
QPS-r: A Cost-Effective Iterative Switching Algorithm for
Input-Queued Switches

Long Gong
Georgia Tech

gonglong@gatech.edu

Jun (Jim) Xu
Georgia Tech

jx@cc.gatech.edu

Liang Liu
Georgia Tech

liuliang142857@gatech.edu

Siva Theja Maguluri
Georgia Tech

siva.theja@gatech.edu

ABSTRACT
In an input-queued switch, a crossbar schedule, or a matching
between the input ports and the output ports needs to be computed
for each switching cycle, or time slot. It is a challenging research
problem to design switching algorithms that produce high-quality
matchings yet have a very low computational complexity when the
switch has a large number of ports. Indeed, there appears to be a
fundamental tradeoff between the computational complexity of the
switching algorithm and the quality of the computed matchings.

Parallel maximal matching algorithms (adapted for switching)
appear to be a sweet tradeoff point in this regard. On one hand,
they provide the following performance guarantees: Using maxi-
mal matchings as crossbar schedules results in at least 50% switch
throughput and order-optimal (i.e., independent of the switch size
𝑁) average delay bounds for various traffic arrival processes. On
the other hand, their computational complexities can be as low as
𝑂 (log2 𝑁) per port/processor, which is much lower than those of
the algorithms for finding matchings of higher qualities such as
maximum weighted matching.

In this work, we propose QPS-r, a parallel iterative switching
algorithm that has the lowest possible computational complexity:
𝑂 (1) per port. Yet, the matchings that QPS-r computes have the
same quality as maximal matchings in the following sense: Using
such matchings as crossbar schedules results in exactly the same
aforementioned provable throughput and delay guarantees as using
maximal matchings, as we show using Lyapunov stability analysis.
Although QPS-r builds upon an existing add-on technique called
Queue-Proportional Sampling (QPS), we are the first to discover
and prove this nice property of such matchings. We also demon-
strate that QPS-3 (running 3 iterations) has comparable empirical
throughput and delay performances as iSLIP (running log2 𝑁 itera-
tions), a refined and optimized representative maximal matching
algorithm adapted for switching.

CCS CONCEPTS
• Mathematics of computing → Markov processes.
ACM Reference Format:
Long Gong, Jun (Jim) Xu, Liang Liu, and Siva Theja Maguluri. 2020. QPS-r: A
Cost-Effective Iterative Switching Algorithm for Input-Queued Switches. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7646-4/20/05. . . $15.00
https://doi.org/10.1145/3388831.3388836

13th EAI International Conference on Performance Evaluation Methodologies
and Tools (VALUETOOLS ’20), May 18–20, 2020, Tsukuba, Japan. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3388831.3388836

1 INTRODUCTION
Many present day high-performance switching systems in Internet
routers and data-center switches employ an input-queued crossbar
to interconnect their input ports and output ports. In an 𝑁 × 𝑁
input-queued crossbar switch, each input port can be connected to
only one output port and vice versa in each switching cycle or time
slot. Hence, in every time slot, the switch needs to compute a one-
to-one matching between input and output ports (i.e., the crossbar
schedule). A major research challenge in designing high-link-rate
switches with a large number of ports (called high-radix [2, 3]) is to
develop algorithms that can compute “high quality” matchings – i.e.,
those that result in high switch throughput and low queueing delays
for packets – in a few nanoseconds. Clearly, a suitable switching
algorithm has to have very low computational complexity, yet
output “fairly good” matching decisions most of time.

1.1 The Family of Maximal Matchings
A family of parallel iterative algorithms for computing maximal
matching (one to which no edge can be added for it to remain
a matching, a definition that will be made precise in §2) are ar-
guably the best candidates for switching in high-link-rate high-
radix switches, because they have reasonably low computational
complexities, yet can provide fairly good throughput and delay per-
formance guarantees. More specifically, using maximal matchings
as crossbar schedules results in at least 50% switch throughput in
theory (and usually much higher throughput in practice) [4]. In
addition, it results in low packet delays that also have excellent scal-
ing behaviors such as order-optimal (i.e., independent of switch size
𝑁) under various traffic arriving processes when the offered load is
less than 50% (i.e., within the provable stability region) [17]. In com-
parison, matchings of higher qualities such as maximum matching
(with the largest possible number of edges) and maximumweighted
matching (with the highest total edge weight) are much more ex-
pensive to compute. Hence, it is fair to say that, maximal matching
algorithms overall deliver the biggest “bang” (performance) for the
“buck” (computational complexity).

Unfortunately, parallel maximal matching algorithms are still
not “dirt cheap” computationally. More specifically, all existing
parallel algorithms that compute maximal matchings on general
𝑁 × 𝑁 bipartite graphs require a minimum of 𝑂 (log𝑁) iterations
(rounds of message exchanges). This minimum is attained by the
classical algorithm of Israel and Itai [12]; the PIM algorithm [1]
is a slight adaptation of this classical algorithm to the switching
context, and iSLIP [15] further improves upon PIM by reducing its

19

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Long Gong, Jun (Jim) Xu, Liang Liu, and Siva Theja Maguluri

per-iteration per-port computational complexity to 𝑂 (log𝑁) via
de-randomizing a computationally expensive (𝑂 (𝑁) complexity to
be exact) operation in PIM.

1.2 QPS-r: Bigger Bang for the Buck
In this work, we propose QPS-r, a parallel iterative switching al-
gorithm that has the lowest possible computational complexity:
𝑂 (1) per port. More specifically, QPS-r requires only 𝑟 (a small
constant independent of 𝑁) iterations to compute a matching, and
the computational complexity of each iteration is only 𝑂 (1); here
QPS stands for Queue-Proportional Sampling, an add-on technique
proposed in [8] that we will describe shortly. Yet, even the match-
ings that QPS-1 (running only a single iteration) computes have
the same (reasonably high) quality as maximal matchings in the
following sense: Using such matchings as crossbar schedules results
in exactly the same aforementioned provable throughput and delay
guarantees as using maximal matchings, as we will show using
Lyapunov stability analysis. QPS-r performs as well as maximal
matching algorithms not just in theory:Wewill show in §5 that QPS-
3 (running 3 iterations) has comparable empirical throughput and
delay performances as iSLIP (running log2 𝑁 iterations), a refined
and optimized representative maximal matching algorithm adapted
for switching, under various workloads. Note that matchings that
QPS-r computes are generally not maximal. QPS-r canmake dowith
less (iterations) because the queue-proportional sampling operation
implicitly makes use of the queue (VOQ) length information, which
maximal matching algorithms do not. One major contribution of
this work is to discover the family of (QPS-r)-generated matchings
that is even more cost-effective.

Although QPS-r builds on the QPS data structure and algorithm
proposed in [8], our work on QPS-r is very different in three im-
portant aspects. First, in [8], QPS was used only as an add-on to
other switching algorithms such as iSLIP [15] and SERENA [6]
by generating a starter matching for other switching algorithms
to further refine, whereas in this work, QPS-r is used only as a
stand-alone algorithm. Second, we are the first to discover and
prove that (QPS-r)-generated matchings and maximal matchings
provide exactly the same aforementioned performance guarantees,
whereas in [8], no such mathematical similarity or connection was
mentioned. Third, the establishment of this mathematical similarity
is an important theoretical contribution in itself, because maximal
matchings have long been established as a cost-effective family
both in switching [1, 15] and in wireless networking [17, 18], and
with this connection we have considerably enlarged this family.

Although we show that QPS-r has exactly the same through-
put and delay bounds as that of maximal matchings established
in [4, 17, 18], our proofs are different for the following reason.
A departure inequality (see Property 1), satisfied by all maximal
matching algorithms was used in the throughput analysis of [4]
and the delay analysis of [17, 18]. This inequality, however, is not
satisfied by QPS-r in general. Instead, QPS-r satisfies this departure
inequality in expectation, which is a much weaker guarantee. A
methodological contribution of this work is to prove two theorems
stating that this much weaker guarantee is sufficient for obtaining
the same throughput and delay bounds respectively.

The rest of this paper is organized as follows. In §2, we provide
some background on the switching problem in input-queued cross-
bar switches. In §3, we first review QPS, and then describe QPS-r.
Then in §4, we derive the throughput and the queue length (and
delay) bounds of QPS-r, followed by the performance evaluation
in §5. In §6, we survey related work before concluding this paper
in §7.

2 BACKGROUND
In this section, we provide a brief introduction to the switching
(crossbar scheduling) problem. Throughout this paper, we adopt the
following standard assumption that all the incoming variable-size
packets are first segmented into fixed-size packets (also referred
to as cells), and then reassembled at their respective output ports
before leaving the switch. In the sequel, we consider the switching
of only fixed-size packets, and each fixed-size cell takes one time
slot to switch. We also assume that all input links/ports and output
links/ports operate at the same normalized line rate of 1, and so do
all wires and crosspoints inside the crossbar.

In an 𝑁 × 𝑁 input-queued crossbar switch, each input port has
𝑁 Virtual Output Queues (VOQs) [20]. The 𝑗𝑡ℎ VOQ at input port 𝑖
serves as a buffer for packets going from input port 𝑖 to output port 𝑗 .
The use of VOQs solves the Head-of-Line (HOL) blocking issue [13],
which severely limits the throughput of the switch system.

An 𝑁 × 𝑁 input-queued crossbar can be modeled as a bipartite
graph, of which the two disjoint vertex sets are the 𝑁 input ports
and the 𝑁 output ports respectively. In this bipartite graph, there
is an edge between input port 𝑖 and output port 𝑗 , if and only if the
𝑗𝑡ℎ VOQ at input port 𝑖 , the corresponding VOQ, is nonempty. A set
of such edges constitutes a valid crossbar schedule, or a matching, if
any two of them do not share a common vertex. A matching𝑀 is
called a maximal matching, if it is no longer a matching, when any
edge not in𝑀 is added to it.

A matching𝑀 can be represented as an 𝑁 × 𝑁 sub-permutation
matrix (a 0-1 matrix that contains at most one entry of “1” in each
row and in each column) 𝑆 = (𝑠𝑖 𝑗) as follows: 𝑠𝑖 𝑗 = 1 if and only
if the edge between input port 𝑖 and output port 𝑗 is contained in
𝑀 (i.e., input port 𝑖 is matched to output port 𝑗 in 𝑀). To avoid
any confusion, only 𝑆 (not𝑀) is used to denote a matching in the
sequel, and it can be both a set (of edges) and a matrix.

3 THE QPS-𝑟 ALGORITHM
TheQPS-r algorithm simply runs 𝑟 iterations of QPS (Queue-Proportional
Sampling) [8] to arrive at a matching, so its computational com-
plexity per port is exactly 𝑟 times those of QPS. Since 𝑟 is a small
constant, it is 𝑂 (1), same as that of QPS. In the following two sub-
sections, we describe QPS and QPS-r respectively in more details.

3.1 Queue-Proportional Sampling (QPS)
QPS was used in [8] as an “add-on” to augment other switching
algorithms as follows. It generates a starter matching, which is
then populated (i.e., adding more edges to it) and refined, by other
switching algorithms such as iSLIP [15] and SERENA [6], into a
final matching. To generate such a starter matching, QPS needs
to run only one iteration, which consists of two phases, namely, a

20

QPS-r: A Cost-Effective Iterative Switching Algorithm for Input-Queued Switches VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

proposing phase and an accepting phase. We briefly describe them
in this section for this paper to be self-contained.

3.1.1 The Proposing Phase. In this phase, each input port proposes
to exactly one output port – decided by the QPS strategy – unless it
has no packet to transmit. Here we will only describe the operations
at input port 1; that at any other input port is identical. Like in [8],
we denote by𝑚1,𝑚2, · · · ,𝑚𝑁 the respective queue lengths of the 𝑁
VOQs at input port 1, and by𝑚 their total (i.e.,𝑚≜

∑𝑁
𝑘=1𝑚𝑘). Input

port 1 simply samples an output port 𝑗 with probability 𝑚 𝑗

𝑚 , i.e.,
proportional to𝑚 𝑗 , the length of the corresponding VOQ (hence
the name QPS); it then proposes to output port 𝑗 , with the value𝑚 𝑗

that will be used in the next phase. The computational complexity
of this QPS operation, carried out using a simple data structure
proposed in [8], is 𝑂 (1) per (input) port.
3.1.2 The Accepting Phase. We describe only the action of output
port 1 in the accepting phase; that of any other output port is identi-
cal. The action of output port 1 depends on the number of proposals
it receives. If it receives exactly one proposal from an input port, it
will accept the proposal and match with the input port. However,
if it receives proposals from multiple input ports, it will accept
the proposal accompanied with the largest VOQ length (called the
“longest VOQ first" accepting strategy), with ties broken uniformly
at random. The computational complexity of this accepting strategy
is𝑂 (1) on average and can be made𝑂 (1) even in the worst case [8].

3.2 The QPS-r Scheme
The QPS-r scheme simply runs 𝑟 QPS iterations. In each iteration,
each input port that is not matched yet, first proposes to an output
port according to the QPS proposing strategy; each output port
that is not matched yet, accepts a proposal (if it has received any)
according the “longest VOQ first” accepting strategy. Hence, if an
input port has to propose multiple times (once in each iteration),
due to all its proposals (except perhaps the last) being rejected, the
identities of the output ports it “samples” (i.e., proposes to) during
these iterations are samples with replacement, whichmore precisely
are i.i.d. random variables with a queue-proportional distribution.

At the first glance, sampling with replacement may appear to be
an obviously suboptimal strategy for the following reason. There
is a nonzero probability for an input port to propose to the same
output port multiple times, but since the first (rejected) proposal
implies this output port has already accepted “someone else” (a
proposal from another input port), all subsequent proposals to
this output port will surely go to waste. For this reason, sampling
without replacement (i.e., avoiding all output ports proposed to
before) may sound like an obviously better strategy. However, it is
really not, since compared to sampling with replacement, it has a
much higher computational complexity of 𝑂 (log𝑁), but improves
the throughput and delay performances only slightly according to
our simulation studies.

4 THROUGHPUT AND DELAY ANALYSIS
In this section, we show that QPS-1 (i.e., running a single QPS
iteration) delivers exactly the same provable throughput and delay
guarantees as maximal matching algorithms. When 𝑟 > 1, QPS-r
clearly should have better throughput and delay performances than

QPS-1, as more input and output ports can be matched up during
subsequent iterations, although we are not able to derive stronger
bounds.

4.1 Preliminaries
In this section, we introduce the notation and assumptions that will
later be used in our derivations. We define three 𝑁 × 𝑁 matrices
𝑄 (𝑡),𝐴(𝑡), and𝐷 (𝑡). Let𝑄 (𝑡) ≜ (

𝑞𝑖 𝑗 (𝑡)
)
be the queue lengthmatrix

where each 𝑞𝑖 𝑗 (𝑡) is the length of the 𝑗𝑡ℎ VOQ at input port 𝑖 during
time slot 𝑡 . With a slight abuse of notation, we refer to this VOQ as
𝑞𝑖 𝑗 (without the 𝑡 term).

We define 𝑄𝑖∗ (𝑡) and 𝑄∗𝑗 (𝑡) as the sum of the 𝑖𝑡ℎ row and the
sum of the 𝑗𝑡ℎ column respectively of 𝑄 (𝑡), i.e., 𝑄𝑖∗ (𝑡) ≜

∑
𝑗 𝑞𝑖 𝑗 (𝑡)

and𝑄∗𝑗 (𝑡) ≜
∑
𝑖 𝑞𝑖 𝑗 (𝑡). With a similar abuse of notation, we define

𝑄𝑖∗ as the VOQ set {𝑞𝑖1, 𝑞𝑖2, · · · , 𝑞𝑖𝑁 } (i.e., those on the 𝑖𝑡ℎ row),
and 𝑄∗𝑗 as {𝑞1𝑗 , 𝑞2𝑗 , · · · , 𝑞𝑁 𝑗 } (i.e., those on the 𝑗𝑡ℎ column).

q11 q12 · · · q1j · · · q1N

q21 q22 · · · q2j · · · q2N

...
...

. . .
...

. . .
...

qi1 qi2 · · · qij · · · qiN

...
...

. . .
...

. . .
...

qN1 qN2 · · · qNj · · · qNN

Figure 1:𝑄†𝑖 𝑗 : neighborhood
of 𝑞𝑖 𝑗 .

Now we introduce a con-
cept that lies at the heart
of our derivations: neighbor-
hood. For each VOQ 𝑞𝑖 𝑗 , we
define its neighborhood as
𝑄𝑖∗

⋃
𝑄∗𝑗 , the set of VOQs on

the 𝑖𝑡ℎ row or the 𝑗𝑡ℎ column.
We denote this neighborhood
as 𝑄†𝑖 𝑗 , since it has the shape
of a cross. Figure 1 illustrates
𝑄†𝑖 𝑗 , where the row and col-
umn in the shadow are the
VOQ sets 𝑄𝑖∗ and 𝑄∗𝑗 respec-
tively. 𝑄†𝑖 𝑗 can be viewed as

the interference set of VOQs for VOQ 𝑞𝑖 𝑗 [17, 18], as no other VOQ
in 𝑄†𝑖 𝑗 can be active (i.e., transmit packets) simultaneously with 𝑞𝑖 𝑗 .
We define 𝑄†𝑖 𝑗 (𝑡) as the total length of all VOQs in (the set) 𝑄†𝑖 𝑗 at
time slot 𝑡 , that is

𝑄†𝑖 𝑗 (𝑡) ≜ 𝑄𝑖∗ (𝑡) − 𝑞𝑖 𝑗 (𝑡) +𝑄∗𝑗 (𝑡) . (1)

Here we need to subtract the term 𝑞𝑖 𝑗 (𝑡) so that it is not double-
counted (in both 𝑄𝑖∗ (𝑡) and 𝑄∗𝑗 (𝑡)).

Let𝐴(𝑡)= (
𝑎𝑖 𝑗 (𝑡)

)
be the traffic arrival matrix where 𝑎𝑖 𝑗 (𝑡) is the

number of packets arriving at the input port 𝑖 destined for output
port 𝑗 during time slot 𝑡 . For ease of exposition, we assume that, for
each 1≤ 𝑖, 𝑗 ≤𝑁 , {𝑎𝑖 𝑗 (𝑡)}∞𝑡=0 is a sequence of i.i.d. random variables,
the second moment of their common distribution (= E

[
𝑎2
𝑖 𝑗 (0)

]
) is

finite, and this sequence is independent of other sequences (for a
different 𝑖 and/or 𝑗). Our analysis, however, holds for more general
arrival processes (e.g., Markovian arrivals) that were considered
in [17, 18], as we will elaborate shortly. Let 𝐷 (𝑡) = (

𝑑𝑖 𝑗 (𝑡)
)
be the

departure matrix for time slot 𝑡 output by the switching algorithm.
Similar to 𝑆 , 𝐷 (𝑡) is a 0-1 matrix in which 𝑑𝑖 𝑗 (𝑡)=1 if and only if a
packet departs from 𝑞𝑖 𝑗 during time slot 𝑡 . For any 𝑖, 𝑗 , the queue
length process 𝑞𝑖 𝑗 (𝑡) evolves as follows:

𝑞𝑖 𝑗 (𝑡 + 1) = 𝑞𝑖 𝑗 (𝑡) − 𝑑𝑖 𝑗 (𝑡) + 𝑎𝑖 𝑗 (𝑡) . (2)
Let Λ =

(
_𝑖 𝑗

)
be the (normalized) traffic rate matrix (associated

with 𝐴(𝑡)) where _𝑖 𝑗 is normalized (to the percentage of the line

21

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Long Gong, Jun (Jim) Xu, Liang Liu, and Siva Theja Maguluri

rate of an input/output link) mean arrival rate of packets to VOQ
𝑞𝑖 𝑗 . With 𝑎𝑖 𝑗 (𝑡) being an i.i.d. process, we have _𝑖 𝑗 = E

[
𝑎𝑖 𝑗 (0)

]
.

We define 𝜌Λ as the maximum load factor imposed on any input or
output port by Λ,

𝜌Λ ≜ max
{

max
1≤𝑖≤𝑁

{
∑
𝑗

_𝑖 𝑗 }, max
1≤ 𝑗≤𝑁

{
∑
𝑖

_𝑖 𝑗 }
}

(3)

A switching algorithm is said to achieve 100% throughput or be
throughput-optimal if the (packet) queues are stable whenever
𝜌Λ < 1.

As mentioned before, we will prove in this section that, same
as the maximal matching algorithms, QPS-1 is stable under any
traffic arrival process 𝐴(𝑡) whose rate matrix Λ satisfies 𝜌Λ < 1/2
(i.e., can provably attain at least 50% throughput, or half of the
maximum). We also derive the average delay bound for QPS-1,
which we show is order-optimal (i.e., independent of switch size
𝑁) when the arrival process 𝐴(𝑡) further satisfies that for any 𝑖, 𝑗 ,
𝑎𝑖 𝑗 (0) has finite variance. In the sequel, we drop the subscript term
from 𝜌Λ and simply denote it as 𝜌 .

Similar to𝑄†𝑖 𝑗 (𝑡), we define 𝐴
†
𝑖 𝑗 (𝑡) as the total number of packet

arrivals to all VOQs in the neighborhood set 𝑄†𝑖 𝑗 :

𝐴†𝑖 𝑗 (𝑡) ≜ 𝐴𝑖∗ (𝑡) − 𝑎𝑖 𝑗 (𝑡) +𝐴∗𝑗 (𝑡), (4)

where 𝐴𝑖∗ (𝑡) and 𝐴∗𝑗 (𝑡) are similarly defined as 𝑄𝑖∗ (𝑡) and 𝑄∗𝑗 (𝑡)
respectively. 𝐷†𝑖 𝑗 (𝑡), 𝐷𝑖∗ (𝑡), and 𝐷∗𝑗 (𝑡) are similarly defined, so is
Λ†𝑖 𝑗 (𝑡). We now state some simple facts concerning 𝐷 (𝑡), 𝐴(𝑡), and
Λ as follows.

Fact 1. Given any switching algorithm, for any 𝑖, 𝑗 , we have,𝐷𝑖∗ (𝑡) ≤
1 (at most one packet can depart from input port 𝑖 during time slot 𝑡),
𝐷∗𝑗 (𝑡) ≤ 1, and 𝐷†𝑖 𝑗 (𝑡) ≤ 2.

Fact 2. Given any i.i.d. arrival process 𝐴(𝑡) and its rate matrix is Λ
whose maximum load factor is defined in (3), for any 𝑖, 𝑗 , we have
E[𝐴†𝑖 𝑗 (𝑡)] = Λ†𝑖 𝑗 ≤ 2𝜌 .

The following fact is slightly less obvious.

Fact 3. Given any switching algorithm, for any 𝑖, 𝑗 , we have

𝑑𝑖 𝑗 (𝑡)𝐷†𝑖 𝑗 (𝑡) = 𝑑𝑖 𝑗 (𝑡) . (5)

Fact 3 holds because, as mentioned earlier, no other VOQ in
𝑄†𝑖 𝑗 (see Figure 1) can be active simultaneously with 𝑞𝑖 𝑗 . More
precisely, if 𝑑𝑖 𝑗 (𝑡) = 1 (i.e., VOQ 𝑞𝑖 𝑗 is active during time slot 𝑡)
then 𝐷†𝑖 𝑗 (𝑡) ≜ 𝐷𝑖∗ (𝑡) −𝑑𝑖 𝑗 (𝑡) +𝐷∗𝑗 (𝑡) = 1− 1+ 1 = 1; otherwise
𝑑𝑖 𝑗 (𝑡)𝐷†𝑖 𝑗 (𝑡)=0 · 𝐷†𝑖 𝑗 (𝑡)=0=𝑑𝑖 𝑗 (𝑡).

4.2 Why QPS-1 Is Just as Good?
The provable throughput and delay bounds of maximal matching
algorithms were derived from a “departure inequality” (to be stated
and proved next) that all maximal matchings satisfy. This inequality,
however, is not in general satisfied by matchings generated by
QPS-1. Rather, QPS-1 satisfies a much weaker form of departure
inequality (Lemma 1). Fortunately, this much weaker condition is
sufficient for proving the same throughput bound and delay bounds,
as will be proved in Theorem 1 and Theorem 2 respectively.

Property 1 (Departure Inequality, stated as Lemma 1 in [17, 18]).
If during a time slot 𝑡 , the crossbar schedule is a maximal matching,
then each departure process 𝐷†𝑖 𝑗 (𝑡) satisfies the following inequality

𝑞𝑖 𝑗 (𝑡)𝐷†𝑖 𝑗 (𝑡) ≥𝑞𝑖 𝑗 (𝑡). (6)

Proof. We reproduce the proof of Property 1 with a slightly
different approach for this paper to be self-contained. Suppose the
contrary is true, i.e., 𝑞𝑖 𝑗 (𝑡)𝐷†𝑖 𝑗 (𝑡) < 𝑞𝑖 𝑗 (𝑡). This can only happen
when 𝑞𝑖 𝑗 (𝑡) > 0 and 𝐷†𝑖 𝑗 (𝑡) = 0. However, 𝐷†𝑖 𝑗 (𝑡) = 0 implies that
no nonempty VOQ (edge) in the neighborhood 𝑄†𝑖 𝑗 (see Figure 1)
is a part of the matching. Then this matching cannot be maximal
(a contradiction) since it can be enlarged by the addition of the
nonempty VOQ (edge) 𝑞𝑖 𝑗 . □

Clearly, the departure inequality (6) above implies the following
much weaker form of it:∑

𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐷†𝑖 𝑗 (𝑡)

] ≥∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)

]
. (7)

In the rest of this section, we prove the following lemma:

Lemma 1. The matching generated by QPS-1, during any time slot
𝑡 , satisfies the much weaker “departure inequality” (7).

Before we prove Lemma 1, we introduce an important definition
and state four facts about QPS-1 that will be used later in the proof.
In the following, we will run into several innocuous possible 0

0
situations that all result from queue-proportional sampling, and we
consider all of them to be 0.

We define 𝛼𝑖 𝑗 (𝑡) as the probability of the event that the proposal
from input port 𝑖 to output port 𝑗 is accepted during the accepting
phase, conditioned upon the event that input port 𝑖 did propose to
output port 𝑗 during the proposing phase. With this definition, we
have the first fact

E
[
𝑑𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

]
=
𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡) · 𝛼𝑖 𝑗 (𝑡), (8)

since both sides (note 𝑑𝑖 𝑗 (𝑡) is a 0-1 r.v.) are the probability that
𝑖 proposes to 𝑗 and this proposal is accepted. Summing over 𝑗 on
both sides, we obtain the second fact

E
[
𝐷𝑖∗ (𝑡) | 𝑄 (𝑡)

]
=

∑
𝑗

𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡) · 𝛼𝑖 𝑗 (𝑡) . (9)

The third fact is that, for any output port 𝑗 ,

E
[
𝐷∗𝑗 (𝑡) | 𝑄 (𝑡)

]
= 1 −

∏
𝑖

(
1 − 𝑞𝑖 𝑗 (𝑡)

𝑄𝑖∗ (𝑡)
)
. (10)

In this equation, the LHS is the conditional probability (𝐷∗𝑗 (𝑡) is
also a 0-1 r.v.) that at least one proposal is received and accepted
by output port 𝑗 , and the second term on the RHS of (10) is the
probability that no input port proposes to output port 𝑗 (so 𝑗 receives
no proposal). This equation holds since when 𝑗 receives one or more
proposals, it will accept one of them (the one with the longest VOQ).

The fourth fact is that, for any 𝑖, 𝑗 ,

𝛼𝑖 𝑗 (𝑡) ≥
∏
𝑘≠𝑖

(
1 − 𝑞𝑘 𝑗 (𝑡)

𝑄𝑘∗ (𝑡)
)
. (11)

22

QPS-r: A Cost-Effective Iterative Switching Algorithm for Input-Queued Switches VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

This inequality holds because when input port 𝑖 proposes to output
port 𝑗 , and no other input port does, 𝑗 has no choice but to accept
𝑖 ′𝑠 proposal.

4.3 Proof of Lemma 1
Now we are ready to prove Lemma 1.

It suffices to show that for any 𝑖 and 𝑗 , we have∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐷†𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

] ≥∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡), (12)

because with (12), we have∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐷†𝑖 𝑗 (𝑡)

]
=E

[
E
[∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)𝐷†𝑖 𝑗 (𝑡) | 𝑄 (𝑡)
]]

≥ E
[∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
]
=

∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)

]
.

By the definition of 𝐷†𝑖 𝑗 (𝑡) ≜𝐷𝑖∗ (𝑡)−𝑑𝑖 𝑗 (𝑡)+𝐷∗𝑗 (𝑡), we have,∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐷†𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

]

=
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)E
[
𝐷𝑖∗ (𝑡) | 𝑄 (𝑡)

]−∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)E
[
𝑑𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

]

+
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)E
[
𝐷∗𝑗 (𝑡) | 𝑄 (𝑡)

]
. (13)

Focusing on the first term on the RHS of (13) and using (9), we
have,∑

𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)E
[
𝐷𝑖∗ (𝑡) | 𝑄 (𝑡)

]
=

∑
𝑖

𝑄𝑖∗ (𝑡)E
[
𝐷𝑖∗ (𝑡) | 𝑄 (𝑡)

]

=
∑
𝑖

𝑄𝑖∗ (𝑡)
(∑
𝑗

𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡) · 𝛼𝑖 𝑗 (𝑡)

)
=
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)𝛼𝑖 𝑗 (𝑡). (14)

Focusing the second term on the RHS of (13) and using (8), we
have

−
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)E
[
𝑑𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

]
=−

∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)𝛼𝑖 𝑗 (𝑡)
𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡) . (15)

Hence, the sum of the first two terms in (13) is equal to
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)𝛼𝑖 𝑗 (𝑡)
(
1− 𝑞𝑖 𝑗 (𝑡)

𝑄𝑖∗ (𝑡)
)

≥
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
(∏
𝑘≠𝑖

(
1 − 𝑞𝑘 𝑗 (𝑡)

𝑄𝑘∗ (𝑡)
)) (

1 − 𝑞𝑖 𝑗 (𝑡)
𝑄𝑖∗ (𝑡)

)
(16)

=
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
∏
𝑖

(
1− 𝑞𝑖 𝑗 (𝑡)

𝑄𝑖∗ (𝑡)
)

=
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
(
1 − E[

𝐷∗𝑗 (𝑡) | 𝑄 (𝑡)
])
. (17)

Note that (16) is due to (11) and (17) is due to (10). We now arrive
at (12), when adding the third and last term in (13) to the RHS
of (17).

4.4 Throughput Analysis
In this section we prove, through Lyapunov stability analysis, the
following theorem (i.e., Theorem 1) which states that any switching
algorithm that satisfies the weaker departure inequality (7), includ-
ing QPS-1 as shown in Lemma 1, can attain at least 50% throughput.
The same throughput bound was proved in [4], through fluid limit
analysis, for maximal matching algorithms using the (stronger)
departure inequality (6) which as stated earlier is not in general
satisfied by matchings generated by QPS-1.

Theorem 1. Let {𝑄 (𝑡)}∞𝑡=0 be the queueing process of a switching
system that is a Markov chain. Let the departure process of {𝑄 (𝑡)}∞𝑡=0
satisfy the weaker “departure inequality” (7). Then whenever its max-
imum load factor 𝜌 < 1/2, the queueing process is stable in the
following sense: (I) The Markov chain {𝑄 (𝑡)}∞𝑡=0 is positive recur-
rent and hence converges to a stationary distribution 𝑄 ; (II) The first
moment of 𝑄 is finite.

Proof. Here we prove only (I), since Theorem 2 that we will
shortly prove implies (II). We define the following Lyapunov func-
tion of 𝑄 (𝑡): 𝐿 (𝑄 (𝑡)) = ∑

𝑖, 𝑗 𝑞𝑖 𝑗 (𝑡)𝑄†𝑖 𝑗 (𝑡), where 𝑄
†
𝑖 𝑗 (𝑡) is defined

earlier in (1). This Lyapunov function was first introduced in [17]
for the delay analysis of maximal matching algorithms for wireless
networking. By the Foster-Lyapunov stability criterion [9, Proposi-
tion 2.1.1], to prove that {𝑄 (𝑡)}∞𝑡=0 is positive recurrent, it suffices
to show that, there exists a constant 𝐵>0 such that whenever the
total queue (VOQ) length ∥𝑄 (𝑡)∥1 > 𝐵 (because it is not hard to
verify that the complement set of states {𝑄 (𝑡) : ∥𝑄 (𝑡)∥1 ≤ 𝐵} is
finite and the drift is bounded whenever 𝑄 (𝑡) belongs to this set),
we have

E
[
𝐿
(
𝑄 (𝑡 + 1)) − 𝐿 (𝑄 (𝑡)) | 𝑄 (𝑡)] ≤ −𝜖, (18)

where 𝜖 > 0 is a constant. It is not hard to check (for more detailed
derivations, please refer to [17]),

𝐿
(
𝑄 (𝑡 + 1)) − 𝐿 (𝑄 (𝑡))

=2
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
(
𝐴†𝑖 𝑗 (𝑡) − 𝐷

†
𝑖 𝑗 (𝑡)

)

+
∑
𝑖, 𝑗

(
𝑎𝑖 𝑗 (𝑡) − 𝑑𝑖 𝑗 (𝑡)

) (
𝐴†𝑖 𝑗 (𝑡) − 𝐷

†
𝑖 𝑗 (𝑡)

)
. (19)

Hence the drift (LHS of (18)) can be written as

E
[
𝐿
(
𝑄 (𝑡 + 1)) − 𝐿 (𝑄 (𝑡)) | 𝑄 (𝑡)]

=E
[
2
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
(
𝐴†𝑖 𝑗 (𝑡) − 𝐷

†
𝑖 𝑗 (𝑡)

) | 𝑄 (𝑡)]

+ E
[∑
𝑖, 𝑗

(
𝑎𝑖 𝑗 (𝑡)−𝑑𝑖 𝑗 (𝑡)

) (
𝐴†𝑖 𝑗 (𝑡)−𝐷

†
𝑖 𝑗 (𝑡)

) | 𝑄 (𝑡)] . (20)

Now we claim the following two inequalities, which we will
prove shortly.

E
[
2
∑
𝑖, 𝑗
𝑞𝑖 𝑗 (𝑡)

(
𝐴†𝑖 𝑗 (𝑡)−𝐷

†
𝑖 𝑗 (𝑡)

) | 𝑄 (𝑡)] ≤ 2(2𝜌−1)∥𝑄 (𝑡)∥1 . (21)

E
[∑
𝑖, 𝑗

(
𝑎𝑖 𝑗 (𝑡)−𝑑𝑖 𝑗 (𝑡)

) (
𝐴†𝑖 𝑗 (𝑡)−𝐷

†
𝑖 𝑗 (𝑡)

) | 𝑄 (𝑡)] ≤𝐶𝑁 2 . (22)

With (21) and (22) substituted into (20), we have

E
[
𝐿
(
𝑄 (𝑡 + 1)) − 𝐿 (𝑄 (𝑡)) | 𝑄 (𝑡)] ≤ 2(2𝜌−1)∥𝑄 (𝑡)∥1 +𝐶𝑁 2 .

23

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Long Gong, Jun (Jim) Xu, Liang Liu, and Siva Theja Maguluri

where𝐶 > 0 is a constant. Since 𝜌 <1/2, we have 2𝜌 − 1<0. Hence,
there exist 𝐵, 𝜖 > 0 such that, whenever ∥𝑄 (𝑡)∥1 >𝐵,

E
[
𝐿
(
𝑄 (𝑡 + 1)) − 𝐿 (𝑄 (𝑡)) | 𝑄 (𝑡)] ≤ −𝜖.

Now we proceed to prove (21).

E
[
2
∑
𝑖, 𝑗

𝑞𝑖 𝑗 (𝑡)
(
𝐴†𝑖 𝑗 (𝑡) − 𝐷

†
𝑖 𝑗 (𝑡)

) | 𝑄 (𝑡)]

=2
(∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐴†𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

]
−
∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡)𝐷†𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

])

≤2
(
2𝜌

∑
𝑖, 𝑗

E
[
𝑞𝑖 𝑗 (𝑡) | 𝑄 (𝑡)

]
−
∑
𝑖, 𝑗

E[𝑞𝑖 𝑗 (𝑡) | 𝑄 (𝑡)]
)

(23)

=2(2𝜌 − 1)∥𝑄 (𝑡)∥1 . (24)
In the above derivations, inequality (23) holds due to (12), 𝐴(𝑡)
being independent of𝑄 (𝑡) for any 𝑡 , and Fact 2 that E[𝐴†𝑖 𝑗 (𝑡)] ≤ 2𝜌 .

Now we proceed to prove (22), which upper-bounds the con-
ditional expectation E

[(
𝑎𝑖 𝑗 (𝑡)−𝑑𝑖 𝑗 (𝑡)

) (
𝐴†𝑖 𝑗 (𝑡)−𝐷

†
𝑖 𝑗 (𝑡)

) | 𝑄 (𝑡)] . It
suffices however to upper-bound the unconditional expectation
E
[(
𝑎𝑖 𝑗 (𝑡) −𝑑𝑖 𝑗 (𝑡)

) (
𝐴†𝑖 𝑗 (𝑡) −𝐷

†
𝑖 𝑗 (𝑡)

)]
, which we will do in the fol-

lowing, since we can obtain the same upper bounds on E[𝐷†𝑖 𝑗 (𝑡)]
and E[𝑑𝑖 𝑗 (𝑡)] (2 and 1 respectively) whether the expectations are
conditional (on 𝑄 (𝑡)) or not. Note the other two terms 𝐴†𝑖 𝑗 (𝑡) and
𝑎𝑖 𝑗 (𝑡) are independent of (the condition) 𝑄 (𝑡).

As for any 𝑖, 𝑗 , 𝑎𝑖 𝑗 (𝑡) is i.i.d., we have,
E
[(
𝑎𝑖 𝑗 (𝑡) − 𝑑𝑖 𝑗 (𝑡)

) (
𝐴†𝑖 𝑗 (𝑡) − 𝐷

†
𝑖 𝑗 (𝑡)

)]
(25)

=E[𝑎𝑖 𝑗 (𝑡)𝐴†𝑖 𝑗 (𝑡) − 𝑑𝑖 𝑗 (𝑡)𝐴
†
𝑖 𝑗 (𝑡) − 𝑎𝑖 𝑗 (𝑡)𝐷

†
𝑖 𝑗 (𝑡) + 𝑑𝑖 𝑗 (𝑡)𝐷

†
𝑖 𝑗 (𝑡)]

=E[𝑎2
𝑖 𝑗 (𝑡)]−_2

𝑖 𝑗 +_𝑖 𝑗Λ†𝑖 𝑗−E[𝑑𝑖 𝑗 (𝑡)]Λ
†
𝑖 𝑗

− _𝑖 𝑗 (𝑡)E[𝐷†𝑖 𝑗 (𝑡)]+E[𝑑𝑖 𝑗 (𝑡)𝐷
†
𝑖 𝑗 (𝑡)]

=E[𝑎2
𝑖 𝑗 (𝑡)]−_2

𝑖 𝑗 +_𝑖 𝑗Λ†𝑖 𝑗−E[𝑑𝑖 𝑗 (𝑡)]Λ
†
𝑖 𝑗

− _𝑖 𝑗 (𝑡)E[𝐷†𝑖 𝑗 (𝑡)]+E[𝑑𝑖 𝑗 (𝑡)] . (26)

In arriving at (26), we have used (2). The RHS of (26) can be
bounded by a constant 𝐶 > 0 due to the following assumptions
and facts: E[𝑎2

𝑖 𝑗 (𝑡)]=E[𝑎2
𝑖 𝑗 (0)] <∞ for any 𝑡 , 𝑑𝑖 𝑗 (𝑡) ≤ 1, 𝐷†𝑖 𝑗 (𝑡) ≤ 2,

_𝑖 𝑗 ≤ 𝜌 < 1/2, and Λ†𝑖 𝑗 ≤ 2𝜌 < 1. Therefore, we have (by applying∑
𝑖, 𝑗 to both (25) and the RHS of (26))∑

𝑖, 𝑗

E
[(
𝑎𝑖 𝑗 (𝑡)−𝑑𝑖 𝑗 (𝑡)

) (
𝐴†𝑖 𝑗 (𝑡)−𝐷

†
𝑖 𝑗 (𝑡)

)] ≤𝐶𝑁 2 .

□

Remarks. Now that we have proved that {𝑄 (𝑡)}∞𝑡=0 is positive
recurrent. Therefore, for any 𝑖, 𝑗 , the long term departure rate
lim𝑇→∞ 1

𝑇

∑𝑇−1
𝑡=0 E[𝑑𝑖 𝑗 (𝑡)]=_𝑖 𝑗 . Hence, we have,

lim
𝑇→∞

1
𝑇

𝑇−1∑
𝑡=0

E
[(
𝑎𝑖 𝑗 (𝑡)−𝑑𝑖 𝑗 (𝑡)

) (
𝐴†𝑖 𝑗 (𝑡)−𝐷

†
𝑖 𝑗 (𝑡)

)]
=𝜎2
𝑖 𝑗−_𝑖 𝑗Λ†𝑖 𝑗 +_𝑖 𝑗 . (27)

where 𝜎2
𝑖 𝑗 = E[𝑎2

𝑖 𝑗 (𝑡)] −_2
𝑖 𝑗 is the variance of 𝑎𝑖 𝑗 (𝑡), because LHS

of (27) is the long term average of (25), and the long term average
of (26) can be simplified as the RHS of (27).

Now, we prove the following corollary of Theorem 1 which, in
combination with Lemma 1, shows that QPS-1 can attain at least
50% throughput.

Corollary 1. Under an i.i.d. arrival process, whenever the maximum
load factor 𝜌 <1/2, QPS-1 is stable in the following sense: The resulting
queueing process {𝑄 (𝑡)}∞𝑡=0 is a positive recurrent Markov chain and
its stationary distribution 𝑄 has finite first moment.

Proof. {𝑄 (𝑡)}∞𝑡=0 is clearly a Markov chain, since in (2), the
term 𝑑𝑖 𝑗 (𝑡) is a function of 𝑄 (𝑡) and 𝑎𝑖 𝑗 (𝑡) is a random variable
independent of𝑄 (𝑡). The rest follows from Lemma 1 and Theorem 1.

□

4.5 Delay Analysis
In this section, we derive the bound on the expected total queue
length E[∥𝑄 ∥1] (readily convertible to the corresponding delay
bound using Little’s Law) for QPS-1 under i.i.d. traffic arrivals using
the following moment bound lemma (i.e., Lemma 2) [9, Proposi-
tion 2.1.4]. This bound, shown in (29), is identical to that derived
in [17, 18, Section III.B] for maximal matchings under i.i.d. traffic
arrivals. Note this equivalence is not limited to i.i.d. traffic arrivals:
It can be shown that the delay analysis results for general Markov-
ian arrivals derived in [17, 18] for maximal matchings (using the
stronger “departure inequality” (6)) hold also for QPS-1.

Lemma 2. Suppose that {𝑌𝑡 }∞𝑡=0 is a positive recurrent Markov chain
with countable state space Y. Suppose 𝑉 , 𝑓 , and 𝑔 are non-negative
functions on Y such that,

𝑉 (𝑌𝑡+1) −𝑉 (𝑌𝑡) ≤ −𝑓 (𝑌𝑡) + 𝑔(𝑌𝑡), for all 𝑌𝑡 ∈ Y . (28)
Then E[𝑓 (𝑌)] ≤ E[𝑔(𝑌)], where 𝑌 is a random variable with the
stationary distribution of the Markov chain {𝑌𝑡 }∞𝑡=0.

Nowwe derive the following bound onE[∥𝑄 ∥1], which is stronger
than the part (II) of Theorem 1.

Theorem 2. Under the same assumptions and definitions as in The-
orem 1, we have

E[∥𝑄 ∥1] ≤ 1
2(1 − 2𝜌)

∑
𝑖, 𝑗

(
𝜎2
𝑖 𝑗 −_𝑖 𝑗Λ†𝑖 𝑗 +_𝑖 𝑗

)
. (29)

Proof. We define 𝑉 , 𝑌𝑡 , 𝑓 , and 𝑔 terms in Lemma 2 in such a
way that the LHS and the RHS of (28) become the LHS and the
RHS of (19) respectively (e.g., define 𝑉 as 𝐿, 𝑌𝑡 as 𝑄 (𝑡), and 𝑓 (𝑌𝑡)
as −2

∑
𝑖, 𝑗 𝑞𝑖 𝑗 (𝑡)

(
𝐴†𝑖 𝑗 (𝑡) − 𝐷

†
𝑖 𝑗 (𝑡)

)
). Then, we have,

− 2(2𝜌 − 1)E[∥𝑄 ∥1]
≤E[𝑓 (𝑌)] (30)
≤E[𝑔(𝑌)] (31)

=
∑
𝑖, 𝑗

(
𝜎2
𝑖 𝑗 −_𝑖 𝑗Λ†𝑖 𝑗 + _𝑖 𝑗

)
. (32)

In the above derivation, inequality (30) is due to (21) (whose LHS is
−𝑓 (𝑌𝑡)), inequality (31) is due to Lemma 2, and equality (32) is due
to (27).

Therefore, we have, in steady state,

E[∥𝑄 ∥1] ≤ 1
2(1 − 2𝜌)

∑
𝑖, 𝑗

(
𝜎2
𝑖 𝑗 −_𝑖 𝑗Λ†𝑖 𝑗 +_𝑖 𝑗

)
.

24

QPS-r: A Cost-Effective Iterative Switching Algorithm for Input-Queued Switches VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

□

Since, as explained in the proof of Corollary 1, {𝑄 (𝑡)}∞𝑡=0 is a
Markov chain under i.i.d. arrivals, Theorem 2 applies to QPS-1.
Hence we obtain,

Corollary 2. The bound on E[∥𝑄 ∥1] as stated in (29) holds under
QPS-1 scheduling, whenever the arrival process is i.i.d. and the maxi-
mum load factor 𝜌 < 1/2.

It is not hard to check (by applying Little’s Law) that the average
delay (experienced by packets) is bounded by a constant indepen-
dent of 𝑁 (i.e., order-optimal) for a given maximum load factor
𝜌 < 1/2, if the variance 𝜎2

𝑖 𝑗 for any 𝑖, 𝑗 is assumed to be finite. For
the special case of Bernoulli i.i.d. arrival (when 𝜎2

𝑖 𝑗 = _𝑖 𝑗 − _2
𝑖 𝑗), this

bound (the RHS) can be further tightened to
∑
𝑖,𝑗 _𝑖 𝑗

1−2𝜌 . This implies,
by Little’s Law, the following “clean” bound: �̄� ≤ 1

1−2𝜌 where �̄� is
the expected delay averaged over all packets transmitting through
the switch.

5 EVALUATION
In this section, we evaluate, through simulations, the performance
of QPS-r under various load conditions and traffic patterns. The
main purpose of this section to show that QPS-r performs as well as
maximal matching algorithms empirically no just in theory. Hence,
we do not compare QPS-r with the two recent iterative algorithms in
switching 1: RR/LQF (Round Robin combined with Longest Queue
First) [11] and HRF (Highest Rank First) [10]. Instead, we compare
its performance with that of iSLIP [15], a refined and optimized
representative parallel maximal matching algorithm (adapted for
switching). The performance of the MWM (Maximum Weighted
Matching) is also included in the comparison as a benchmark. Our
simulations show conclusively that QPS-1 (running 1 iteration) per-
forms very well inside the provable stability region (more precisely,
with no more than 50% offered load), and that QPS-3 (running 3
iterations) has comparable throughput and delay performances as
iSLIP (running log2 𝑁 iterations), which has a much higher per-port
computational complexity of 𝑂 (log2 𝑁).

5.1 Simulation Setup
In our simulations, we fix the number of input/output ports, 𝑁 to 64.
To measure throughput and delay accurately, we assume each VOQ
has an infinite buffer size and hence there is no packet drop at any
input port. Each simulation run is guided by the following stopping
rule [5, 7]: The number of time slots simulated is the larger between
500𝑁 2 and that is needed for the difference between the estimated
and the actual average delays to be within 0.01 with probability at
least 0.98.

We assume in our simulations that each traffic arrival matrix
𝐴(𝑡) is Bernoulli i.i.d.with its traffic rate matrixΛ being equal to the
product of the offered load 𝜌 and a traffic pattern matrix (defined
next). Similar Bernoulli arrivals were studied in [6, 8, 15]. Note that
only synthetic traffic (instead of that derived from packet traces) is
1Note that they are shown to have reasonably good empirical throughput and delay
performance over round-robin-friendly workloads such as uniform and hot-spot traffic
when running 1 or 2 iterations. However, as described in §6, they need to run up to 𝑁
iterations to provably attain at least 50% throughput.

used in our simulations because, to the best of our knowledge, there
is no meaningful way to combine packet traces into switch-wide
traffic workloads. The following four standard types of normalized
(with each row or column sum equal to 1) traffic patterns are used:
(I)Uniform: packets arriving at any input port go to each output port
with probability 1

𝑁 . (II) Quasi-diagonal: packets arriving at input
port 𝑖 go to output port 𝑗 =𝑖 with probability 1

2 and go to any other
output port with probability 1

2(𝑁−1) . (III) Log-diagonal: packets
arriving at input port 𝑖 go to output port 𝑗 = 𝑖 with probability
2(𝑁−1)
2𝑁 −1 and go to any other output port 𝑗 with probability equal 1

2 of
the probability of output port 𝑗−1 (note: output port 0 equals output
port 𝑁). (IV) Diagonal: packets arriving at input port 𝑖 go to output
port 𝑗 = 𝑖 with probability 2

3 , or go to output port (𝑖mod𝑁) + 1
with probability 1

3 . These traffic patterns are listed in order of how
skewed the volumes of traffic arrivals to different output ports are:
from uniform being the least skewed, to diagonal being the most
skewed.

5.2 Throughput and Delay Performances
We first compare the throughput and delay performances of QPS-1
(1 iteration), QPS-3 (3 iterations), iSLIP (log2 64 = 6 iterations), and
MWM (length of VOQ as the weight measure). Figure 2 shows their
mean delays (in number of time slots) under the aforementioned
four traffic patterns respectively. Each subfigure shows how the
mean delay (on a log scale along the y-axis) varies with the offered
load 𝜌 (along the x-axis). We make three observations from Figure 2.
First, Figure 2 clearly shows that, when the offered load is no larger
than 0.5, QPS-1 has low average delays (i.e., more than just being
stable) that are close to those of iSLIP and MWM, under all four
traffic patterns. Second, the maximum sustainable throughputs
(where the delays start to “go through the roof” in the subfigures) of
QPS-1 are roughly 0.634, 0.645, 0.681, and 0.751 respectively, under
the four traffic patterns respectively; they are all comfortably larger
than the 50% provable lower bound. Third, the throughput and
delay performances of QPS-3 and iSLIP are comparable: The former
has slightly better delay performances than the latter under all four
traffic patterns except the uniform.

6 RELATEDWORK
Scheduling in crossbar switches is a well-studied problem with a
large amount of literature. So, in this section, we provide only a
brief survey of prior work that is directly related to ours, focusing
on those we have not described earlier.

Iterative algorithms that compute maximal matchings. As
mentioned earlier, maximal matchings have long been recognized
as a cost-effective family in switching. Among various types of
algorithms that compute maximal matchings, the family of parallel
iterative algorithms [10, 11, 14, 16, 19, 23] is widely adopted. Parallel
iterative algorithms compute a maximal matching via multiple
iterations of message exchanges between the input and output
ports. Generally, each iteration contains three stages: request, grant,
and accept. In the request stage, each input port sends requests to
output ports. In the grant stage, each output port, upon receiving
requests from multiple input ports, grants to one. Finally, in the
accept stage, each input port, upon receiving grants from multiple

25

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Long Gong, Jun (Jim) Xu, Liang Liu, and Siva Theja Maguluri

0 0.2 0.4 0.6 0.8 1
Normalized Load

10-2

10-1

100

101

102

M
ea

n
D

el
ay

Uniform
QPS-1 QPS-3 iSLIP MWM

0 0.2 0.4 0.6 0.8 1
Normalized Load

10-2

10-1

100

101

102
Quasi-diagonal

0 0.2 0.4 0.6 0.8 1
Normalized Load

10-2

10-1

100

101

102
Log-diagonal

0 0.2 0.4 0.6 0.8 1
Normalized Load

10-2

10-1

100

101

102
Diagonal

Figure 2: Mean delays of QPS-1, QPS-3, iSLIP, and MWM under the 4 traffic load patterns.

output ports, accepts one. Unfortunately, all these parallel iterative
algorithms in switching require up to 𝑁 iterations to guarantee that
the resulting matching is a maximal matching. In other words, they
need up to 𝑁 iterations to achieve the same provable throughput
and delay performance guarantees as QPS-1 (running 1 iteration).
Other algorithms that have performance guarantees. Several
serial randomized algorithms, starting with TASS [21] and cul-
minating in SERENA [6], have been proposed that have a total
computational complexity of only 𝑂 (𝑁) yet can provably attain
100% throughput; SERENA, the best among them, also delivers a
good empirical delay performance. However, this𝑂 (𝑁) complexity
is still too high for scheduling high-line-rate high-radix switches,
and none of them has been successfully parallelized (i.e., converted
to a parallel iterative algorithm) yet.

In [22], a crossbar scheduling algorithm specialized for switching
variable-size packets was proposed, that has 𝑂 (1) total computa-
tional complexity. Although this algorithm can provably attain 100%
throughput, its delay performance is poor. For example, as shown
in [8], its average delays, under the aforementioned four standard
traffic matrices, are roughly 3 orders of magnitudes higher than
those of SERENA [6] even under a moderate offered load of 0.6.

7 CONCLUSION
In this work, we propose QPS-r, a parallel iterative switching algo-
rithm with 𝑂 (1) computational complexity per port. We prove,
through Lyapunov stability analysis, that it achieves the same
throughput and delay performance guarantees in theory, and demon-
strate through simulations that it has comparable performances in
practice as the family of maximal matching algorithms (adapted
for switching); maximal matching algorithms are much more ex-
pensive computationally (at least 𝑂 (log𝑁) iterations and a total
of 𝑂 (log2 𝑁) per-port computational complexity). These salient
properties make QPS-r an excellent candidate algorithm that is fast
enough computationally and can deliver acceptable throughput and
delay performances for high-link-rate high-radix switches.
Acknowledgments. This work is supported in part by US NSF
through award CNS 1909048 and CCF 1850439.

REFERENCES
[1] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker.

1993. High-speed Switch Scheduling for Local-area Networks. ACM Trans.

Comput. Syst. 11, 4 (Nov. 1993), 319–352.
[2] Cagla Cakir, Ron Ho, Jon Lexau, and KenMai. 2015. Modeling and Design of High-

Radix On-Chip Crossbar Switches. In Proc. of the ACM/IEEE NoCS. Vancouver,
BC, Canada, Article 20, 8 pages.

[3] Cagla Cakir, Ron Ho, Jon Lexau, and Ken Mai. 2016. Scalable High-Radix Modular
Crossbar Switches. In Proceedings of the HOTI. Santa Clara, CA, USA, 37–44.

[4] Jim Dai and Balaji Prabhakar. 2000. The Throughput of Data Switches with and
without Speedup. In Proceedings of the IEEE INFOCOM. Tel Aviv, Israel, 556–564.

[5] James M Flegal, Galin L Jones, et al. 2010. Batch means and spectral variance
estimators in Markov chain Monte Carlo. Ann. Stat. 38, 2 (2010), 1034–1070.

[6] Paolo Giaccone, Balaji Prabhakar, and Devavrat Shah. 2003. Randomized Sched-
uling Algorithms for High-Aggregate Bandwidth Switches. IEEE J. Sel. Areas
Commun. 21, 4 (May 2003), 546–559.

[7] Peter W Glynn, Ward Whitt, et al. 1992. The Asymptotic Validity of Sequential
Stopping Rules for Stochastic Simulations. Ann. Appl. Probab. 2, 1 (1992), 180–198.

[8] Long Gong, Paul Tune, Liang Liu, Sen Yang, and Jun (Jim) Xu. 2017. Queue-
Proportional Sampling: A Better Approach to Crossbar Scheduling for Input-
Queued Switches. Proceedings of the ACM SIGMETRICS 1, 1 (June 2017), 3:1–3:33.

[9] Bruce Hajek. 2006. Notes for ECE 467 Communication Network Analysis. http:
//www.ifp.illinois.edu/~hajek/Papers/networkanalysisDec06.pdf.

[10] B. Hu, F. Fan, K. L. Yeung, and S. Jamin. 2018. Highest Rank First: A New Class of
Single-Iteration Scheduling Algorithms for Input-Queued Switches. IEEE Access
6 (2018), 11046–11062.

[11] B. Hu, K. L. Yeung, Q. Zhou, and C. He. 2016. On Iterative Scheduling for Input-
Queued Switches With a Speedup of 2 − 1/𝑁 . IEEE/ACM Trans. Netw. 24, 6
(December 2016), 3565–3577.

[12] Amos Israel and A. Itai. 1986. A Fast and Simple Randomized Parallel Algorithm
for Maximal Matching. Inf. Process. Lett. 22, 2 (Feb. 1986), 77–80.

[13] M. Karol, M. Hluchyj, and S. Morgan. 1987. Input Versus Output Queueing on
a Space-Division Packet Switch. IEEE Trans. Commun. 35, 12 (December 1987),
1347–1356.

[14] D. Lin, Y. Jiang, and M. Hamdi. 2011. Selective-Request Round-Robin Scheduling
for VOQ Packet Switch Architecture. In Proceedings of the IEEE ICC. 1–5.

[15] NickMcKeown. 1999. The iSLIP Scheduling Algorithm for Input-queued Switches.
IEEE/ACM Trans. Netw. 7, 2 (Apr. 1999), 188–201.

[16] Nicholas William McKeown. 1995. Scheduling Algorithms for Input-queued Cell
Switches. Ph.D. Dissertation. Berkeley, CA, USA. UMI Order No. GAX96-02658.

[17] M. J. Neely. 2008. Delay Analysis for Maximal Scheduling in Wireless Networks
with Bursty Traffic. In Proceedings of the IEEE INFOCOM.

[18] M. J. Neely. 2009. Delay Analysis for Maximal Scheduling With Flow Control in
Wireless Networks With Bursty Traffic. IEEE/ACM Trans. Netw. 17, 4 (Aug 2009),
1146–1159.

[19] A. Scicchitano, A. Bianco, P. Giaccone, E. Leonardi, and E. Schiattarella. 2007.
Distributed Scheduling in Input Queued Switches. In Proceedings of the IEEE ICC.
6330–6335.

[20] Y. Tamir and G. L. Frazier. 1988. High-performance Multi-queue Buffers for VLSI
Communications Switches. SIGARCH Comput. Archit. News 16, 2 (May 1988),
343–354.

[21] Leandros Tassiulas. 1998. Linear Complexity Algorithms for Maximum Through-
put in Radio Networks and Input Queued Switches. In Proceedings of the IEEE
INFOCOM. San Francisco, CA, USA, 533–539.

[22] Shunyuan Ye, Tanming Shen, and Shivendra Panwar. 2010. An𝑂 (1) Scheduling
Algorithm for Variable-Size Packet Switching Systems. In Proceedings of the 48th
Annual Allerton Conference. 1683–1690.

[23] Yihan Li, S. Panwar, and H. J. Chao. 2001. On The Performance of A Dual
Round-Robin Switch. In Proceedings of the IEEE INFOCOM. Anchorage, AK, USA,
1688–1697 vol. 3.

26

