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Abstract—Hybrid switching for data center networks (DCN)
has received considerable research attention recently. A hybrid-
switched DCN employs a much faster circuit switch that is
reconfigurable with a nontrivial cost, and a much slower packet
switch, to interconnect its racks of servers. The research problem
is, given a traffic demand (between the racks), how to properly
schedule the circuit switch so that it removes most of the traffic
demand, leaving little for the slower packet switch to handle. All
existing solutions make a convenient but unnecessarily restrictive
assumption that when the circuit switch changes from one config-
uration to another, all input ports have to stop data transmission
during the reconfiguration period. However, the circuit switch can
usually readily support partial reconfiguration in the following
sense: Only the input ports affected by the reconfiguration need
to pay a reconfiguration delay, while unaffected input ports
can continue to transmit data during the reconfiguration. In
this work, we propose BFF (best first fit), the first solution to
exploit this partial reconfigurability in hybrid-switched DCNs.
BFF not only significantly outperforms but also has much lower
computational complexity than the state of the art solutions that
do not exploit this partial reconfigurability.

I. INTRODUCTION

Fueled by the phenomenal growth of cloud computing
services, data center networks (DCN) continue to grow re-
lentlessly both in size, as measured by the number of racks of
servers it has to interconnect, and in speed, as measured by the
amount of traffic it has to transport per unit of time from/to
each rack [1]. A traditional data center network architecture
typically consists of a three-level multi-rooted tree of switches
that start, at the lowest level, with the Top-of-Rack (ToR)
switches that each connects a rack of servers to the network
[2]. However, such an architecture has become increasingly
unable to scale with the explosive growth in both the size
and the speed of the DCN, as we can no longer increase
the transporting and switching capabilities of the underlying
commodity packet switches without increasing their costs
significantly.

A. Hybrid Circuit and Packet Switching

A cost-effective solution approach to this scalability prob-
lem, called hybrid DCN architecture, has received considerable
research attention in recent years [3], [4], [5]. In a hybrid
data center, shown in Figure 1, n racks of computers on the
left hand side (LHS) are connected by both a circuit switch
and a packet switch to n racks on the right hand side (RHS).
Note that racks on the LHS is an identical copy of those on
the RHS; however we restrict the role of the former to only
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Fig. 1. Hybrid Circuit and Packet Switch

transmitting data and refer to them as input ports, and restrict
the role of the latter to only receiving data and refer to them
as output ports. The purpose of this duplication (of racks)
and role restrictions is that the resulting hybrid data center
topology can be modeled as a bipartite graph.

Each switch transmits data from input ports (racks on the
LHS) to output ports (racks on the RHS) according to the con-
figuration (modeled as a bipartite matching) of the switch at
the moment. The circuit switch is usually an optical switch [3],
[6], [7], and the packet switch is an electronic switch. Hence
the circuit switch is typically an order of magnitude or more
faster than the packet switch. For example, the circuit and
packet switches might operate at the respective rates of 100
Gbps and 10 Gbps per port. The flip side of the coin however is
that the circuit switch incurs a nontrivial reconfiguration delay
δ when the switch configuration (matching) has to change.
Depending on the underlying technology of the circuit switch,
δ can range from tens of microseconds to tens of milliseconds
[3], [6], [7], [8], [9].

The following hybrid circuit and packet switching problem
naturally arises in any hybrid DCN architecture: Given a traffic
demand matrix D from input ports to output ports, how to
schedule the circuit switch so that it removes (i.e., transmit) the
vast majority of the traffic demand from D, leaving a residue
demand matrix that is small enough for the packet switch to
handle.



B. Partial Reconfigurability

All existing works on hybrid switching solve this problem
based on the following convenient assumption: When the cir-
cuit switch changes from one configuration to another, all input
ports have to stop data transmission during the reconfiguration
period (of duration δ), including those input ports that pair
with the same output ports during both configurations. This is
however an outdated and unnecessarily restrictive assumption
because all electronics or optical technologies underlying the
circuit switch can readily support partial reconfiguration in
the following sense: Only the input ports affected by the
reconfiguration need to pay a reconfiguration delay δ, while
unaffected input ports can continue to transmit data during the
reconfiguration. For example, in cases where free-space optics
is used as the underlying technology (e.g., in [10], [11]), only
each input port affected by the reconfiguration needs (to rotate
its micro-mirror) to redirect its laser beam towards its new
output port and incur reconfiguration delay.

In this work, we propose Best First Fit (BFF), the first
(to the best of our knowledge) hybrid switching solution that
exploits the partial reconfiguration capability of the circuit
switch for performance gains. We will explain in § III that,
with the partial reconfiguration capability, the scheduling of
the circuit switch only (i.e., without a packet switch) can be
modeled as an Open Shop Scheduling (OSS) [12], [13], [14].
As OSS is in general NP-hard [15], BFF is a greedy heuristic
solution to it. More specifically, BFF tries to match, through
the circuit switch, input ports with output ports as soon as they
become available (i.e., after their previous transmissions are
over) in the following greedy manner: Each available output
port attempts to match with the best available input port (i.e.,
the one with the largest amount of traffic to send to the output
port) at the moment, and vice versa. Ironically, whereas BFF
would be a poor solution for this OSS problem of scheduling
circuit switch only, it is a superb solution for hybrid switching
(i.e., where there is also a packet switch). We will explain the
reason behind this fact in Section III-B. As we will show in §IV
that, compared to Eclipse, the state of the art solution to the
traditional (i.e., without the partial reconfiguration capability)
hybrid switching problem, BFF has not only much better
(throughput) performance, but also roughly three orders of
magnitude shorter execution times (when n = 100 racks).
In other words, with this partial reconfiguration capability,
the hybrid switch can “work much less hard” to arrive at a
schedule that is even better.

The rest of the paper is organized as follows. In § II, we
describe the system model and the design objective of this
hybrid switch scheduling problem in detail. In §III, we present
our solution BFF. In §IV, we evaluate the performance of our
solution against Eclipse and Eclipse++. Finally, we describe
related work in §V and conclude the paper in §VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we formulate the problem of hybrid circuit
and packet switching precisely. We first specify the aforemen-
tioned traffic demand matrix D precisely. Borrowing the term

virtual output queue (VOQ) from the input-queued crossbar
scheduling literature [16], we refer to, the set of packets
that arrive at input port i and are destined for output j, as
VOQ(i, j). Each matrix element D(i, j) is the amount of
VOQ(i, j) traffic, within a scheduling window, that needs to
be scheduled for transmission by the hybrid switch.

It was effectively assumed, in all prior works on hybrid
switching except Albedo [17] (to be discussed in § V-A),
that the demand matrix D is precisely known before the
computation of the circuit switch schedule begins (say at
time t). Consequently, all prior hybrid switching algorithms
except Albedo [17] perform only batch scheduling of this D.
In other words, given a demand matrix D, the schedules of
the circuit and the packet switches are computed before the
transmissions of the batch (i.e., traffic in D) actually happen.
Our BFF algorithm also assumes that D is precisely known in
advance and is designed for batch scheduling only. Since batch
scheduling is offline in nature (i.e., requires no irrevocable
online decision-making), BFF algorithm is allowed to “travel
back in time” and modify the schedules of the packet and the
circuit switches as needed.

In this work, we study this problem of hybrid switch
scheduling under the following standard formulation that was
introduced in [18]: to minimize the amount of time for the
circuit and the packet switches working together to transmit
a given traffic demand matrix D. We refer to this amount of
time as transmission time throughout this paper. An alternative
formulation, used in [19], is to maximize the amount of
traffic that the hybrid switch can transmit within a scheduling
window of a fixed duration. These two formulations are
roughly equivalent, as mathematically the latter is roughly the
dual of the former.

As stated earlier, the circuit switch being partially recon-
figurable offers considerable scheduling flexibility, leading
to much lower computational complexities for computing a
schedule and higher throughputs of the hybrid switch. We now
formulate the operational constraints of a partially reconfig-
urable circuit switch precisely. Its configurations (schedules)
over time can be represented by an n × n matrix process
S(t) =

(
sij(t)

)
, where for any given time t, S(t) is a 0 − 1

(sub-matching) matrix that encodes the connections between
input ports and the output ports at time t. More specifically,
sij(t) = 1 if input port i is connected to output j at time
t, and sij(t) = 0 otherwise. After an input port i stops
transmitting traffic to an output port j, it has to wait at least
a reconfiguration delay δ before starting transmitting traffic
to another output port. As mentioned earlier, the good thing
about the switch being partial reconfigurable is that no other
input port needs to stop its ongoing transmission as a result
of this configuration change.

III. BEST FIRST FIT (BFF) ALGORITHM

Since BFF is a greedy heuristic solution to the Open Shop
Scheduling (OSS) [12], [13], [14], we first provide some
background on OSS in §III-A. Then in §III-B, we introduce
a family of heuristic OSS algorithms, called LIST (i.e., list



scheduling), to which BFF belongs. Finally in § III-C, we
describe the detailed design of BFF.

A. Background on Open-Shop Scheduling

When partial reconfiguration is allowed, there is no packet
switch, and only direct routing is considered (i.e., all circuit-
switched data packets reach their respective final destina-
tions in one-hop), scheduling the circuit switch alone can
be converted into the classical open-shop scheduling problem
(OSS) [12], [13], [14]. In an OSS problem, there are a set
of N jobs, a set of m machines, and a two-dimensional table
specifying the amount of time (could be 0) that a job must
spend at a machine to have a certain task performed. The
scheduler has to assign jobs to machines in such a way, that
at any moment of time, no more than one job is assigned to
a machine and no job is assigned to more than one machine.
The mission is accomplished when every job has all its tasks
performed at respective machines. The OSS problem is to
design an algorithm that minimizes, to the extent possible,
the makespan of the schedule, or the amount of time it takes
to accomplish the mission. In this circuit switching (only)
problem, input ports are jobs, output ports are machines, each
VOQ(i, j) is a task that belongs to job i and needs to be
performed at machine j for the amount of time D(i, j). In
OSS, a machine may need some time to reconfigure between
taking on a new job, which corresponds to the reconfiguration
delay δ in circuit switching. The OSS problem is in general
NP-hard [15], so only heuristic or approximate solutions to
it [20], [21], [22] exist that run in polynomial time. Finally,
we emphasize that this circuit switching (only) problem has
nothing to do with concurrent OSS [23], which allows any job
(input port) to be concurrently processed by multiple machines
(output ports) at the same time, because in this problem, an
input port is not allowed to transmit to multiple output ports
at the same time.

There are two types of OSS problems: one that allows a task
to be preempted at a machine for another task (i.e., preemptive)
and one that does not (i.e., non-preemptive). In this circuit
switch (only) scheduling problem, preemption means that the
traffic in a VOQ(i, j) is split into multiple bursts to be sent
over multiple noncontiguous connections between i and j. For
this circuit switching (only) problem, non-preemptive solutions
generally do not perform worse because each preemption costs
us a nontrivial reconfiguration delay δ, and such preemption
costs can hardly be compensated by the larger solution space
and more scheduling flexibility that preemptive solutions can
provide.

B. LIST: A Family of Heuristics

LIST (list scheduling) is a well-known family of
polynomial-time heuristic OSS algorithms [20], [21], [22].
LIST starts by attempting to assign an available job (i.e., not
already being worked on by a machine) to one of the available
machines on which the job has a task to perform, according to
a machine preference criterion (can be job-specific and time-
varying). If multiple jobs are competing for the same machine,

one of the jobs is chosen according to a job preference
criterion (can be machine-specific and time-varying). After all
initial assignments are made, the scheduler “sits idle” until
a task is completed on a machine, in which case both the
corresponding job and the machine become available. Once a
machine becomes available, any available job that has a task
to be performed on the machine can compete for the machine.

Our BFF algorithm is an adaptation of a non-preemptive
LIST algorithm [22] that uses LPT (longest processing time)
as the preference criterion for both the machines and the jobs.
In LPT LIST, whenever multiple jobs compete for a machine,
the machine picks the “most time-consuming task”, i.e., the
job that takes the longest time to finish on the machine;
whenever a job has multiple available machines to choose
from, it chooses among them the machine that has the “most
time-consuming task” to perform on the job. In other words,
LPT gives preference to longer tasks, whether a machine is
choosing jobs or a job is choosing machines. LPT is a perfect
match for our problem, because with a packet switch to “sweep
clean” all short tasks (i.e., tiny amounts of remaining traffic
left over in VOQs by the circuit switch), the circuit switch can
afford to focus only on a comparatively small number of long
tasks.

However, it is by no means obvious that adapting any LIST
algorithm would be a good idea for this hybrid switching
problem. In fact, no algorithm in the LIST family, including
LPT LIST, is a good fit for the problem of circuit switching
only (i.e., where there is not a packet switch), when the circuit
switch is partially reconfigurable [13]. In particular, it was
shown in [13] that, whenever a scheduling algorithm from the
LIST family is used, whether the circuit switch is partially
reconfigurable or not makes almost no difference in the the
performance (measured by transmission time) of the resulting
schedule. This is because, without the help from a packet
switch, the circuit switch would have to “sweep clean” the
large number of short tasks (VOQs) all by itself, and each
such short task costs the circuit switch a reconfiguration delay
δ that is significant compared to its processing (transmission)
time. To the best of our knowledge, BFF is the first time that
a LIST algorithm is adapted for hybrid switching.

C. BFF Algorithm

As explained earlier, BFF is an adaptation of the LPT LIST
algorithm for open-shop scheduling. There are two differences
between BFF and LPT LIST. First, at the beginning of the
scheduling (i.e., t = 0), when all jobs and all machines are
available, BFF runs a maximum weighted matching (MWM)
algorithm [24] to obtain the heaviest (w.r.t. to their weights D)
initial matching between jobs and machines. BFF does not use
LPT LIST for this initialization step because it would likely
result in a sub-optimal (i.e., lighter in weight) matching to start
with. Second, BFF terminates when the remaining demand
Drem becomes small enough for the packet switch to handle.
Here the remaining demand matrix Drem denotes what remains
of the traffic demand (matrix) after we subtract from D the
amounts of traffic to be served by the circuit switch according



Algorithm 1: Action taken by BFF after a machine is done
with a job.

When input port i finishes transmitting VOQ(i, j) to
output port j at time τ :

1 Output Seek Pairing(j, τ);
2 Input port i reconfigures during [τ, τ + δ];
3 Input Seek Pairing(i, τ + δ);

Procedure Output Seek Pairing(j, t)
4 Update Drem;
5 if {l ∈ Ia | Drem(l, j) > 0} 6= φ then
6 l = argmaxuDrem(u, j);
7 Connect output j with input l;
8 else
9 Oa ← Oa ∪ {j};

10 end

Procedure Input Seek Pairing(i, t)
11 Update Drem;
12 if {j ∈ Oa | Drem(i, j) > 0} 6= φ then
13 j = argmaxvDrem(i, v);
14 Connect input i with output j;
15 else
16 Ia ← Ia ∪ {i};
17 end

to the previous actions, i.e., those computed in the pervious
iterations.

In BFF, for each input port i1, the task of deciding with
which outputs the input port i1 should be matched with over
time is almost independent of that for any other input port
i2. Hence, to describe BFF precisely, it suffices to describe
the actions taken by the scheduler after a job i gets its task
performed at a machine j (i.e., after input port i transmits all
traffic in VOQ(i, j), in the amount of D(i, j), to output port
j).

We do so in Algorithm 1. Suppose the machine j is
done with the job i at time τ . Then machine (output port)
j immediately looks to serve another job by calling “Out-
put Seek Pairing(j, τ)” (Line 1 in Algorithm 1). The job
(input port) i, on the other hand, is not ready to be performed
on another machine (output port) until τ + δ (i.e., after a re-
configuration delay), so it calls “Input Seek Pairing(i, τ+δ)”
(Line 3 in Algorithm 1). However, since in this batching
scheduling setting, the whole schedule S(t) is computed
before any transmission (according to the schedule) can begin,
input port i knows which machine it will be paired with at time
τ + δ. Hence input port i can start reconfiguring to pair with
that machine at time τ (Line 3 in Algorithm 1) so that the
actual transmission can start at time τ + δ.

In Algorithm 1, Ia and Oa denote the sets of available jobs
(input ports) and of available machines (output ports) respec-
tively. Clearly, Procedure “Output Seek Pairing( )” (Lines 4
through 10) follows the LPT (longest processing time first)
preference criteria: It tries to identify, for the machine (output

port) j, the job (input port) that brings with it the largest task,
among the set of available jobs Ia. Similar things can be said
about procedure “Input Seek Pairing( )” (Lines 11 through
17). In other words, each output port, at the very first moment
it becomes available (to input ports), attempts to match with
the best input port (i.e., the one with the largest amount of
work for it to do), and vice versa. Therefore, we call our
algorithm BFF (Best First Fit).
Computational Complexity: In addition to the O(n5/2 logB)
complexity needed to obtain an MWM (using [24]) at the
very beginning, with a straightforward implementing using a
straightforward data structure, BFF has a computational com-
plexity of O(Kn2), where K is the average number of times
each input port needs to reconfigure over time, B is the largest
entry in the demand matrix D, W is the maximum row/column
sum of the demand matrix. Hence the overall complexity of
BFF is O(Kn2+n5/2 logB), which is asymptotically smaller
than that of Eclipse, which is O(Kn5/2 log n logB) (see Table
I). Empirically, BFF runs about three orders of magnitude
faster than Eclipse when n = 100, as will be shown in §IV-E.

TABLE I
COMPARISON OF TIME COMPLEXITIES

Algorithm Time Complexity
Eclipse O(Kn5/2 log n logB)

Eclipse++ O(WKn3(logK + log n)2)

BFF O(Kn2 + n5/2 logB)

Wondering whether allowing indirect routing can bring
further performance improvements, we have made several
attempts at combining indirect routing with BFF. However, we
found this direction not promising for two reasons. First, BFF
leaves little “slack” in the schedule for the indirect routing to
gainfully exploit. Second, any extension for exploiting indirect
routing would increase the computational complexity of BFF
considerably.

IV. EVALUATION

In this section, we evaluate the performance of our solution
BFF, and compare it with that of the state of the art algorithm
Eclipse, under various system parameter settings and traffic
demands. We do not compare our solutions with Solstice [18]
(to be described in §V-A) in these evaluations, since Solstice
was shown in [19] to perform worse than Eclipse in all
simulation scenarios. For all these comparisons, we use the
same performance metric as that used in [18]: the total time
needed for the hybrid switch to transmit the traffic demand D.

A. Traffic Demand Matrix D

For our simulations, we use the same traffic demand matrix
D as used in other hybrid scheduling works [18], [19]. In
this matrix, each row (or column) contains nL large equal-
valued elements (large input-output flows) that as a whole
account for cL (percentage) of the total workload to the row (or
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Fig. 2. Performance comparison of Eclipse and BFF under different system setting

column), nS medium equal-valued elements (medium input-
output flows) that as a whole account for the rest cS = 1− cL
(percentage), and noises. Roughly speaking, we have

D = (

nL∑
i=1

cL
nL

Pi +

nS∑
i=1

cS
nS
P ′
i +N1)× 90% +N2 (1)

where Pi and P ′
i are random n × n matching (permutation)

matrices.
The parameters cL and cS control the aforementioned

skewness (few large elements in a row or column account
for the majority of the row or column sum) of the traffic
demand. Like in [18], [19], the default values of cL and cS
are 0.7 (i.e., 70%) and 0.3 (i.e., 30%) respectively, and the
default values of nL and nS are 4 and 12 respectively. In
other words, in each row (or column) of the demand matrix,
by default the 4 large flows account for 70% of the total traffic
in the row (or column), and the 12 medium flows account for
the rest 30%. We will also study how these hybrid switching
algorithms perform when the traffic demand has other degrees
of skewness by varying cL and cS .

As shown in Equation (1), we also add two noise matrix
terms N1 and N2 to D. Each nonzero element in N1 is a
Gaussian random variable that is to be added to a traffic
demand matrix element that was nonzero before the noises
are added. This noise matrix N1 was also used in [18], [19].
However, each nonzero (noise) element here in N1 has a larger
standard deviation, which is equal to 1/5 of the value of the
demand matrix element it is to be added to, than that in [18],
[19], which is equal to 0.3% of 1 (the normalized workload an
input port receives during a scheduling window, i.e., the sum
of the corresponding row in D). We increase this additive noise
here to highlight the performance robustness of our algorithm
to such perturbations.

Different than in [18], [19], we also add (truncated) positive
Gaussian noises N2 to a portion of the zero entries in the
demand matrix in accordance with the following observation.
Previous measurement studies have shown that “mice flows”
in the demand matrix are heavy-tailed [25] in the sense the
total traffic volume of these “mice flows” is not insignificant.
To incorporate this heavy-tail behavior (of “mice flows”) in
the traffic demand matrix, we add such a positive Gaussian

noise – with standard deviation equal to 0.3% of 1 – to 50%
of the zero entries of the demand matrix. This way the “mice
flows” collectively carry approximately 10% of the total traffic
volume. To bring the normalized workload back to 1, we scale
the demand matrix by 90% before adding N2, as shown in (1).

B. System Parameters

In this section, we introduce the system parameters (of the
hybrid switch) used in our simulations.
Network size: We consider the hybrid switch with n = 100
input/output ports throughout this section. Other reasonably
large (say ≥ 32) switch sizes produce similar results.
Circuit switch per-port rate rc and packet switch per-port
rate rp: As far as designing hybrid switching algorithms is
concerned, only their ratio rc/rp matters. This ratio roughly
corresponds to the percentage of traffic that needs to be
transmitted by the circuit switch. The higher this ratio is, the
higher percentage of traffic should be transmitted by the circuit
switch. This ratio varies from 8 to 40 in our simulations. As
explained earlier, we normalize rc to 1 throughout this paper.

Since both the traffic demand to each input port and the
per-port rate of the circuit switch are all normalized to 1, the
(idealistic) transmission time would be 1 when there was no
packet switch, the scheduling was perfect (i.e., no “slack”
anywhere), and there was no reconfiguration penalty (i.e.,
δ = 0). Hence we should expect that all these algorithms result
in transmission times larger than 1 under realistic “operating
conditions” and parameter settings.
Reconfiguration delay (of the circuit switch) δ: In general,
the smaller this reconfiguration delay is, the less time the
circuit switch has to spend on reconfigurations. Hence, given
a traffic demand matrix, the transmission time should increase
as δ increases.

C. Performances under Different System Parameters

In this section, we evaluate the performances of Eclipse and
BFF for different value combinations of δ and rc/rp under
the traffic demand matrix with the default parameter settings
(4 large flows and 12 small flows accounting for roughly 70%
and 30% of the total traffic demand into each input port). We
perform 100 simulation runs for each scenario, and report the
simulation results in Figure 2.
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Here each point on a plot represents the average transmis-
sion time, and the corresponding error bar represents their 95%
confidence interval. The results, presented in Figure 2, show
that the schedules generated by BFF are consistently better, as
indicated by shorter and less variable transmission times, than
those generated by Eclipse, especially when reconfiguration
delay δ and rate ratio rc/rp are large. More specifically,
when δ = 0.01, rc/rp = 10 (default setting), schedules
generated by BFF result in approximately 19% shorter average
transmission time than those generated by Eclipse. When
δ = 0.04, rc/rp = 20, schedules generated by BFF result in
23% shorter average transmission time than those generated by
Eclipse. Meanwhile, the transmission time confidence intervals
of the schedules generated by BFF in all these scenarios
are about 40% shorter (i.e., less variable) than those of the
schedules generated by Eclipse.

D. Performances under Different Traffic Demands

In this section, we evaluate the performance robustness of
our BFF algorithm under a large set of traffic demand matrices
that vary by sparsity and skewness. We control the sparsity
of the traffic demand matrix D by varying the total number
of flows (nL + nS) in each row from 4 to 32, while fixing
the ratio of the number of large flow to that of small flows
(nL/nS) at 1 : 3. We control the skewness of D by varying
cS , the total percentage of traffic carried by small flows,
from 5% (most skewed as large flows carry the rest 95%)
to 75% (least skewed). In all these evaluations, we consider
four different value combinations of system parameters δ and

rc/rp: (1) δ = 0.01, rc/rp = 10; (2) δ = 0.01, rc/rp = 20;
(3) δ = 0.04, rc/rp = 10; and (4) δ = 0.04, rc/rp = 20.

Figure 3 compares the transmission time of BFF and Eclipse
when the sparsity parameter nL+nS varies from 4 to 32 and
the value of the skewness parameter cS is fixed at 0.3. Figure 4
compares the transmission time of BFF and Eclipse when the
the skewness parameter cS varies from 5% to 75% and the
sparsity parameter nL + nS is fixed at 16 (= 4 + 12). In
each figure, the four subfigures correspond to the four value
combinations of δ and rc/rp above.

Both Figure 3 and Figure 4 show that schedules computed
by BFF result in approximately 20% − 30% shorter average
transmission times than those computed by Eclipse, under
various traffic demand matrices. They also show that the trans-
mission times of the former schedules (i.e., those generated by
BFF) are less variable (as indicated by shorter 95% confidence
interval bars) or more stable than those of the latter schedules,

E. Execution time comparison of Eclipse and BFF

In this section, we present the execution times of Eclipse and
BFF (all implemented in C++) for different δ, under the traffic
demand matrix with the default parameter settings (nL = 4,
nS = 12, cL = 0.7, cS = 0.3). We set rc/rp = 10 for each
scenario. These execution time measurements are performed
on a Dell Precision Tower 3620 workstation equipped with
an Intel Core i7-6700K CPU @4.00GHz processor and 16GB
RAM, and running Windows 10 Professional. We perform 100
simulation runs for each scenario. The average execution times
are shown in Table II.



TABLE II
COMPARISON OF AVERAGE EXECUTION TIME FOR ECLIPSE AND BFF

n = 32 n = 100
δ 0.0025 0.01 0.04 0.0025 0.01 0.04

Eclipse 1.25s 0.80s 0.44s 34.6s 16.4s 6.88s
BFF 2.50ms 2.34ms 1.93ms 30.1ms 22.6ms 17.4ms

As shown in Table II, the execution time of BFF is roughly
three orders of magnitude smaller than those of Eclipse. We
have also implemented Eclipse++ and measured its execution
time. It is roughly three orders of magnitude higher than those
of Eclipse; the same observation [26] was made by the first
author of [19] (the Eclipse/Eclipse++ paper).

V. RELATED WORK

A. Hybrid Switch Scheduling Algorithms

As stated earlier, all existing hybrid switching solutions
are designed based the assumption that the circuit switch is
not partially reconfigurable. Liu et al. [18] first characterized
the mathematical problem of the hybrid switch scheduling
using direct routing only and proposed a greedy heuristic
solution, called Solstice. In each iteration, Solstice effectively
tries to find the Max-Min Weighted Matching (MMWM) in
D, which is the full matching with the largest minimum
element. The duration of this matching (configuration) is then
set to this largest minimum element. Although its asymptotic
computational complexity is a bit lower than Eclipse’s, our
experiments show that its actual execution time is similar
to Eclipse’s since Solstice has to compute a larger number
of configurations K than Eclipse, which generally produces
a tighter schedule. The Solstice [18] work mentioned the
technological feasibility of partial reconfiguration, but made
no attempt at exploiting this capability.

This hybrid switching problem has also been considered in
two other works [10], [11]. Their problem formulations are a
bit different than that in [19], [18], and so are their solution
approaches. In [10], the problem of matching senders with
receivers is modeled as a (distributed) stable marriage problem,
in which a sender’s preference score for a receiver is equal to
the age of the data the former has to transmit to the latter in
a scheduling epoch, and is solved using a variant of the Gale-
Shapely algorithm [27]. This solution is aimed at minimizing
transmission latencies while avoiding starvations, and not at
maximizing network throughput, or equivalently minimizing
transmission time. The innovations of [11] are mostly in the
aspect of systems building and are not on matching algorithm
designs.

As mentioned earlier, the state of the art solution, Eclipse
[19], which performs better than Solstice [18], is also a greedy
heuristic, but optimizes a very different objective function than
that in Solstice. More specifically, in each iteration, Eclipse
tries to extract and subtract a configuration (M,α) (using
matching M for a “net” duration of α) from the demand matrix
D that tries to maximize the cost-adjusted utility function

U(M,α)
δ+α , where U(M,α) is the total amount of traffic the con-

figuration would remove from (what remains of) D and δ+α
is the “gross” duration (cost) of the configuration including
the reconfiguration delay δ. Since this optimization problem
is very computationally expensive, it was shown in [19] that
a computationally efficient heuristic was proposed in [19]
that empirically produces the optimal value most of time
on real-world instances. This heuristic solution, invoking the
scaling algorithm for computing maximum weighted match-
ing (MWM) [24] O(log n) times, still requires much higher
computational complexity than BFF, as shown in Table I.

Eclipse, like most other hybrid switching algorithms, con-
siders and allows only direct routing in the following sense:
All circuit-switched data packets reach their respective final
destinations in one-hop (i.e., enters and exits the circuit
switch only once). A separate algorithm named Eclipse++ was
proposed in [19] to explore indirect routing. The computational
complexity of Eclipse++ is however extremely high, since
Eclipse++ has to perform a large number of single-source
shortest-path computations. Both us and the authors of [19]
found that Eclipse++ is roughly three orders of magnitude
more computationally expensive than Eclipse [26] for a data
center with n = 100 racks.

To the best of our knowledge, Albedo [17] is the only
other indirect routing solution for hybrid switching, besides
Eclipse++ [19]. Albedo was proposed to solved a different
type of hybrid switching problem: dealing with the fallout of
inaccurate estimation of the traffic demand matrix D. It works
as follows. Based on an estimation of D, Albedo first computes
a direct routing schedule using Eclipse or Solstice. Then any
unexpected “extra workload” resulting from the inaccurate
estimation is routed indirectly. However, Albedo has a high
computational complexity, since it needs to perform a larger
number of single-source shortest path computations.

B. Optical Switch Scheduling Algorithms

Scheduling of circuit switch alone (i.e., no packet switch),
that is not partially reconfigurable, has been studied for
decades. Early works often assumed the reconfiguration de-
lay to be either zero [28], [9] or infinity [13], [29], [30].
Further studies, like DOUBLE [13], ADJUST [31] and other
algorithms such as [29], [32], take the actual reconfigu-
ration delay into consideration. Recently, a solution called
Adaptive MaxWeight (AMW) [33], [34] was proposed for
optical switches (with nonzero reconfiguration delays). The
basic idea of AMW is that when the maximum weighted
configuration (matching) has a much higher weight than the
current configuration, the optical switch is reconfigured to the
maximum weighted configuration; otherwise, the configuration
of the optimal switch stays the same. However, this algorithm
may lead to long queueing delays (for packets) since it usually
reconfigures infrequently.

Towles et al. [13] first considered the scheduling of circuit
switch (alone) that is partially reconfigurable and discovered
that such a scheduling problem is algorithmically equivalent
to open-shop scheduling (OSS) [12]. They tried to adapt List



scheduling (LIST) [20], [21], [22], the well-known family of
polynomial-time heuristic algorithms, to tackle this problem.
However, no algorithm in the LIST family benefits much from
the partial reconfiguration capability, as explained earlier. Re-
cently, Van et al. [14] proposed a solution called adaptive open-
shop algorithm (AOS), for scheduling partially reconfigurable
optical switches. It essentially runs an optimal preemptive
strategy [35] and a non-preemptive LIST strategy [12], [36] in
a dynamic and flexible fashion to find a good schedule. How-
ever, the computational complexity of the optimal preemptive
strategy [35] alone is O(n4), which is much higher than that
of BFF.

VI. CONCLUSION

Although considerable research effort has been made on
hybrid circuit and packet switching, no solution has been
proposed to exploit the partial reconfigurability of circuit
switches, which has become increasingly widely available.
In this work, we propose BFF (best first fit), the first such
solution. BFF not only significantly outperforms Eclipse, given
the same workloads (the traffic demand matrices) used in
[19], but also has much lower computational complexity than
Eclipse.
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