Q(t)⟩

= ⟨

K∑
n=1

αnMn − ρ∗SQ (t),Q(t)⟩

= ⟨

K∑
n=1

αnMn − ρ∗SQ (t),Q(t)⟩ −
K∑
n=1

αnWQ (t) +

K∑
n=1

αnWQ (t)

=

K∑
n=1

αn
(
⟨Mn ,Q(t)⟩ −WQ (t)

)
+ (

K∑
n=1

αn − ρ∗)WQ (t)

≤ (

K∑
n=1

αn − ρ∗)WQ (t) (14)

≤
(
ρ −

1

2

(1 + ρ)
)
WQ (t) (15)

≤ −
(1 − ρ)WQ (t)

2

(16)

Inequality (14) holds because ∀1 ≤ n ≤ K we have αn > 0 and ⟨Mn ,Q(t)⟩ −WQ (t) ≤ 0 (the weight of Mn is no

more thanWQ (t), the weight of the MWM w.r.t. Q(t)) and (15) is due to

K∑
n=1

αn ≤ ρ.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:24 • L. Gong et al.

Since,

WQ (t) ≥ max

n=1, · · · ,N 2

qn(t)

≥

√
∥Q(t)∥2

2

N 2

=
1

N

√
V1

(
Y (t)

)
(17)

From (12), (13), (16) and (17), we have

E
[
V1

(
Y (t + 1)

)
−V1

(
Y (t)

)
| Y (t)

]
≤ − (1 − ρ)

1

N

√
V1

(
Y (t)

)
+ 2⟨ρ∗SQ (t) − S(t),Q(t)⟩ + E

[
∥A(t) − S(t)∥2

2
| Y (t)

]
≤ − ϵ1

√
V1

(
Y (t)

)
+ 2

√
V2

(
Y (t)

)
+ c1 (18)

Here ϵ1 =
1−ρ
N , c1 = E

[
∥A(t) + 1∥2

2
] and 1 is the vector with all its elements equal to 1.

C.2 Proof of Lemma C.3
By simple calculations, we have

E[V2
(
Y (t + 1)

)
| Y (t)]

=P[E] · 0 + P[Ec] · E[V2
(
Y (t + 1)

)
| Y (t), Ec] (19)

Here, E is the event

{
⟨ρ∗SQ (t+1) − S(t + 1),Q(t + 1)⟩ ≤ 0

}
, and Ec

is the complementary event of E.

Since algorithm π is (ϵ,δ)-MWM (see Theorem 5.4), for ϵ3 = 1 − ρ∗ > 0, there exists δ > 0, such that,

P[Ec] = 1 − P
[
⟨ρ∗SQ (t+1) − S(t + 1),Q(t + 1)⟩ ≤ 0

]
= 1 − P

[
ρ∗WQ (t+1) −W (t + 1) ≤ 0

]
= 1 − P

[
W (t + 1) ≥

(
1 − (1 − ρ∗)

)
WQ (t+1)

]
= 1 − P

[
W (t + 1) ≥

(
1 − ϵ3

)
WQ (t+1)

]
≤ 1 − δ (20)

Focusing on the second term in the RHS of (19), we have

E
[
V2

(
Y (t + 1)

)
| Y (t), Ec]

=E
[(
[⟨ρ∗SQ (t+1) − S(t + 1),Q(t + 1)⟩]+

)
2

| Y (t), Ec
]

=E
[(
⟨ρ∗SQ (t+1) − S(t + 1),Q(t + 1)⟩

)
2

| Y (t), Ec]
≤ E

[(
⟨ρ∗SQ (t+1) − S(t + 1),Q(t) +A(t) − S(t)⟩ + N

)
2

| Y (t), Ec]
(21)

=E
[(
⟨ρ∗SQ (t+1),Q(t)⟩ − ⟨S(t + 1),Q(t)⟩ + N + ⟨ρ∗SQ (t+1) − S(t + 1),A(t) − S(t)⟩

)
2

| Y (t), Ec]
(22)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:25

Here, the term N in (21) is because

⟨ρ∗SQ (t+1) − S(t + 1),Q(t + 1)⟩

= ⟨ρ∗SQ (t+1) − S(t + 1), [Q(t) +A(t) − S(t)]+⟩

= ⟨ρ∗SQ (t+1) − S(t + 1),Q(t) +A(t) − S(t)⟩ + ⟨ρ∗SQ (t+1) − S(t + 1), χ {
Q (t)+A(t)−S (t)<0

}⟩
≤⟨ρ∗SQ (t+1) − S(t + 1),Q(t) +A(t) − S(t)⟩ + ⟨SQ (t+1), χ {Q (t)+A(t)−S (t)<0

}⟩
≤ ⟨ρ∗SQ (t+1) − S(t + 1),Q(t) +A(t) − S(t)⟩ + N

Here, χ {
Q (t)+A(t)−S (t)<0

}
is a vector whose nth element/scalar takes value 1 if qn(t) + an(t) − sn(t) < 0, which

happens only when qn(t) = 0,an(t) = 0, sn(t) = 1 and value 0 otherwise. The last inequality is because

⟨SQ (t+1), 1⟩ ≤ N , where 1 is the vector with all its elements equal to 1. In the following proof steps, we will use

similar tricks to remove [·]+, which we may not elaborate again.

We now derive the following three inequalities that will be needed to complete our proof.

First, we have

⟨S(t + 1),Q(t)⟩

≥ ⟨S(t + 1),Q(t + 1) −A(t) + S(t)⟩ − N (23)

≥ ⟨S(t),Q(t + 1)⟩ − ⟨S(t + 1),A(t) − S(t)⟩ − N (24)

= ⟨S(t),Q(t) +A(t) − S(t)⟩ + ⟨S(t), χ {
Q (t)+A(t)−S (t)<0

}⟩ − ⟨S(t + 1),A(t) − S(t)⟩ − N

≥ ⟨S(t),Q(t) +A(t) − S(t)⟩ − ⟨S(t + 1),A(t) − S(t)⟩ − N

= ⟨S(t),Q(t)⟩ − ⟨S(t + 1) − S(t),A(t) − S(t)⟩ − N

= ⟨S(t),Q(t)⟩ − ⟨S(t + 1) − S(t),A(t)⟩ + ⟨S(t + 1) − S(t), S(t)⟩ − N

≥ ⟨S(t),Q(t)⟩ − ⟨1,A(t)⟩ − 2N (25)

Here, the constant term N in (23) is due to the removal of [·]+, and (24) is due to the fact that π is non-
degenerative, i.e., ⟨S(t + 1),Q(t + 1)⟩ ≥ ⟨S(t),Q(t + 1)⟩. The derivation of (25) uses the following two simple facts:

0 ≤ ⟨S(t + 1), S(t)⟩ ≤ N and 0 ≤ ⟨S(t), S(t)⟩ ≤ N .

Second, we have

⟨SQ (t+1),Q(t)⟩ ≤WQ (t) = ⟨SQ (t),Q(t)⟩ (26)

Third, we have

⟨ρ∗SQ (t+1) − S(t + 1),A(t) − S(t)⟩

= ⟨ρ∗SQ (t+1) − S(t + 1),A(t)⟩ − ⟨ρ∗SQ (t+1) − S(t + 1), S(t)⟩

≤ ⟨SQ (t+1),A(t)⟩ + ⟨S(t + 1), S(t)⟩

≤ ⟨1,A(t)⟩ + N (27)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:26 • L. Gong et al.

Now, according to (25), (26) and (27), we have, conditioned upon the event Ec
,

0 < ⟨ρ∗SQ (t+1) − S(t + 1),Q(t + 1)⟩

≤ ⟨ρ∗SQ (t+1),Q(t)⟩ − ⟨S(t + 1),Q(t)⟩ + N + ⟨ρ∗SQ (t+1) − S(t + 1),A(t) − S(t)⟩

≤ ⟨ρ∗SQ (t),Q(t)⟩ −
(
⟨S(t),Q(t)⟩ − ⟨1,A(t)⟩ − 2N

)
+ N +

(
⟨1,A(t)⟩ + N

)
≤ ⟨ρ∗SQ (t) − S(t),Q(t)⟩ + 2⟨1,A(t)⟩ + 4N

≤

√
V2

(
Y (t)

)
+ 2

(
⟨1,A(t)⟩ + 2N

)
(28)

Therefore, we have

E
[
V2

(
Y (t + 1)

)
| Y (t), Ec]

≤V2
(
Y (t)

)
+ 4

(
E
[
⟨1,A(t)⟩ | Ec] + 2N)√

V2
(
Y (t)

)
+ 4E

[(
⟨1,A(t)⟩ + 2N

)
2

| Ec]
(29)

Since ⟨1,A(t)⟩ ≥ 0, we have,

E
[
⟨1,A(t)⟩ | Ec]P[Ec]

≤ E
[
⟨1,A(t)⟩ | Ec]P[Ec] + E

[
⟨1,A(t)⟩ | E

]
P[E]

=E
[
⟨1,A(t)⟩

]
≤ ρN (30)

Here, ρ < 1 is the maximum normalized load imposed on any input or output port as defined in (3).

Similarly, we have

E
[(
⟨1,A(t)⟩ + 2N

)
2

| Ec]P[Ec]

≤ E
[(
⟨1,A(t)⟩ + 2N

)
2
]

(31)

Substituting (20), (29), (30) and (31) into (19), we have

E[V2
(
Y (t + 1)

)
| Y (t)]

≤(1 − δ)V2
(
Y (t)

)
+ c2

√
V2

(
Y (t)

)
+ c3 (32)

where c2 = 4(ρ + 2)N , c3 = 4E
[(
⟨1,A(t)⟩ + 2N

)
2
]
.

Therefore, we have

E
[
V2

(
Y (t + 1)

)
−V2

(
Y (t)

)
| Y (t)

]
≤ − δV2

(
Y (t)

)
+ c2

√
V2

(
Y (t)

)
+ c3 (33)

Hence, Lemma C.3 holds with ϵ2 = δ .

C.3 Proof of Lemma C.1
We now proceed to prove Lemma C.1. Note that, the proof is the same as the proof of Lemma 1 in [33]. We

reproduce it with some minor revisions for this paper to be self-contained.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:27

By Lemma C.2 (concerning the drift of V1(Y)) and Lemma C.3 (concerning the drift of V2(Y)), the drift of V (Y)
satisfies

E
[
V
(
Y (t + 1)

)
−V

(
Y (t)

)
| Y (t)

]
≤ − ϵ1

√
V1

(
Y (t)

)
+ (2 + c2)

√
V2

(
Y (t)

)
− ϵ2V2

(
Y (t)

)
+ c1 + c3 (34)

When V
(
Y (t)

)
≥ B, we have V1

(
Y (t)

)
≥ B −V2

(
Y (t)

)
, and hence

−ϵ1

√
V1

(
Y (t)

)
≤ −

ϵ1
2

√
V1

(
Y (t)

)
−
ϵ1
2

√
B −V2

(
Y (t)

)
(35)

Substituting the first term in the RHS of (34) by the RHS of (35), we obtain

E
[
V
(
Y (t + 1)

)
−V

(
Y (t)

)
| Y (t)

]
≤ −

ϵ1
2

√
V1

(
Y (t)

)
−
ϵ1
2

√
B −V2

(
Y (t)

)
+ (2 + c2)

√
V2

(
Y (t)

)
− ϵ2V2

(
Y (t)

)
+ c1 + c3

It is clear that when B is large enough, we have,

−
ϵ1
2

√
B −V2

(
Y (t)

)
+ (2 + c2)

√
V2

(
Y (t)

)
− ϵ2V2

(
Y (t)

)
+ c1 + c3 < 0

Hence,

E
[
V
(
Y (t + 1)

)
−V

(
Y (t)

)
| Y (t)

]
< −

ϵ1
2

√
V1

(
Y (t)

)
= −

ϵ1
2

∥Q(t)∥2 (36)

Hence Lemma C.1 holds with ϵ = ϵ1
2
. Here ϵ1 =

1−ρ
N as specified in Lemma C.2 (see (10)).

C.4 Proof of Theorem 5.5
To prove Theorem 5.5, we need a theorem due to Tweedie [35], stated as follows.

Theorem C.1 (Tweedie [35]). Suppose that {Yn}∞n=0 is an aperiodic and irreducible Markov chain with countable
state spaceY. Let f (Y),д(Y) be real nonnegative functions such that д(Y) ≥ f (Y),Y ∈ Dc , where D is a finite subset
of Y. If

E
[
д(Y1) | Y0 = Y

]
< ∞, Y ∈ D (37)

and
E
[
д(Y1) | Y0 = Y

]
< д(Y) − f (Y), Y ∈ Dc

(38)

then the Markov chain is ergodic and
E
[
f (Ŷ)

]
< ∞

where the random variable Ŷ has the steady state distribution of the Markov chain {Yn}
∞
n=0.

Remarks: In the above theorem, Y0,Y1 can be replaced by Yn ,Yn+1, respectively, for any integer n ≥ 0, since

{Yn}
∞
n=0 is a Markov chain.

Now, we can proceed to prove Theorem 5.5. Note that, the proof of Theorem 5.5 here, using Lemma C.1 and

Theorem C.1, is mostly the same as in [33].

Let Yt = Y (t) =
(
Q(t), S(t)

)
. Then Yt is an irreducible and aperiodic Markov chain (explained in Appendix C).

Define f ,д : Y → R+ be such that

д(Y) = V (Y), f (Y) =
ϵ1
2

∥Q ∥2

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:28 • L. Gong et al.

where Y = (Q, S) and ϵ1 =
1−ρ
N which is the same as in (36). Let Dc =

{
Y : V (Y) > B

}
, for B specified in the proof

of Lemma C.1. It is clear that (37) holds from the definition of Dc
. By Lemma C.1 (note ϵ = ϵ1

2
in Lemma C.1),

Inequality (38) also holds (by replacing Yt and Yt+1 in (9) by Y0 and Y1 respectively). By Theorem C.1, we have that

the Markov chain Y (t) =
(
Q(t), S(t)

)
converges in distribution to Ŷ = (Q̂, Ŝ), and that E

[
f (Ŷ)

]
< ∞. Therefore,

E
[
∥Q̂ ∥2

]
= 2

ϵ1
E
[
f (Ŷ)

]
< ∞.

Given any outcome ω, the (deterministic) N 2
-dimensional vector satisfies

∥Q̂(ω)∥1 ≤ N ∥Q̂(ω)∥2

by the Cauchy-Schwarz inequality.
Therefore,

E
[
∥Q̂ ∥1

]
≤ NE

[
∥Q̂ ∥2

]
< ∞

This completes the proof of Theorem 5.5.

D PROOF OF Lemma 5.1
LetQ be the VOQ length vector at the current time t ; we do not use the notationQ(t) here because the proof does
not involve the term t . Let SQ be a maximum weight matching w.r.t. Q , and letWQ denote its weight. Given any

ϵ > 0, we derive another matching S ′ ⊆ SQ from SQ as follows: remove every edge (i.e., VOQ) from SQ whose

weight (i.e., VOQ length) is less than
ϵ
NWQ . Since there can be at most N edges in any matching, the weight of S ′

satisfies ⟨S ′,Q⟩ ≥WQ − N · ϵ
NWQ > (1 − ϵ)WQ .

Recall that in the proposing phase, QPS samples a set of edges (not necessarily a matching), which we denote

as U . Next, we prove that,U contains all edges in S ′ (i.e., S ′ ⊆ U) with at least a constant (i.e., not as a function

of Q) probability δ =
(
ϵ
N 2

)N
. Given any edge e = (i, j) ∈ S ′ (i.e., jth VOQ at input port i), its weight is at least

ϵ
NWQ since all edges lighter than that would have been removed earlier. Since the weight of any edge can be

at mostWQ , the total weight of all edges (VOQs) incident on vertex (input port) i is at most NWQ . Hence the

probability that this edge e = (i, j) (i.e., output port j) is sampled by input port i in the QPS proposing phase is at

least (ϵNWQ)/(NWQ) =
ϵ
N 2

. Since every input port makes the sampling decision independently, the probability

that all edges in S ′ are sampled during the QPS proposing phase is at least

(
ϵ
N 2

) |S ′ |
≥

(
ϵ
N 2

)N
, where |S ′ | is the

number of edges in S ′.
Now suppose the event S ′ ⊆ U happens during the QPS proposing phase. We show that the final matching

accepted by the output ports, during the QPS accepting phase, is at least as heavy as S ′. This is however clear
from the following two facts. First, given any edge e = (i, j) ∈ S ′, it is either accepted by output port j or beaten
by another edge (i.e., proposal) e ′ to output port j that has a heavier (or equal) weight (VOQ length). Second,

when the latter happens, since S ′ is a matching, e ′ will not compete with (and beat) any edge in S ′ other than e .
Remarks: Lemma 5.1 continues to hold if the “longest VOQ first” accepting strategy is replaced by the afore-

mentioned proportional accepting (PA) strategy (see §3.1). Let E be the event that S ′ is contained in the final

matching. To prove this remark, it suffices to show that there is a constant (i.e., not as a function ofQ) probability

for E to happen, conditioned upon the happening of the event S ′ ⊆ U . Using the same argument as above for

proving that the event S ′ ⊆ U happens with a probability that is at least

(ϵ
N 2

)N
, we can prove that E happens

conditionally with a probability that is at least

(ϵ
N 2

)N
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:29

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

M
e
a
n
 D

e
la

y

Uniform

log(Q+ 1)PS-iSLIP QPS-iSLIP Q2PS-iSLIP Q3PS-iSLIP Q4PS-iSLIP Q∞PS-iSLIP

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Log-diagonal

0 0.2 0.4 0.6 0.8

Normalized Load

10 -2

10 -1

10 0

10 1
Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

M
e

a
n

 D
e

la
y

Uniform
log(Q+ 1)PS-SERENA QPS-SERENA Q2PS-SERENA Q3PS-SERENA Q4PS-SERENA Q∞PS-SERENA

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Diagonal

Fig. 6. Mean delays for different FQPS-iSLIP and FQPS-SERENA under Bernoulli i.i.d. traffic arrivals with the 4 load matrices.

16 32 64 128

Number of Ports

20

21

22

M
e
a
n
 D

e
la

y

Uniform
iSLIP QPS-iSLIP iSLIP-ShakeUp iLQF MWM

16 32 64 128

Number of Ports

20

21

22

23
Quasi-diagonal

16 32 64 128

Number of Ports

20

21

22
Log-diagonal

16 32 64 128

Number of Ports

2 -1

20

21
Diagonal

16 32 64 128

Number of Ports

10 0

10 1

10 2

10 3

10 4

10 5

M
e
a
n
 D

e
la

y

Uniform
SERENA QPS-SERENA MWM

16 32 64 128

Number of Ports

10 0

10 1

10 2

10 3

10 4

10 5
Quasi-diagonal

16 32 64 128

Number of Ports

10 0

10 1

10 2
Log-diagonal

16 32 64 128

Number of Ports

10 0

10 1

10 2

10 3
Diagonal

Fig. 7. Mean delays versus number of ports for different scheduling algorithms under Bernoulli i.i.d. traffic arrivals with the
4 load matrices.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:30 • L. Gong et al.

E MORE SIMULATION RESULTS

E.1 Mean Delay Performance for FQPS
Here, we consider several alternative functions f (·) of the queue lengths for FQPS, besides the VOQ lengths

(i.e., f (x) = x) used in QPS, to see if they can deliver better mean delay performance than QPS. We present the

simulation results for two types of functions:

1. f (x) = xα for α = 2, 3, 4,∞: inspired by the functions considered in MWM-α [14], and

2. f (x) = log(x + 1): inspired by the log-weights used in MWM-0
+
[32].

The case α = ∞ is an extreme case in which each input port samples the longest VOQ (with ties broken uniformly

randomly) and proposes to the corresponding output port.

Figure 6 presents the mean delays of FQPS-augmented scheduling algorithms under the 4 load matrices and a

range of normalized loads. By selecting a proper α , we can indeed achieve marginal improvements (e.g., when
α = 2, 3, 4). However, when α → ∞, the mean delay increases dramatically when the load is high. This is not

surprising because at high loads, a high α strategy severely penalizes short VOQs by blocking them from being

serviced until they themselves become long enough, resulting in poor delay performance. Furthermore, the mean

delays of the scheduling algorithms are similar when the load is light, but as the load increases, the performance

gaps between the FQPS-augmented algorithms with different α values increase (though the differences remain

small). Surprisingly, unlike MWM-α where mean the delay increases as α increases [14], for FQPS, the relationship

between the mean delay and α is not so straightforward. On one hand, the mean delay performance is generally

slightly better in cases α = 2, 3, 4 than that in QPS (i.e., α = 1). On the other hand, in the case α = ∞, the mean

delay performance becomes much worse than that in QPS.

We also see that, unlike in MWM-0
+
[32], using f (x) = log(x + 1) for FQPS actually increases the mean

delay, as compared to QPS. The reason for this is that the use of the log(·) weight function results in the

probabilities of sampling the longer VOQs being very close to those of sampling the shorter queues. Such an

almost weight-oblivious way of sampling intuitively does not yield good performance.

While there is slight improvement in mean delay for properly selected α under all load matrices, from

Figure 6, we see that the difference between QPS-SERENA (QPS-iSLIP) and the FQPS-SERENA (FQPS-iSLIP)

is, at best, marginal. Implementing FQPS, however, requires more complex data structures (and more space),

such as a binary search tree. Such an implementation requires O(logN) (per packet) time complexity for the

operations (insertion, deletion, etc.). In contrast, the O(1) complexity of QPS makes it a far more attractive and

practical solution. To summarize, all factors considered, QPS offers the best tradeoff between performance and

computational/implementation complexities within the FQPS family.

E.2 How Mean Delay Scales with N

In the section, we investigate how the mean delays for QPS-augmented scheduling algorithms scale with the

number of input/output ports N . We have simulated four different N values: N = 16, 32, 64, 128.
Figure 7 (the 1

st
row) shows the mean delays for QPS-iSLIP, iSLIP, iSLIP-ShakeUp, iLQF, and MWM under the

normalized load of 0.75 (some algorithms are not stable under load factor 0.8) and the 4 different load matrices.

From Figure 7, we can see that all four scheduling algorithms scale quite well under all 4 load matrices: In every

case, the mean delay nearly remains constant when N increases.

In Figure 7 (both rows), the mean delay of MWM (under 0.75 load in the 1
st

row and 0.95 load in the 2
nd

row)

is nearly a constant w.r.t. N . This scaling behavior of MWM to a certain degree confirms a theoretical result

proven in [30]. It states that the average total queue length (across all N input ports) under an optimal algorithm

(e.g.,MWM) scales linearly with N as
N
1−ρ , where ρ ∈ (0, 1) is the load factor. Suppose this total average queue

length is furthermore nearly evenly distributed across the N input ports by an optimal algorithm, the mean delay

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:31

(proportional to the average per-port queue length in the steady state) is expected to be nearly constant when N
increases.

Figure 7 (the 2
nd

row) shows the mean delays for QPS-SERENA against SERENA and MWM under the

normalized load of 0.95 and the 4 different load matrices. As we can see, QPS-SERENA outperforms SERENA

and the gap increases when N increases, under all load matrices except the quasi-diagonal. In addition, under

the log-diagonal and the diagonal load matrices, both QPS-SERENA and SERENA achieve near-optimal scaling

(i.e., nearly constant as a function of N) of mean delay, whereas under the uniform and the quasi-diagonal load

matrices, the mean delay grows roughly quadratically with N (i.e., O(N 2) scaling).

E.3 “Longest VOQ First” vs. Proportional Accepting
In this section, we compare the performance between the two different accepting strategies we proposed in §3.1:

“longest VOQ first” and proportional accepting (PA). Figure 8 compares QPS-iSLIP with the 2 different accepting

strategies (the 1
st
row) and QPS-SERENA with the 2 different accepting strategies (the 2

nd
row), in terms of mean

delay, under Bernoulli i.i.d. traffic arrivals with the 4 different load matrices. Similarly, in Figure 9, the 1
st
row

compares QPS-iSLIP with the 2 different accepting strategies under bursty traffic arrivals with an offered load of

0.75, and the 2
nd

row compares QPS-SERENA with the 2 different accepting strategies under bursty traffic with

an offered load of 0.95. Figure 8 and Figure 9 show that PA results in either slightly worse or similar mean delay

performances than “longest VOQ first” in all these scenarios.

E.4 QPS vs. O(1) Algorithm in [38]
Figure 10 compares QPS-iSLIP and QPS-SERENA against the O(1) scheduling algorithm in [38], in terms of

mean delay, under Bernoulli i.i.d. traffic arrivals with the 4 different load matrices. Figure 10 clearly shows that

the mean delays of the O(1) algorithm in [38] are between 3 and 4 orders of magnitudes larger than those of

QPS-iSLIP and QPS-SERENA under all workload conditions. Note that in Figure 10, only mean delays under

offered loads ≤ 0.8 (and ≤ 0.6 for quasi-diagonal load matrices) are reported for the O(1) algorithm in [38],

because its simulation could not reach the steady state within a reasonable amount of time, when the offered

load is higher than that. As explained earlier, this phenomenon is expected, because such Glauber Dynamics

based scheduling algorithms converge to the steady state very slowly when the number of ports (or wireless

nodes) N is large and the traffic load is high [9]. Indeed, for theO(1) algorithm to converge under an offered load

of just 0.8, we had to increase the number of time slots in the simulation to at least 20000 × N 2
, which is more

than three times that was necessary for any other simulation run.

Received October 2016; revised February 2017; accepted February 2017

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

2:32 • L. Gong et al.

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

M
e
a
n
 D

e
la

y

Uniform
QPS-iSLIP (with "longest VOQ first") QPS-iSLIP (with proportional accepting)

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1
Diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

M
e
a
n
 D

e
la

y

Uniform
QPS-SERENA (with "longest VOQ first") QPS-SERENA (with proportional accepting)

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Log-diagonal

0 0.2 0.4 0.6 0.8 1

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3
Diagonal

Fig. 8. Mean delays for QPS-iSLIP and QPS-SERENA with the 2 different accepting strategies under Bernoulli i.i.d. traffic
arrivals with the 4 load matrices.

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4

M
e
a
n
 D

e
la

y

Uniform
QPS-iSLIP (with "longest VOQ first") QPS-iSLIP (with proportional accepting)

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Quasi-diagonal

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Log-diagonal

1 4 16 64 256 1024

Average Burst Size

10 0

10 1

10 2

10 3

10 4
Diagonal

1 4 16 64 256 1024

Average Burst Size

10 2

10 3

10 4

10 5

M
e
a
n
 D

e
la

y

Uniform
QPS-SERENA (with "longest VOQ first") QPS-SERENA (with proportional accepting)

1 4 16 64 256 1024

Average Burst Size

10 2

10 3

10 4

10 5
Quasi-diagonal

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5
Log-diagonal

1 4 16 64 256 1024

Average Burst Size

10 1

10 2

10 3

10 4

10 5
Diagonal

Fig. 9. Mean delays for QPS-iSLIP (offered load: 0.75) and QPS-SERENA (offered load: 0.95) with the 2 different accepting
strategies under bursty traffic arrivals with the 4 load matrices.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

Queue-Proportional Sampling • 2:33

0 0.2 0.4 0.6 0.8

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

M
e
a
n
 D

e
la

y

Uniform
QPS-iSLIP QPS-SERENA O(1)

0 0.2 0.4 0.6 0.8

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6
Quasi-diagonal

0 0.2 0.4 0.6 0.8

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6
Log-diagonal

0 0.2 0.4 0.6 0.8

Normalized Load

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5
Diagonal

Fig. 10. Mean delay for QPS-iSLIP/QPS-SERENA against O(1) algorithm in [38] under Bernoulli i.i.d. traffic arrivals with the
4 load matrices.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 2. Publication date: June 2017.

	Abstract
	1 Introduction
	1.1 Starter Matching and Its Importance
	1.2 Queue-Proportional Sampling (QPS)

	2 Background
	2.1 Input-Queued Crossbar Architecture
	2.2 Performance Metrics
	2.3 Admissible Traffic Patterns

	3 Queue-Proportional Sampling
	3.1 The QPS Proposing Strategy
	3.2 Augmenting iSLIP and SERENA
	3.3 QPS vs. ShakeUp

	4 QPS Implementation
	4.1 Overview of the Sampling Algorithm
	4.2 The Detailed Data Structure

	5 Stability Proof of QPS-SERENA
	5.1 Background and Notations
	5.2 TASS, SERENA, and Their Stability
	5.3 Stability of QPS-SERENA

	6 Evaluation
	6.1 Simulation Setup
	6.2 QPS Throughput Results
	6.3 QPS Delay Performance Results

	7 Related Work
	7.1 Crossbar Scheduling Algorithms
	7.2 Queue-Proportional Resource Allocation

	8 Conclusion
	References
	A QPS Variants
	B Space complexity of QPS
	C Proof of Theorem 5.5
	C.1 Proof of Lemma C.2
	C.2 Proof of Lemma C.3
	C.3 Proof of Lemma C.1
	C.4 Proof of Theorem 5.5

	D Proof of Lemma 5.1
	E More Simulation Results
	E.1 Mean Delay Performance for FQPS
	E.2 How Mean Delay Scales with N
	E.3 ``Longest VOQ First'' vs. Proportional Accepting
	E.4 QPS vs. O(1) Algorithm in Ye10Variable

