On Fundamental Tradeoffs between Delay Bounds
and Computational Complexity in Packet
Scheduling Algorithms

Jun (Jim) Xu and Richard J. Lipton

Abstract— In this work, we clarify, extend and solve a long-
standing open problem concerning the computational complexity
for packet scheduling algorithms to achieve tight end-to-end de-
lay bounds. We first focus on the difference between the time a
packet finishes service in a scheduling algorithm and its virtual
finish time under a GPS (General Processor Sharing) scheduler,
called GPSrelative delay. We prove that, under a slightly restric-
tive but reasonable computational model, the lower bound compu-
tational complexity of any scheduling algorithm that guarantees
O(1) GPS-relative delay bound is Q(log n). We also discover that,
surprisingly, the complexity lower bound remains the same even if
the delay bound is relaxed to O(n®) for 0 < a < 1. This implies
that the delay-complexity tradeoff curve is flat in the “interval”
[O(1), O(n)). We later conditionally extend both complexity re-
sults (for O(1) or O(n®) delay) to a much stronger computational
model, the linear decision tree. Finally, we show that the same
complexity lower bounds are conditionally applicable to guaran-
teeing tight end-to-end delay bounds, if the delay bounds are pro-
vided through the Latency Rate (LR) framework.

Index Terms— Computational complexity, packet scheduling,
Quality of Service, delay bound, decision tree.

I. INTRODUCTION

Packet scheduling is an important mechanism in providing
QoS guarantees in data networks [1], [2], [3]. The fairest algo-
rithm for packet scheduling is General Processor Sharing (GPS)
[1], [4]- However, GPS is not a realistic algorithm since in a
packet network, service is performed packet-by-packet, rather
than bit-by-bit as in GPS. Nevertheless, GPS serves as a ref-
erence scheduler that real-world packet-by-packet scheduling
algorithms (e.g., WFQ [1]) can be compared with in terms of
end-to-end delay bounds and fair bandwidth allocation.

Let n be the number of active sessions in a link of rate r
served by a GPS scheduler. Each session i = 1,2,---,n
is assigned a weight value ¢;. Each backlogged® session
J at every moment ¢ is served simultaneously at rate r; =
r$; /(X jen() ®i), Where B(t) is the set of sessions that are
backlogged at time ¢. One important property of GPS, proved

Manuscript received on 12/1/2002; revised on 12/3/2003; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor I. Stavrakakis. Xu
is supported in part by NSF Grant ITR/SY ANI-0113933 and NSF CAREER
award ANI-0238315. Lipton is supported in part by NSF Grants ITR/SY ANI-
0113933 and CCR-0002299, and by Telcordia Research. A preliminary version
of the paper has been presented at ACM Sigcomm’2002.

Jun (Jim) Xu is with the College of Computing, Georgia Institute of Technol-
ogy, Atlanta, GA 30332, USA (e-mail: jx@cc.gatech.edu).

Richard J. Lipton is with the College of Computing, Georgia Institute of
Technology, Atlanta, GA 30332, USA (e-mail: rjl@cc.gatech.edu).

I\We say that a flow f is backlogged at time ¢ (under a scheduler) if there is a
positive amount of flow f traffic in the service queue at time ¢.

in [4], is that it can guarantee tight end-to-end delay bound to
traffic that is leaky-bucket [5] constrained.

It is interesting to look at the GPS-relative delay of a packet
served by a scheduling algorithm ALG as compared to GPS.
For each packet p, it is defined as maxz(0, FALG — FGFS),
where FALG and F&PS are the times when the packet p fin-
ishes service in the ALG scheduler and in the GPS sched-
uler, respectively. It has been shown in [4] and [6] respectively
that W F(Q (Weighted Fair Queuing) and W F2() (Worst-case
Fair Weighted Fair Queuing) schedulers both have a worst-case
GPS-relative delay bound of % where L4, 1S the maxi-
mum packet size in the network. That is, for each packet p,

L
FPVVFQ _ FIE;PS S max (1)
Y
L’ITL(IZ
F/I@ _ pors < Zme)
r

We simply say that the delay bound is O(1) since Ly, and r
can be viewed as constants independent of the number of ses-
sions n. WFQ and W F?2Q achieve this O(1) delay bound
by (a) keeping perfect track of the GPS clock and (b) picking
among all (in WFQ) or all eligible (in W F2Q) head-of-line
(HOL) packets, the one with the smallest GPS virtual finish
time to serve next. The per-packet worse-case computational
complexity of the second part ((b) part) in both WFQ and
WF2Q is O(logn). In other words, the computational cost?
to “pay” for the O(1) GPS-relative delay bound in both W F'Q
and WF?Q is O(logn).

On the other hand, round-robin algorithms such as DRR
(Deficit Round Robin) [7] and WRR (Weighted Round Robin)
[8] have a low implementation cost of O(1). However, they in
general cannot provide the tight GPS-relative delay bound of
neeIn fact, the best possible delay bound they can provide
is O(n). This is illustrated in Fig. 1. We assume that these
n sessions share the same link and are of same weight. With-
out loss of generality, we also assume that these sessions are
served in the round-robin order 1,2,---,n. At time 0, pack-
ets of length M have arrived at sessions 1,2,---,n — 1, and a
packet of length m < M has arrived at session n. Suppose M is
no larger than the service quantum size used in round-robin al-
gorithms so that all these packets are in the same service frame.
Then clearly the short packet in session n will be served behind
n — 1 long packets. The GPS-relative delay of the short packet
can be calculated as M which is O(n).

Lmas

2Here the cost of the GPS clock tracking ((a) part) is not included.

transmission frame

session 1
session 2

session n—1

session n

Fig. 1. How round robin algorithms incur O(n) GPS-relative delay

We have just shown that algorithms with O(log n) complex-
ity (GPS time tracking overhead excluded) such as W F'Q) and
WF?2Q can provide O(1) GPS-relative delay bound, while
O(1) round-robin algorithms such as DRR and WRR can only
guarantee a delay bound of O(n). A long-standing open prob-
lem in the QoS community is whether this represents indeed
the fundamental tradeoff between computational complexity of
the scheduling algorithms and the GPS-relative delay bound
they can achieve. This problem was been posed again in Sig-
comm’01 by Guo (author of [9]). Our work formally defines
and clarifies this open problem, and solves it in a comprehen-
sive way.

Asymptotic
Computational - WFQ and WF2Q

Complexi e
plexity Asymptotic Tradeoff Curve

Round Robin

o(1) O(n) Asymptotic Delay Bound

Fig. 2. The asymptotic tradeoff curve between delay bound and computational
complexity

The first major result of this paper is to show that (logn)
is indeed the complexity lower bound to guarantee O(1) GPS-
relative delay?, excluding the cost of tracking GPS time. This
bound is established under the decision tree computation model
that allows direct comparisons between its inputs, which, in our
context, is equivalent to allowing comparisons between GPS
finish times of the packets. This model seems slightly restrictive
but is reasonable for our context, since such comparisons are
indeed sufficient for assuring O(1) GPS-relative delay bound
in WFQ and WE2Q [4], [6]. This result granted for the mo-
ment, we now have two points on the complexity-delay tradeoff
curve, as shown in Fig. 2. One is the O(n) delay at the com-
plexity of Q(1) and the other is the O(1) delay at the complexity
of Q(logn). One interesting question to ask is how other parts
of the “tradeoff curve” look. More specifically, to guarantee
a delay bound that is asymptotically between O(1) and O(n),

3Leap Forward Virtual Clock (L F'V C) scheduler [10] has a low implemen-
tation complexity of O(log(logn)) using timestamp discretization, but may
incur O(n) GPS-relative delay in the worst case. This is because, with small
but positive probability, the “discretization error” may add up rather than cancel
out.

say O(4/n), can the complexity of packet scheduling be asymp-
totically lower than Q(logn), say Q(y/Togan)? The result we
discover and prove is surprising: for any fixed 0 < a < 1,
the asymptotic complexity for achieving O(n®) delay is always
Q(logan). As shown in Fig. 2, this basically says that the
asymptotic tradeoff curve is flat and has a jump at O(n).

The second major result of this paper is to strengthen the
aforementioned lower bounds by extending them to a much
stronger computational model: decision tree that allows linear
comparisons. However, under this computational model, we
are able to prove the same complexity lower bounds of Q(log n)
only when the scheduling algorithm guarantees O(1) or O(n®)
(0 < a < 1) disadvantage delay bound. Disadvantage delay
is a slightly stronger type of delay than the GPS-relative de-
lay, since for each packet, its disadvantage delay is no smaller
than its GPS-relative delay. Nevertheless, the second result is
provably stronger than our first result for both O(1) and O(n®)
cases.

Our third and final result is to show that the same complexity
lower bounds can be extended to guaranteeing tight end-to-end
delay bounds, if the delay bounds are provided through the La-
tency Rate (LR) framework (introduced in [11]). In particular
we show that, the minimum complexity for an LR scheduler to
provide a tight latency of O(n“)L*"—TM + L’"% 0<ax<)
is Q(logn) per packet, where Ly, ; is the maximum size of
a packet in session 4 and r; is the guaranteed rate of session
1. This result is important since most of existing scheduling
algorithms that provide tight end-to-end delay bounds are LR
schedulers with latency O(1) Lme= 4 L”‘%

Though it is widely believed as a “folklore theorem” that
scheduling algorithms which can provide tight end-to-end delay
bounds require Q(logn) complexity (typically used for main-
taining a priority queue), it has never been carefully formulated
and proved. To the best of our knowledge, our work is the first
major and successful step in establishing such complexity lower
bounds. Our initial goal was to show that the Q(logn) delay
bounds hold under the decision tree model that allows linear
comparisons. Though we are not able to prove this result in full
generality, our rigorous formulation of the problem and tech-
niques introduced in proving slightly weaker results serve as
the basis for further exploration of this problem.

The rest of the paper is organized as follows. In Section
I, we introduce the computational models and assumptions
we will use in proving our results. The aforementioned three
major results are established in Sections Ill, IV, and V respec-
tively. Section VI discusses related work, including our recent
progress on establishing the complexity lower bounds of track-
ing GPS clock. Section VII concludes the paper.

Il. ASSUMPTIONS AND COMPUTATIONAL MODELS

In general, complexity lower bounds of a computing problem
are derived based on problem-specific assumptions and condi-
tions, and a computational model that specifies what operations
are allowed in solving the problem and how they are “charged”
in terms of complexity. In Section II.A, we describe a net-
work load and resource allocation condition called CBFS (con-
tinuously backlogged fair sharing) under which all later lower

bounds will be derived. In Section I1.B, we introduce two com-
putational models that will be used in Sections Il and 1V, re-
spectively. Finally in Section 11.C, we discuss why decision
tree computational models are chosen for studying complexity
lower bounds.

A. CBFS condition

All lower bounds in this paper will be derived under a net-
work load and resource sharing condition called continuously
backlogged fair sharing (CBFS). Let n be the number of ses-
sions and r be the total bandwidth of the link. In CBFS,

o (Fair Sharing) Each session has equal weight, that is, for

any1<i<j<n, ;=g

« (Continuously Backlogged) Each session has a packet ar-

rival at time 0. Also, forany ¢ > Qand 1 < i < n,

A;(t) > Tt. Here A;(t) is the amount of session ¢ traffic

that has arrived during the interval [0, £].

We call the second part of the condition “continuously back-
logged” because if these sessions are served by a GPS sched-
uler, they will be continuously backlogged from time 0. This is
proved in the next proposition. In the sequel, we assume that
a packet arrival at time ¢ is an impulse, the value of which is
the size of the packet, at time ¢. This is equivalent to the as-
sumption used in [4] that the input link speeds are infinite. This
assumption is widely used in QoS literature.

Proposition 1: For any packet arrival instance that conforms
to the CBFS condition, each and every session will be continu-
ously backlogged when served by a GPS scheduler.

Proof: The proof is by contradiction. Suppose some ses-
sions may become unbacklogged at certain points of time. We
can view packet scheduling as an event-driven system in which
the events are the arrivals and departures of the packets. Since
all sessions are backlogged at time 0, the following is the only
possible way that session ¢ may become unbacklogged at time
t: a packet departs from session i at time ¢, and its next packet
does not arrive until time 7 > ¢ (7 = oo if there is no such ar-
rival). Let ¢* be the time that the earliest such packet departure
event happens. Suppose this happens to session *, and session
1* does not become backlogged again until 7* > t*. By the
definition of ¢*, all sessions are continuously backlogged be-
tween [0,¢*]. So, under the GPS scheduler, the amount of ser-
vice each session receives during this period is the same, which
is Zt*. Let 7" > t' > t* (to avoid the case 7* = 00). Then the
amount of service session * receives during the interval [0, ¢']
is Zt* < Tt', which violates the second part of the CBFS con-
dition. |

Since our lower bounds are on the computational complexity
in the worst case, the general lower bounds can only be higher
than or equal to the bounds derived under the CBFS condition
(i.e., we don’t gain from this condition). The significance of
this condition is profound:

« First, computing the GPS virtual finish time of a packet p

becomes an O(1) operation (see remark after Proposition

2). So CBFS condition allows us to naturally exclude the

cost of tracking GPS clock so that we do not need to an-

swer the question “What is the computational complexity
of tracking the GPS clock?”. This is quite a blessing since

this question is itself open in 2002 and was only recently
settled in [12] (to be discussed in Sec. VI).

« Second, we will show that under the CBFS condition,
many existing scheduling algorithms such as Virtual Clock
(VC) [13], Frame-based Fair Queuing (F'F'Q) [14] and
W F2Q+ [15] are equivalent to either WFQ or WF2Q
(Proposition 3). So whenever we need to relate our re-
sults to these scheduling algorithms, we only need to study
WFQ and WE?2Q.

« Third, the complexity lower bounds that are proved under
this condition are still tight enough. In other words, we are
not “losing” too much ground on complexity lower bounds
when restricted by this condition.

In our later proofs, we assume that the size of a packet can
take any real number between 0 and L,,4,, Where L,,,. de-
notes the maximum packet size. This is, in general, not true for
packet networks. However, it can be shown that if we remove
part one (fair sharing) of the CBFS condition and instead allow
weighted sharing (with part two adjusted accordingly), we do
not need to insist on such freedom in packet size. In fact, our
proofs will work even for ATM networks where fixed packet
size is used. Since this proof is less interesting, we omit it here
to save space.

In the rest of this section, we prove that the computation of
GPS virtual finish times is an O(1) operation under the CBFS
condition, and state without proof that a few existing algo-
rithms (VC, W F2Q+, FFQ) are equivalent to either W FQ
or WE2(Q under the CBFS condition.

Definition 1: We say that two scheduling algorithms are
equivalent under a condition C if given any arrival instance
conforming to C, these two algorithms will generate the same
packet service schedule.

Notation 1: For the k'th packet in session 4, let L; &, T; k.
and F; , denote its length, arrival time, and GPS virtual finish
time, respectively. Let V (¢) denote the GPS virtual time as a
function of real time t¢.

Proposition 2: Under the CBFS condition,

o (&) Fix =Fip—1 + L;':’“, 1<i<nandk > 0. Here we

let F; o = 0 by definition.
Proof: (a) In GPS,

L

Fir, = max(Fip-1,Tix) + -
1

3)

It is clear that T; , < F; _1, since otherwise, during the time

period [F; x—1,T;] the session 4 is idle under GPS, violating

the continuously backlogged (Proposition 1) property of CBFS.

Therefore the formula (3) becomes F; , = F p—1 + L;';’“.
(b) Recall that V' (¢) is defined as follows:

Vo) =0 (4)
Vit+r) = V@) +rr/(Y) (5)

i€B(t)

where B(t) is the set of sessions that are active during the in-
terval [¢,¢ + 7]. Here ¢ + 7 can be anytime before the occur-
rence of the first event (the arrival or departure of a packet)

after t. Since all sessions are backlogged all the time un-
der GPS (Proposition 1), B(t) is exactly the set of all ses-
sions. Therefore, ZieB(t) r; = r and consequently (5) be-
comes V(¢ + 7) = V(t) + 7. This, combined with (4), implies
that V() =t. |

Remark: It is clear from (a) that the calculation of GPS vir-
tual finish time is an O(1) operation (under the CBFS condi-
tion) per packet, as the program can store the result of F; _1
from the prior computation. The (b) part would be used in the
proof of the following proposition. However, due to the lack of
space, we omit its proof here, which can be found in [16].

Proposition 3: Under the CBFS condition, Virtual Clock
(VC) [13] and Frame-based Fair Queuing (FFQ) [14] are
equivalent to WFQ, and WF2Q+ [15] is equivalent to
WF2Q.

B. Decision tree models

We adopt a standard and commonly-used computational
model in proving lower bounds: the decision tree. A decision
tree program in general takes as input a list of real variables
{z;}1<i<n. Each internal and external (leaf) node of the tree is
labeled with a predicate of these inputs. The algorithm starts ex-
ecution at the root node. When the program control is centered
at any internal node, the predicate labeling that node is evalu-
ated, and the program control is passed to its left or right child
when the value is “yes” or “no” respectively. Before the control
is switched over, the program is allowed to execute unlimited
number of sequential operations such as data movements and
arithmetic operations. In particular, the program is allowed to
store all results (i.e., no constraint on storage space) from prior
computations. When program control reaches a leaf node, the
predicate there is evaluated and its result is considered as the
output of the program. The complexity of such an algorithm
is defined as the depth of the tree, which is simply the num-
ber of predicates that needs to be evaluated in the worst case.
Fig. 3 shows a simple decision tree with six nodes. Each P;
(1 < i £ 6) is a predicate of the inputs.

Input x = <x1, X2, ..., Xn>

o e ¢

Fig. 3. Decision tree computational model

The decision tree was originally proposed for decision prob-
lems, in which the output is binary: simply “yes” or “no”. The
model can be extended to handling more general problems the
output of which is not necessarily binary. For example, in the
context of this work, the output will be the sequence in which
packets get scheduled.

Allowing different types of predicates to be used in the de-
cision tree results in models of different computational pow-

ers. On the one extreme, if the decision tree program allows the
magic predicate P(z1, 2, - -, &) that exactly solves the prob-
lem, then the complexity of the problem is precisely 1. On the
other extreme, if the decision tree program only allows constant
predicates, then nontrivial (nonconstant) decision problems are
simply not solvable under this model, no matter how much
computation is performed. In this work, we consider predicates
that are reasonable in the sense that existing scheduling algo-
rithms are able to provide O(1) GPS-delay bounds using only
such predicates.

The first computational model we consider is the deci-
sion tree that allows comparisons only between its inputs.
It has been used in proving the Q(nlogn) lower bound for
comparison-based sorting algorithms [17]. This model will be
used in proving our lower bounds in Sections 11l and V. In the
context of this work, the inputs will be the lengths and the ar-
rival times of the packets. This model is reasonable for the
instances used in these proofs because we will show that under
the CBFS condition, allowing comparisons between inputs is
equivalent to allowing comparisons between GPS virtual finish
times of the packets in these instances. Since both WF'Q and
W F?(Q are able to provide O(1) GPS-relative delay bounds us-
ing such comparisons only, this model is not restrictive.

The second computational model we introduce is the
decision tree that allows linear tests [18]. In this model,
each predicate allowed by the decision tree is in the form of
“h(z1,x2, - +,%n) > 077, where h is a linear function (defined
below) of the inputs {z; }1<i<n.

Definition 2—Linear Function: A linear function f of the
variables {z;}1<i<n is defined as f(z1,22, ---,2n) =
E;’Zl a;x; + ao, where {a; }o<i<, are real constants.

The second model is strictly stronger than the first model
since the set of predicates that are allowed in the second model
is a proper superset of what is allowed in the first model. The
second model will be used in our proofs in Section IV. It is
necessary to introduce this stronger model since more sophis-
ticated (hypothetical) packet scheduling algorithms might in-
volve comparisons other than between GPS finish times, al-
though no such comparisons were used in existing algorithms.

Under the CBFS condition, the linear decision tree is prac-
tical in our context in the sense that many existing schedul-
ing algorithms, including WFQ, VC, FFQ, WF?Q, and
W F2Q+, use only the operations allowed in the model. Due to
Proposition 3, under the CBFS condition, we only need to con-
sider WFQ and W E2(QQ. Note that in both W EFQ and W F2(),
(1) GPS time estimation is an O(1) operation and does not re-
quire branching statements under the CBFS condition (see re-
mark after Proposition 2), and (2) comparisons between virtual
finish times (shown to be the linear functions of the inputs) are
all that is needed in making scheduling decisions. Careful read-
ers would point out that W F'2(Q also involves comparisons with
virtual start times. However, note that under the CBFS condi-
tion, the virtual start time of a packet is exactly the virtual finish
time of the previous packet in the same session. In summary,
both computational models are practical and nonrestrictive, in
the sense that they are actually being used by existing schedul-
ing algorithms.

C. Remarks on the decision tree model

A decision tree program allowing certain branching predi-
cates is computationally stronger than a computer program that
allows the same types of branching predicates and is memory-
constrained. This is because (1) the decision tree can be to-
tally different when the size of input changes (so-called nonuni-
form circuit), and (2) the computational complexity counted in
the decision tree model is only the depth of the tree, not the
size of the tree. Neither is true about a regular computer pro-
gram. So a tight lower bound derived under the decision tree
model may not be reachable by a computer program. For ex-
ample, Knapsack®, a well-known NP-complete problem, has
an O(n® log® n) algorithm® in the decision tree model that al-
lows linear comparisons [19]. Despite the fact that a decision
tree algorithm can be computationally stronger than a computer
program, when allowing the same branching predicates, many
lower bound proofs are based on decision tree. This is because
(1) they provide powerful tools for proving lower bounds, and
(2) so far there is no model that exactly captures the computa-
tional power of a computer program and at the same time pro-
vides such powerful tools.

I1l. COMPLEXITY-DELAY TRADEOFFS WHEN ALLOWING
COMPARISONS BETWEEN INPUTS

In this section, we prove that if only comparisons between
inputs are allowed, the complexity to assure O(1) or O(n®)
(0 < a < 1) GPS-relative delay bound is 2(logn). In Section
LA, we introduce two general lemmas used in later proofs.
Sections 111.B and I11.C proves the Q(logn) complexity lower
bounds for the case of O(1) and O(n®) respectively.

A. Preliminaries

In this section, we state and prove some lemmas that will be
used in later proofs. We first state a well-known complexity
lower bound for comparison-based sorting [17]. It is clear from
the proof that this lower bound holds even if all the real numbers
are between two numbers m and M (0 < m < M).

Lemma 1—sorting lower bound [17]: To sort a set of n
numbers {z; }1<;<» using only comparisons between them, re-
quires n log, n — o(n log, n) steps in the worst case.

Proof: [Sketch] We only summarize the main idea from
the proof that can be found in several algorithm textbooks, in-
cluding [17]. A sorting algorithm can be modeled as a binary
decision tree similar to the one shown in Fig. 3. This tree con-
sists of n! leaves, corresponding to n! possible ordering of the
n numbers to sort. Each comparison corresponds to a tree node
and has up to two children corresponding to further actions
taken based on the result of comparison (clearly binary). It can
be shown from the Stirling’s formula that the longest path of
this binary tree must be no shorter than n log, n — o(nlog, n),
which corresponds to the worst-case execution time. |

4Among a set T = {x1,%2,---,%n} Of n real numbers, decide whether
there exists S C T'suchthat) z = 1.
z€eS
5This, however, does not imply P = NP, since a decision tree algorithm
can be more powerful than a computer program.

Lemma 1 is sufficient for proving the lower bounds (when
allowing direct comparisons between inputs) for scheduling
throughout this section. However, to prove stronger results
(when allowing linear tests) in Section 1V, we need to resort
to a stronger lemma (Lemma 3). Since the steps for proving
stronger lower bounds in Section 1V can be reused for proving
the weaker results in this section, for the overall succinctness of
the proofs, proofs in this section will also be based on Lemma
3 (stronger version) instead of Lemma 1 (weaker version).

Definition 3: A set membership problem is to determine
whether the input {z;}1<;<n, viewed as a point (zy, z2, -- -,
Z,) in the Euclidean space R", belongsto aset L C R™.

Next, we state a general lemma concerning the complexity
of set membership problems (defined above) under the deci-
sion tree model that allows linear tests. This lemma, due to
Dobkin and Lipton [18], has been used extensively in lower
bound proofs (e.g., [20]). In complexity theory, the lower bound
for solving a set membership problem is closely related to the
geometric properties of the set. The following lemma states that
if the set consists of IV disconnected open sets, determining its
membership requires at least log, N complexity.

Lemma 2: Any linear search tree that solves the membership
problem for a disjoint union of a family {A;};c; of open sub-
sets of R™ requires at least log, |I| queries in the worst case
[18].

Proof: [(adapted from [18])] Consider a decision tree al-
gorithm for deciding membership in a set L C R™. At any leaf
node, the algorithm must answer “yes” or “no” to the questions
of whether the inputs =1, x,, - - -, z,, are coordinates of a point
in L. Let the set of points “accepted” at leaf p be denoted by
T, (i.e., T}, is the set of points for which all tests in the tree
have identical outcomes and lead to leaf node p, for which the
algorithm answers “yes”). The leaf nodes of the tree partition
R™ into disjoint convex regions because all comparisons are be-
tween linear functions of the coordinates of the input point, so
in particular each of the accepting sets T}, is convex.

We prove the lemma by contradiction. Suppose that the level
of the tree is less than log, |I|. Then the number of leaf nodes
must be strictly less than I. Now since L consisting of |I| dis-
joint regions, some accepting node 7}, must accept points in
two regions due to the pigeon-hole principle, say L, and Lg.
Choose any points P, € T,,() L, and P, € T,()Lg. Note
that the linear comparisons (viewed as hyperplanes) dissect R™
into convex polytopes. By the convexity of T),, every point on
the line P, P is in T},. So for every such point the algorithm
answers “yes”. However, L, and Lg are disjoint open sets, so
the line P, P, contains points not in L. This contradicts the
correctness of the membership algorithm. |

Now we are ready to introduce the aforementioned stronger
lemma, concerning sorting complexity lower bound when al-
lowing linear tests. Let 0 < m < M be two real num-
bers. The following Lemma (Lemma 3) essentially states that,
when linear tests are allowed, the same sorting complexity
lower bound (nlog, n — o(nlog, n)) still holds when these
n numbers lie in the following n neighborhoods respectively:

(M — (M —
{(m + ’(n+1m) —sm+ & n+1m) + 8)}i<i<n, Where 0 <
0 < % is a small real constant so that these regions are

disjoint. To see this, we show that this sorting problem is at

least asymptotically as hard as the membership problem for the
following set L: L = {(y1,y2, .-, Yn) € R™ : there exists a per-

mutation 7 of 1, ..., n such that m + ’(M m) =0 < Yri) <

m + i(ﬂf;f” + 6, i=1,2,---,n}. Sortlng is at least asymp-
totically as hard, since if there is an algorithm for sorting with
computational complexity B, then there is a B + O(n) algo-
rithm for the membership problem (just sort the numbers using
B time and check using O(n) time if they are in the correspond-
ing neighborhoods).

Lemma 3: Under the decision tree model that allows lin-
ear tests, given the inputs {z;}1<i<n, determining whether
(z1,%2,---,2,) € L requires at least nlog,n - o(nlog,n)
linear tests.

Note that this result is stronger than Lemma 1 since here
the computational model (allowing linear tests) is stronger and
there are restrictions on the values that these n numbers can
take.

Proof: Let IT be the set of permutations on the set {1, 2,

-, n}. Then by the definition of L, L = |J,, .y L~. Here L
:{(y17y27"'7yn) +Z(M m) 6<yw(l)<m+%+
4,7 =1,2,---,n}. Each L is obviously an open set. Also
Ly, and L., are disjoint if m; # 9. To see this, note that if
m1(2) # ma (i) for some ¢, then each point in L, and each point
in L, must have a minimum distance of & between their i'th
coordinates.

The number of such regions {L}ecm is n! because |II| =
n!l. So by Lemma 2, the number of comparisons must be at
least log, (n!), which by Stirling’s formula (n! ~ v2wn(2)")
is equal to nlog, 1 - o(n log, n).

Remark: We emphasize that the floor (and equivalently the
ceiling) function is not allowed in the decision tree. Otherwise,
an O(n) algorithm obviously exists for deciding L-membership
based on bucket sorting. Note that the floor function is a not a
linear function (piecewise linear instead). The linearity of the
test is very important in the proof of Lemma 2 since it relies
on the fact that the linear tests dissect the space R™ into convex
regions (polytopes). These regions are no longer convex when
the floor function is allowed. For this reason, the floor function ©
is disallowed in almost all lower bound proofs. Nevertheless,
despite the fact that the floor function will “spoil” our lower
bound proofs (and many other proofs) no existing scheduling
algorithm (certainly allowed to use “floor™) is known to have a
waorst case computational complexity of o(log n) and guarantee
O(1) or O(n%) (0 < a < 1) worst-case GPS-relative delay.
Studying the computation power of “floor” on this scheduling
problem can be a challenging topic for future research.

B. Q(logn) complexity for O(1) delay

In this section, we prove that Q(log n) complexity is required
to guarantee O(1) GPS-relative delay, when only comparisons
between inputs (equivalently GPS virtual finish times) are al-
lowed. A naive argument for this would be that it takes 2 (log n)
per packet to schedule the packets according to the sorted order
of their GPS virtual finish times. However, this argument is not

S1ts computational power is discussed in [21] in detail.

Sessions
X1 X1 [zZ-X1] Y1
X2 x2 [zx2 | Y2
Reduce Schedule
X3 . X3 1Z-X3
' O(n) ' ?
Xn Xn [ZXn | Yn
GPS timeline
<Y1, Y2, .., Yn> is a permutation of <X1, X2, ..., Xn>

Fig. 4. Converting a sorting instance to a scheduling instance

a proof since it can be shown that to be sorted is not a nec-
essary condition (although sufficient [4]) to assure O(1) GPS-
relative delay. For example, if a GPS-relative delay bound of
10 maximum size packets needs to be assured, then given a ser-
vice schedule sorted according to their GPS virtual finish times,
any 9 packets can be relocated (intra-session packet service or-
der should however be preserved) without violating this delay
bound.

Before stating the lower bounds and their proofs, we would
like to explain the intuition behind them. The core idea is to
reduce the problem of scheduling with O(1) delay bound to
the problem of sorting, as shown in Fig. 4 (here Z = L.,.42).
Given any sorting instance, we reduce it to a scheduling in-
stance in O(n) time and “feed” it to a scheduler that guarantees
O(1) delay bound. Then we can show that the resulting out-
put can be sorted in O(n) time. Since the sorting complexity is
nlogy, n — o(nlogy n), the scheduling complexity has to be at
least nlog, n — o(nlog, n). Otherwise, we have an algorithm
that asymptotically beats the sorting complexity lower bound,
which is impossible.

The proof is split into two parts. In the first part (Theorem 1),
we explain the reduction algorithm and establish the complex-
ity equations. In the second part (Theorem 2), we show that
this reduction program is correct in the sense that the result-
ing program (output of the reduction process) indeed performs
sorting correctly. This is proved using standard invariant-based
techniques for establishing program correctness, and an asser-
tion that a scheduling program should satisfy (Lemma 4), when
comparisons are only allowed between inputs. For reasons ex-
plained before, the stronger version of the sorting problem (i.e.,
Lemma 3) is used for the reduction proof instead of the weaker
version (i.e., Lemma 1), although the latter is sufficient for the
proof.

In proving the following theorem, we assume that there is
an O(1)-Delay-Scheduler procedure which guarantees that the
GPS-relative delay of any packet will not exceed KLW% (i.e.,
O(1)). Here K > 1 is a constant integer independent of the
number of sessions n and the total link bandwidth r. We also
assume that the CBFS condition is satisfied.

Theorem 1—Complexity: The computational complexity
lower bound of the procedure O(1)-Delay-Scheduler is
Q(logn) per packet.

Proof: To reduce scheduling to L-membership, we con-
struct a procedure for solving L-membership (defined in the

1. Procedure L-Menbership |

2. input: mi,T2,---,%n

3. output: ‘‘yes’’ if (zx1,z2,---,zn) €L and ‘‘no’’ otherw se

4. begin

5 /* Part |: Create a packet arrival instance and feed it to scheduler */

6. if 0<z;<Lmar for 1<i<n then proceed

7. el se answer ‘‘no’’ endif

8 for i=1 to n begin

9. create (first) packet arrival A;; to session ¢ of length z; at time O

10. create (second) packet arrival A;» to session ¢ of length Lye, —x;
at tine O

11. end /* for */

12. call Procedure O(1)-Del ay- Schedul er with

13. input: arrival instance A={A;;}i<i<ni<j<2

14. output: schedule S={Si}i<i<on With (1) delay guarantee

15. ji=1

16. for i=1 to 2n begin

17. if S;is the first packet of a session then T[j] = S; endif

18. jisj+1

19. [*T will only have n elenents: first packets of the n sessions*/

20. end /* for */

21. [* Part Il: “‘sort’’ the output schedule fromthe schedul er */

22. for i:=2 to K+2 begin

23. performbinary insertion of T; into the list T1,T»,---,T;-1 according
to their lengths

24. /* sort the first K+2 packets using binary insertion according
to their lengths */

25. end /* for */

26. for i:= K+3ton

27. performbinary insertion of T; into the list T;_x_o,Ti—x—1,"",Ti-1
according to their |engths

28. /* binary insertioninto a ‘‘window’' of size K+2 */

29. end {for}

30. /* Part IIl: check if the ‘‘sorted’’ list, viewed a point in R", is
in L */

31. if Lme= _§ < length(T;) < fme= 4§ for i=1,2,---,n then answer ‘‘yes’’

32. el se answer ‘‘no’’ endif

33. end /* procedure */

Fig. 5. Algorithm | for L-Membership Test.

previous section) as follows. Recall that L = {(y1, y2, ---»Yn) :
there exists a permutation = of {1,2,...,n} such that m +

i(A:;fn) =0 < Yn) <M+ i(ﬁf;m) +6,i=1,2,---,n},

where 0 < 6 < 31‘({%11) Here we let m = 0 and M = L.,
where L,,,,.. is the maximum packet size. We proved in Lemma
3 that the number of linear tests that are needed in determining
L-membership is nlog, n — o(n log, n). Now, given the inputs
{z;}1<i<n to the L-membership problem, we convert it to an
instance of packet arrivals. We then feed the packet arrival in-
stance to the procedure O(1)-Delay-Scheduler. Finally, we pro-
cess the output from the procedure to solve the L-membership
problem. Since the total number of comparisons for solving
L-membership is nlog, n — o(nlog, n) in the worst case, a
simple counting argument allows us to show that O(1)-Delay-
Scheduler must use Q(n logn) comparisons in the worst case.
This reduction is illustrated in Fig. 5.

The procedure in Fig. 5 is divided into three parts. In the
first part (line 5 through 20), the program first checks if all the
inputs are in the legitimate range (0, L,,,q.)- It then generates
two packets for each session ¢ that arrive at time 0. The first

and second packets of session 4 are of length x; and L, 45 — 5,
respectively. Clearly, between time 0 and ”L% the CBFS
condition holds. The arrival instance is fed as input to the pro-
cedure O(1)-delay-scheduler that guarantees a delay bound of
K@. The output is the service order of these 2n packets de-
termined by the scheduling procedure. Then the second packet
of each session is removed from the schedule (line 16 through
20). In the second part (lines 21 through 29), these packets are
sorted according to their lengths, if (z1,z2,---,z,) € L and
the procedure O(1)-Delay-Scheduler indeed guarantees O(1)
GPS-relative delay. In the third part (line 30 through 32), the
processed (sorted) sequence is checked to see if it is indeed in
L.

Recall that the procedure O(1)-Delay-Scheduler is allowed
to perform comparisons between its inputs, which are arrival
times (0) and lengths of the packets {z;}1<i<,. In addition,
the constant L,,, ., is allowed to be compared with any input’.
Note that this is equivalent to allowing comparisons between

"We can artificially create a dummy session which has a packet arrival of
length Lyq at time O.

GPS virtual finish times of the packets, which are in the form of
either ™ (first packet of session 4),i = 1,2,
(second packets of all sessions). Both are linear functions of
the inputs which can be used in L-membership without com-
promising its nlog, n — o(nlog, n) complexity lower bound
(by Lemma 3). Now it is straightforward to verify that exclud-
ing the procedure O(1)-Delay-Scheduler, a total of O(n) linear
comparisons/tests are performed throughout the L-membership
procedure. They include (a) comparisons in line 17 between the
GPS virtual finish time of T; and "L% (b) comparisons be-
tween GPS virtual finish times of packets from line 21 through
29, and (c) comparisons in line 31 to check if the (sorted) in-
put is in L. So the number of comparisons used in the pro-
cedure O(1)-Delay-Scheduler must be 2(n logn). Otherwise,
L-membership uses only o(nlogn) comparisons, which con-
tradicts Lemma 3. Therefore, the amortized complexity per
packet is Q(logn).

We have yet to prove the correctness of the L-membership
procedure, i.e., it solves the L-membership correctly for any
inputs. This is shown next in Theorem 2. |

Theorem 2—Correctness: The procedure in Fig. 5 will re-
turn yes if and only if (21, z2, ..., z,,) € L.

Proof: The “only if” part is straightforward since line
30 through 32 (validity check) will definitely answer “no” if
(z1,22, -+, 2n) ¢ L. We only need to prove the “if” part.

Note that after the execution of line 20, {length(T;)}1<i<n
is a permutation of the inputs {z;}:1<;<». Right after the ex-
ecution of line 25, the lengths of 71,75, -, Tk42 are in in-
creasing order. We prove by induction that the lengths of all
packets are sorted in increasing order after the execution of the
loop from line 26 to 29. We refer to the iterations in the loop
as Ix4s, Ik y4,..., I, indexed by the value of ¢ in each itera-
tion. We prove that the first ¢ numbers are sorted after iteration
i,i = K + 3,---,n. This is obviously true fori = K + 3.
Suppose it is true for i = ¢ > K + 3. We prove that it is also
true fori = ¢ + 1.

We claim that, right after the execution of line 20, in the
schedule {T;}1<i<n, for K + 3 < i < n, there can be no
more than K + 2 elements among Ty, 75,---,T;_1 that are
longer than T;. This is proved below in Lemma 4. Then
since the lengths of 11,75, - - -, T;, are sorted in increasing or-
der after iteration ¢ by the induction hypothesis, we know that
length(Ty—k_2) < length(T,+1). Otherwise, there are at
least K + 3 packets (Ty—k—2, Ty—x—1, - - -, T;) that are longer
than Ty,4,. So for correct binary insertion, the program only
needs to search between the index ¢ — k — 2 and g, as the pro-
gram does in line 27. So the lengths of the first ¢ + 1 packets
remain sorted after the insertion: the ¢ = ¢ + 1 case proved.
Finally, note that line 31 correctly checks for L-membership if
the numbers {length(T};) }1<i<n are sorted in increasing order.

|

The following lemma states that no packet will be scheduled
behind more than K + 2 packets that have larger GPS virtual
finish times. The intuition behind its proof is the following.
Suppose a packet P is scheduled behind K + 2 packets that
have larger timestamps. We convert the current packet arrival
instance into another instance in which (a) all timestamps that
are no larger than P’s (including P itself) are changed to small

-+, or 2hmes

positive numbers that are close to 0 and all timestamps that are
larger are changed to large numbers that are close to L,;,4., and
(b) the order of any pair of timestamps remains unchanged. The
condition (b) guarantees that the resulting schedule will be the
same if only direct comparisons between inputs are allowed.
However, P is scheduled behind that K + 2 packets under the
new service schedule, which can be shown to violate the O(1)
GPS-relative delay guarantee for P.

Lemma 4: Suppose that (1, %2, -+, %) € L. Then for any
i, 1 <4 < n, there can be no more than K + 2 packets among
Ti,Ts,---,T;_4 that are longer than T3, in the scheduler output
right after the execution of line 20 in Fig. 5.

Proof: Note that length(T}y) # length(T;) when k # [,
since (z1,x2,- -, T,) € L. So there exists a unique permuta-
tionw of {1,2,...,n}, such that length(T’ (1)) < length(Ty(2))
< -+ < length(Tx(n)). We prove the lemma by contradiction.
Forany i > K + 3, suppose there are more than K + 2 pack-
ets that are scheduled before T; and are longer than T;. Suppose
w(j) =1, i.e., Tjisthe j'th smallest packetamong {7 }1<x<n-
We argue that ¢ < j + K + 2. In other words, T; should not
be displaced backward by more than K + 2 positions. To see
this, we generate two arbitrary sets of real numbers {a }1<k<n
and {Br}i<k<n, Where 0 < oy < a2 < ... < ap < d and
0<fp<PBnot<..<fy <8 Hered < 3%;;;;) as before.
We consider what happens if we modify the inputs {z; }1<k<n
to the L-membership in the following way: z; is changed to
Qn(ry If 2 < 7 andis changed to Loz — Br(x) if o > ;. It
is not hard to verify that the relative order of any two numbers
2; and ., is the same after the change. Note that the procedure
O(1)-Delay-Scheduler is only allowed to compare between the
inputs, which are {z;}1<i<n, 0, and L,,q,. Clearly, with the
modified inputs, the decision tree of the procedure O(1)-Delay-
Scheduler will follow the same path from the root to the leaf as
with the original inputs, since all predicates along the path are
evaluated to the same values as with the original inputs. Con-
sequently, the output schedule of the packets remains the same
with the modified inputs. In the new schedule with the modified
inputs, since there are more than K + 2 packets that are sched-
uled before T; and are longer than L,,,, — d, the actual finish
time of T; is larger than (K +2) £me==0 > (K +1)Lmes How-
ever, its GPS virtual finish time is no larger than 20 < Lmas,
So the GPS-relative delay of the packet T; must be larger than
(K + 1)Lmee _ Lmae — g lLme= This violates the assumed
property of O(1)-Delay-Scheduler. []

C. Q(logn) complexity for O(n?) delay

In this section, we prove that the tradeoff curve is flat as
shown in Fig. 2: Q(logn) complexity is required even when
O(n®) delay (0 < a < 1) can be tolerated. Its reduction proof
is mostly similar to that of Theorem 1. The main difference is
that the constant factor before the asymptotic term (nlog, n)
becomes critical in this case.

Theorem 3: Suppose we have a procedure O(n?)-Delay-
Scheduler that guarantees a GPS-relative delay of no more than
Kna%. Here K > 1 is an integer constantand 0 < a < 1
is a real constant. Then the complexity lower bound of O(n?)-
Delay-Scheduler is Q(logn) if it is allowed to compare only
between any two inputs.

1. Procedure L-Menbership I
................ sanme as in Fig. 5
12. cal |

21. /* Part 11:

sanme as in Fig. 5
‘‘sort’’

to their Iengths
28. /* binary insertioninto a
29. end {for}

sane as in Fig. 5

Procedure O(n®)-Del ay- Schedul er with

t he out put schedule fromthe scheduler */

22. for i:=2 to Kn®+2 begin
23. performbinary insertion of T; into the list T4,Ts,---,T;—1
according to their |engths
24. /* sort the first Kn®+2 nunbers using binary insertion */
25. end /* for */
26. for i:= Kn®*+3 to n begin
27. performbinary insertion of T; into the list T;_gpa—2,---,T;—1 accordi ng

“Cwi ndow ’

of size Kn®+2 */

Fig. 6. Algorithm Il for L-Membership Test.

Proof: [Sketch] The proof of this theorem is very sim-
ilar to that of Theorems 1 and 2. We construct a procedure
L-membership-I1, which makes “oracle calls” to O(n®)-Delay-
Scheduler, shown in Fig. 6. Since it is mostly the same as the
program shown in Fig. 5, we display only the lines that are
different.

Analysis of the complexity is similar to the proof of The-
orem 1. The number of comparisons that are used in line 21
through line 29 is no more than n log, (Kn® +2) = anlog, n +
o(nlog,n). Note that the number of operations performed
from line 26 through 29 is actually n22 if the data movements
are also counted. However, as we have explained earlier in Sec-
tion 11.B, we “charge” only for the comparisons. So the number
of comparisons used in O(n®)-Delay-Scheduler must be at least
(1 —a)nlog, n —o(nlog, n) since otherwise L-membership 11
uses less than n log, n — o(nlog, n) comparisons in the worst
case. This would contradict Lemma 3.

Proof of correctness for the procedure L-membership Il is
similar to that of Theorem 2. We only need to show the follow-
ing lemma, the proof of which is omitted since it is similar to
that of Lemma 4. |

Lemma5: Suppose that (z1,z2,---,x,) € L. Then for any
i, 1 < i < n, there can be no more than K n?®+ 2 packets among
T1,Ts,---,T;_4 that are longer than T3, in the scheduler output
(right after line 20) in Fig. 6.

D. The delay-complexity tradeoff when allowing “amortiza-
tion”

A careful reader might ask the following interesting question
after reading our proofs in the previous two sections: can the
complexity of Q(n logn) for scheduling the first 2n packets be
“amortized” over the long run. In other words, is it possible that
such a high cost only needs to be paid at the very beginning and
it can be amortized to o(logn) or even O(1) per packet when
more and more packets are processed. The following theorem
shows that the answer to this question is unfortunately negative.

Theorem 4: For any integer N > 0, there exists a packet
arrival instance of size N’ > N such that, the minimum com-
plexity to schedule these N packets to achieve O(1) or O(n®)
(0 < a < 1) delay bound is Q(log n) per packet.

Proof: [Sketch] The idea of the proof is illustrated in Fig.
7 (here again Z = L,,,,). Givenany integer N > 0, we choose
another integer N' > 0 such that N’ > N and N’ is a multiple
of n. Then given N'/n independent L-membership instances
of size n each, we convert, in the same way as in Fig. 4, the first,
second, ..., (N'/n)., L-membership instances into scheduling
instances for the first, second, ..., and (N'/n). busy periods
(defined below) of the scheduler, respectively. These N'/n
busy periods are separated by a small constant time ¢ (real time).
Since these L-membership instances are independent, the com-
plexity of deciding each instance is nlog, n — o(nlog, n) by
Lemma 3. Then, using the results of Theorems 1 and 3 (for the
cases of O(1) and O(n®) delay) above, we can show that dur-
ing each busy period, the scheduling cost must be Q(nlogn).
This is exactly Q(logn) per packet. |
Definition 4: We denote as b(t) be the amount of traffic in
the service queue at time ¢. We say that a busy period starts at —
when b(r) > 0and b(7~) = 0. We say that a busy period ends
at s when B(s~) > 0 and B(s) = 0.

IV. COMPLEXITY-DELAY TRADEOFFS WHEN ALLOWING
LINEAR TESTS

In the previous section, we have established the lower bound
of Q(logn) for guaranteeing O(n®) GPS-relative delay for
0 < a < 1. However, the computational model is slightly
restrictive: we only allow the comparisons between the inputs
(equivalently the GPS virtual finish times). In this section, we
extend the complexity lower bounds to a much stronger com-
putational model, namely, the decision tree that allows compar-
isons between linear combinations of the inputs. However, to
be able to prove the same complexity bounds in the new model,
we require that the same (O(n?) for 0 < a < 1) delay bounds
are achieved for a different and stronger type of delay called
disadvantage delay. Despite this restriction, the overall result
is provably stronger (by Theorem 6) than results (Theorems 1
and 3) in the last section. Whether the same complexity lower
bound holds when linear comparisons are allowed and O(1) or
O(n®) GPS-relative delay bound needs to be guaranteed is left
as an open problem for further exploration.

10

Sessions
— First busy period — i<— Second busy period —*
X1 [zZ-Xx1 XU [ZXU
(X1, X2, .., xn) Reduce X2 | ZX2 X2 [ZX2 Schedule (y1,v2, ... Yn)
(X17, X2, ..., Xn") » X3 1Z-X3 X3 [ZX% » (Y1, Y2, .., Yn)
[N N J o(N) . . o000
xn [Z-Xn Xn [Z=Xn’
GPS timeline
(Y1,Y2, ..., Yn) is a permutation of (X1, X2, .., Xn), (Y1’,Y2’, .., Yn’) is a permutation of (X1°, X2, ..., Xn") , ...

Fig. 7. Why “amortized” scheduling complexity remains €2(log n) per packet

session 1

session 2

session 3

session 4

session 5

GPStimeline

Fig. 8. Disadvantage of packet T4 (the shaded area)

With respect to a service schedule of packets 7' = T4, Tb,

-, T, we define disadvantage of a packet T; (denoted as
disadv(T};)) as the amount of traffic that has actually been
served in the schedule T', which should have been served af-
ter the virtual finish time of T; in GPS. The disadvantage delay
is defined as disadvantage divided by the link rate r.

In Fig. 8, the shaded area adds up to the disadvantage of
the packet Ty when the service schedule is in the order T4, T,

-, Ts. Recall that F,¢*PS denotes the virtual finish time of the
packet p served by GPS scheduler. Formally, the disadvantage
of the packetT; (1 = 1,2,...,n)is

disadv(T, Z maz(0, F. GPS - FgPS) (6)

So disadv(T;) can be viewed as the total amount of undue ad-
vantage in terms of service other packets have gained over the
packet T;. The following lemma states that the disadvantage
delay of a packet is always no smaller than its GPS-relative de-
lay.

Lemma 6: Under the CBFS condition, for any packet ser-
vice schedule T = Ty, T5, - - -, Ty, the disadvantage delay of
T; (1 <4 < n)isalways no smaller than its GPS-relative delay.

Proof: Let B and A be the set of bits that should have
been served before and after FGPS in a GPS scheduler, respec-
tively. Then, under the CBFS condltlon the GPS-relative de-
lay of T; can be written as maz(0, £ >°;_ ! length(ANT;)

—% ;L:H-l length(B(NT})). The dlsadvantage delay of a
packet, on the other hand, is %E;;ll length(A(NTj). So the
disadvantage delay is no smaller than the GPS-relative delay.

Remark: The above lemma implies that, for the same
amount, guaranteeing disadvantage delay bound is harder than
guaranteeing GPS-relative delay bound. In other words, the
complexity lower bound result for the former is weaker than the
result for the latter. However, guaranteeing disadvantage delay
bound is only slightly harder: the disadvantage delay bound of
W FQ is zero and, in the scenarios used for proving our lower
bounds, that of W F2(Q is also zero.

Now we are ready to state and prove the main theorem of
this section: (logn) per packet is needed to guarantee a dis-
advantage delay bound of no more than O(n®) (0 < a < 1).
In proving the following theorem, we assume that there is a
O(n®)-Disadvantage-Scheduler (0 < a < 1) that guarantees
a disadvantage delay bound of Kn“@ (i.e., O(n%)), where
K > 1isan integer constant.

Theorem 5: The number of linear tests used in the proce-
dure O(n®)-Disadvantage-Scheduler (0 < a < 1) have a lower
bound of Q(n logn) in the worst case.

Proof: The framework of the proof is the same as those
of Theorems 1, 2, and 3. A procedure for L-membership test
is shown in Fig. 9. Since it is very similar to the program
shown in Fig. 5, we show only the lines that are different.
The comparisons used in the procedure include (a) compar-
isons used in O(n®)-Disadvantage-Scheduler, (b) no more than
nlogy([v/2(n + 1)(Kn® 4+ 1)]) = “nlog, n + o(nlog, n)
comparisons used in line 21 through 29, and (c) O(n) com-
parisons used line 16 through 20. Since (a) + (b) + (¢) =
nlog,n — o(nlog,n), we know that the (a) part must be at
least (1 — 21)nlog, n = Q(nlogn).

It remains to prove the correctness of L-membership I1I.
Again its proof is quite similar to that of Theorem 2. We claim
that the {7T;}1<i<» are sorted after the execution of line 29.
Similar to the proof of theorem 2, it suffices to show that the
following lemma holds. |

Lemma 7: Suppose (z1,z2,---,Z,) € L. Then right be-
fore the execution of line 22 in Fig. 9, for any packet T3, there
can be no more than [/2(n + 1)(Kn® + 1)] packets, among

Ty,Ty,---,T;_ 1, that are longer than T;.

Proof: We prove by contradiction. LetT' = {7} : 1 <
Jj <i—1,length(T;) > length(T;)} and let N = |T'|. Since
(z1,22,---,xn) € L, we know that each interval (jfbiflm —

0, Jfﬁ;“ +4),1 < j < n, must contain the length of one and

1

1. Procedure L-Menmbership |11

sanme as in Fig. 5
Procedure O(
sanme as in Fig. 5
‘sort’’

12. call Proce

21. /* Part 11:

n?)- Di sadvant age- Schedul er with

t he out put schedule fromthe scheduler */

to their lengths
28. /* binary insertioninto a ‘"’
29. end {for}

sane as in Fig. 5

22. for i:=2 to [/2(n+1)(Kn®+1)] begin

23. performbinary insertion of T; into the list Ty,T»,---,T;-1 according to
their |engths

24. /* sort the first [\/2(n—|—1)(Kna+1)] nunbers using binary insertion */

25. end /* for */

26. for i:= [y/2(n+1)(Kn*+1)]+1 to n begin

27. binary insertion of T; into the |ist T, D& D T;—, according

wi ndow ’

of size [y/2(n+1)(Kn® +1)] */

Fig. 9. Algorithm Il for L-Membership Test.

exactly one packet among {T;}1<j<n. SO in the sorted order
of their lengths, packets in I" must be longer than T’; for at least
mee — 24, 2maz — 94, ..., and Mlme= — 26, respectively.

Suppose N > [\/2 (n+1 (Kna +1)]. Then

Lmas __

.]Lmaz
T; - -2
disadv(T;) > z T J)
%N N +1)Lyas
= 1(2 (N+1) —2N§)
T n+1
Lmaw
> KnaT (7)

This contradicts the guarantee provided by the procedure
O(n®)-Disadvantage-Scheduler. Therefore, N must be no
more than [/2(n + 1)(Kn® + 1)]. []

Compared to Theorems 1 and 3, Theorem 5 allows for a
much stronger computational model. However, it has to enforce
a slightly stronger type of delay (disadvantage delay) than GPS-
relative delay to maintain the same lower bounds. Nevertheless,
the overall result of Theorem 5 is provably stronger than that of
Theorems 1 and 3, shown next.

Theorem 6: If a scheduler assures O(n?) GPS-relative de-
lay bound using only comparisons between inputs (equivalently
GPS virtual finish times), it also necessarily assures O(n®) dis-
advantage delay bound.

Proof: The proof of Lemma 4 can be adapted to show
that among {7 }1<;<;—1 there can be no more than K'n® + 2
packets that are longer than T;. So the disadvantage delay of T;
is no more than (Kn® + 2)£mae which is O(n?). |

We conclude this section by the following conjecture that
was the initial goal of this work.

Conjecture 1: The complexity lower bound for a scheduling
algorithm to achieve a delay bound of O(1), under the decision
tree model that allows linear tests, is Q(logn) per packet. A
stronger result would be to generalize it further to the case of
O(n%) (0 < a < 1) delay bound.

V. ON THE COMPUTATIONAL COMPLEXITY OF
GUARANTEEING END-TO-END DELAY

In the previous two sections, we obtain complexity lower
bounds for achieving O(n®) (0 < a < 1) GPS-relative or disad-
vantage delay bounds. However, it is more interesting to derive
complexity lower bounds for scheduling algorithms that pro-
vide tight end-to-end delay. In this section, we study the com-
putational complexity of providing end-to-end delay bounds,
under the Latency Rate framework [11].

A. Background on Latency Rate framework

In [11], Stiliadis and Varma defined a general class of la-
tency rate (LR) schedulers capable of describing the worst-case
behavior of numerous scheduling algorithms. From the view-
point of a session 4, any LR scheduler is characterized by two
parameters: latency bound ©; and minimum guaranteed rate r;.
We further assume that the j'th busy period of session i starts
at time 7. Let W; ;(7,t) denote the total service provided to
packets in session 4 that arrive after time 7 and until time ¢ by
the scheduler. A scheduler S belongs to the class LR if, for all
times ¢ after time 7 and until the packets that arrived during this
period are serviced,

Wi ;(7,t) > max(0,r;(t — 7 — ©;)) (8)
It has been shown that, for a large class of LR schedulers (in-
cluding WFQ [4], FFQ [14], VC [13], W F2Q [6], W F2Q+
[15]), the latency bound of session ¢, denoted as ©, is

Lmaz Lmaz i
@; = mez 4 “mon ©

|
r T

Here L,,q4.,; is the maximum size of a packet in session 4 and

r; is the service rate guaranteed to session 7. Note in (9) that

the first term in RHS is the GPS-relative delay bound in both

W FQ and W F2(.

One important property of the latency bound ©;, shown in
[11], is that it can be viewed as the worst-case delay seen by a
session ¢ packet arriving into an empty session ¢ queue. It has
been shown in [11] that the latency bound is further connected

Sessions §

X1 X1 Y1
X2 X2 Y2
Reduce Schedule
o w7
. o) . 5 .
Xn Xn Yn

GPStimeline
<Y1,Y2, .., Yn> isapermutation of <X1, X2, ..., Xn>

Fig. 10. Converting a sorting instance to a scheduling instance

to the end-to-end delay bound of session i, denoted as DY, by
the following inequality:

DN <% (10)

+§:®J

Here N is the number of nodes (routers) that traffic in session
traverses and ©? is the latency bound of session 4 in j'th sched-
uler. Also, traffic in session i is leaky-bucket constrained and
o; is the size of the leaky bucket. This result is strong and im-
portant since different routers on the path may use different LR
schedulers, and (10) still holds in this heterogeneous setting.

B. Our complexity results

We show next, in Theorem 7, that to provide a tight latency
bound of O(n@)Lmez 4 Lme=.i for]| sessions i and 0 < a < 1,
when only direct comparrsons between inputs are allowed, the
complexity lower bound is Q(logn). Its implications are pro-
found. Note that for all schedulers on the path to be LR sched-
ulers with tight delay bounds is a sufficient rather than nec-
essary condition for achieving tight overall end-to-end delay
bounds. Therefore, Theorem 7 does not establish in full gen-
erality the complexity lower bounds for achieving tight end-to-
end delay bounds. However, there is substantial evidence [11]
that this is a “fairly tight” sufficient condition, since most ex-
isting scheduling algorithms that can collectively achieve tight
end-to-end delay bounds are LR schedulers. Theorem 7 essen-
tially states that such complexity lower bounds hold if the end-
to-end delay bounds are provided through a series of good LR
schedulers. One possible way of not using good LR schedulers
to establish tight end-to-end delay bounds is the dynamic packet
state (DPS) (introduced first in SCORE [22]) approach to con-
vey scheduling state information from one scheduler to another,
in the context of DiffServ. However, all current DiffServ algo-
rithms [22], [23] that provide tight delay bounds still require
the sorting of timestamps at the core routers. In other words,
they are not computationally cheaper than LR based approach,
although they are indeed cheaper in terms of packet classifica-
tion and storage costs at the core routers (therefore suitable for
DiffServ).

Theorem 7: When only comparisons between inputs are al-
lowed, the per packet computational complexity for an LR

12

scheduler to guarantee a latency bound of O(n®) Lz 4 L";” L
for0 <a < 1,is Q(logn). '

Proof: [sketch] This proof is similar to that of Theorems
1and 2. We only prove the case of @ = 0 (i.e., for latency
bound of O(1) Lma= 4 Lmes.iy since the proof can be extended
to the case 0 < a <1 |n the same way proof of Theorems
1 and 2 is extended to that of Theorem 3. The idea is again to
reduce a sorting instance to a scheduling instance. The schedul-
ing instance used in this proof (shown in Fig. 10), however, is
different from the instance used in the proof of Theorems 1 and
2 (shown in Fig. 4). The difference is that this instance only has
one packet per session starting at time 0, compared to two pack-
ets per session in the previous instance. This difference, how-
ever, does not affect our assertion® that comparing between the
virtual finish time of the packets in such scheduling instances
is equivalent to comparing between the inputs, since the vir-
tual finish time of the session 7 packet is nx; in both instances.
Therefore, comparing between the inputs is still a reasonable
computational complexity model under the new instance®. It
will be clear next why we switch to this new instance.

The rest of the proof again is similar to that of Theorems 1
and 2. A procedure for L-membership test is shown in Fig. 11.
Since it is very similar to the program shown in Fig. 5, we
show only the lines that are different. The main difference lies
in lines 8 — 11, where the program generates a packet arrival in-
stance in which only one (instead of two) packet per session ar-
rives at time 0, as discussed above. Then the program feeds this
scheduling instance into the procedure (O(1) Lmes 4 Lmae Zmas.i).
latency-Scheduler, which guarantees that it will not delay a
session 4 packet, which arrives at an empty session i queue,
by more than KL’"” + L’"T” £, Such a constant K exists
by the definition of O(1). Then, we show next in Lemma
8 that no packet will be displaced by more than K + 2 lo-
cations. Therefore, by the same arguments used in the proof
of Theorem 1, the computational complexity of the procedure
(O(1)Lmaz 4 Lmesiy | atency-Scheduler must be Q(n logn),
or Q(log n) per packet]

Lemma 8: Suppose the scheduler guarantees KM +

=maz.i |atency bound for all 4, and only direct comparisons be-
tween the inputs are allowed. Suppose that (z1, %2, --,%,) €
L. Then forany i, 1 < ¢ < n, there can be no more than
K + 2 packets among Ty, T5, - - -, T; 1 that are longer than T,
in the scheduler output right after the execution of the proce-
dure (O(1) Lmae 4 Imos, ’) Latency-Scheduler. (line 14 in Fig.
11).

Proof: This proof is similar to that of Lemma 4. In the
following, we refer to the procedure (0(1)@ + L*”%)
Latency-Scheduler as the scheduler. Since (z1,z2,---,%,) €
L, there exists a unique permutation = of {1, 2, ...,n}, such that
length(Tyry) < length(Tr(2)) < --- < length(Ty(y)). For
any ¢ > K + 3, suppose there are more than K + 2 packets
that are scheduled before T; and are longer than T;. Suppose
w(j) = i, 1.e., T; is the j'th smallest packet among {1 }1 <k <n-

L

8Recall that this assertion allows us to avoid discussing the complexity of
tracking GPS clock.

9We did not use this instance in earlier proofs, since the CBFS condition
satisfied by our previous instance has other important implications.

13

instance and feed it to schedul er */

the out put schedule fromthe scheduler */

1. Procedure L-Menmbership IV

2. input: mi,T2,---,%n

3. output: ‘yes'' if (z1,z2,---,zn) €L and ‘‘no’’

4. begin

5. /* Part |: Create a packet arrival

6. if 0<z;<Lmar for 1<i<n then proceed

7. el se answer ‘‘no’’ endif

8. for i=1 to n begin

9. create packet arrival A; to session i of

10. end /* for */

11. /* an idle line added for the alignnent with other figures */
12. cal | Procedure (O(1)%fmas 4 ’"‘““) Lat ency- Schedul er with

13. input: arrival instance A= {Ai}i<i<n

14. output: schedule T ={T;}1<i<n With the [atency guarantee
15. /* Lines 15 to 20 left enpty to synchronize with Fig.

21. /[* Part |1 ‘sort’’

................ sanme as in Fig. 5

ot herwi se

length z; at time O

5 */

Fig. 11. Algorithm 1V for L-Membership Test.

We claim that ¢ < j 4+ K + 2, that is, T; should not be displaced
backward by more than K + 2 positions. We prove this claim
by contradiction. We generate two arbitrary sets of real num-
bers {ak}1§k§n and {Bk}lﬁkﬁm where0 < ag < as < ... <
oy < 6and0 < Bn < Bn1 < ... < B1 < 6. Here d is set such
that § < Lme= \We conS|derWhat happens if we modify the in-
puts {:ck}lsk@ to the L-membership in the following way: x,
is changed to a () if 2 < x; and is changed to Loz — Br(x)
if zr > x;. Itis not hard to verify that the relative order of any
two numbers z; and x,,, is the same after the change. Note that
the scheduler is only allowed to compare between the inputs,
which are {z;}1<i<n, 0, and Ly,,,. One can easily verify that,
with the modified inputs, the decision tree of the procedure will
follow the same path from the root to the leaf as with the orig-
inal inputs, since all predicates along the path are evaluated to
the same values as with the original inputs. Consequently, the
output schedule of the packets remain the same with the modi-
fied inputs. In the new schedule with the modified inputs, since
there are more than K + 2 packets that are scheduled before
T; and are longer than me 4, the actual finish time of T;
is larger than (K + 2)Lmee—8 = g Lmas | 2lmaes (K427

Klmee 4 Lmae > [lLmee 4 " The last two inequal-

ities hoId smce we can assume Lmaz,i =6 < . This
assumption is valid because there is no session 4 packet in the
scheduling instance that is longer than §. Therefore the latency
of the packet T;; is larger than K@ + L*”% This violates
the latency rate guarantee of the scheduler. ' |

Lmaz K

Lmas

Finally, we identify one open problem that we feel very likely
to be solvable and its solution can be a very exciting result,
stated as Conjecture 2 below. Note that Conjecture 2 is strictly
stronger than Conjecture 1, as it can be shown that the former
implies the latter.

Conjecture 2: The complexity lower bound for an LR
scheduler (introduced in [11]) to achieve a tight latency bound
of O(1) £ Smas o —mess Lmas.i js ()(log n) per packet, under the deci-
sion tree model that allows linear tests.

Remark: Note that in this conjecture the CBFS condition is
not a part of the assumption, and therefore we cannot avoid the
issue of tracking GPS clock anymore. However, interestingly
FFQ, VC, and WF?2Q+ all achieve this tight latency bound
at the complexity of O(logn) per packet and without tracking
GPS clock perfectly. If this conjecture is true, it implies that
these algorithms are asymptotically optimal for achieving tight
latency bounds, which is an exciting result. Note that Corollary
1 proves this complexity lower bound under the weaker model
that allows only comparisons between inputs.

VI. RELATED WORK AND OUR RECENT RESULT

Since the first submission of this paper, we are working on
a closely related open problem'® “What is the computational
complexity lower bound of tracking the GPS clock?” During
this endeavor, we debunked a legendary myth in the QoS com-
munity that this lower bound is O(n) per packet, and discovered
that there is an O(logn) algorithm for keeping track of GPS
clock, proposed by Greenberg and Madras in [1]. An O(logn)
algorithm that nicely integrates the GPS tracking and timestamp
sorting is designed and implemented by Keshav [24]. In our re-
cent work [12], among others, we show that tracking the GPS
clock has a lower bound of Q(log n) per packet under the linear
decision tree. This lower bound matches the upper bound estab-
lished in [1] and [24]. However, neither tracking GPS perfectly
nor sorting the timestamps are shown to be necessary conditions
for achieving GPS-relative delay of O(1) under the linear de-
cision tree. Therefore conjectures 1 and 2 remain open despite
this recent progress.

VII. CONCLUSIONS

In this work, we clarify, extend and solve an open problem
concerning the computational complexity for packet schedul-
ing algorithms to achieve tight delay bounds. To the best of our

10Recall that the CBFS condition shields us from having to answer this ques-
tion in this paper.

knowledge, this is the first major step in establishing the com-
plexity lower bounds for packet scheduling algorithms. Our
three major results can be summarized as follows:

1)

2)

3)

We prove that 2(logn) is indeed the per packet com-
plexity lower bound to guarantee O(1) GPS-relative de-
lay (excluding the cost of tracking the GPS clock), if a
scheduling algorithm is only allowed to compare between
inputs (equivalently between GPS virtual finish times) in
its decision tree. Moreover, we prove that the complexity
lower bound remains the same even if the GPS-relative
delay bound is relaxed to O(n®) for 0 < a < 1, thus
establishing the complete tradeoff curve.

We are able to extend our complexity results to a much
stronger computational model: a decision tree that allows
linear tests. However, this comes at the cost of having
to enforce a slightly stronger type of delay (disadvantage
delay) in the same asymptotic amount (O(n®), 0 < a <
1). Nevertheless, we show that the overall results remain
stronger.

We study the computational complexity of providing end-
to-end delay bounds, under the Latency Rate framework
[11]. We show that the lower bound complexity of pro-
viding a tight latency bound of ”aLrw + L’"% inaLR
scheduler, when only comparisons between iniputs are al-
lowed, is Q(logn) per packet.

VIIl. ACKNOWLEDGMENTS

We thank the editor, Prof. Stavrakakis, for coordinating a

careful and expeditious review. We thank Dr.

Guo
Prof
this

Chuanxiong
for helpful discussions with the first author. We thank
. George Varghese for encouraging the first author to study
important open question. We thank Dr. Scott Shenker for

shepherding the conference version of this paper. We thank

Prof

. Ellen Zegura, Prof. Yechezkel Zalcstein, Mr. Shashidhar

Merugu and anonymous referees for their insightful comments
and suggestions that help improve the quality and accessibility
of the paper.

(1]

[

(31

(4]

(5]

(6]
(71
(8]

REFERENCES

A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” Internetworking: Research and Experience, pp.
3-26, 1990, Also in Proceedings of ACM SIGCOMM’89.

A. Greenberg and N. Madras, “How fair is fair queuing?,” Journal of the
ACM, vol. 39, no. 3, pp. 568-598, 1992, Also in Proc. of Performance
1990.

H. Zhang, “Service disciplines for guaranteed performance service in
packet switching networks,” Proceedings of the IEEE, vol. 83, no. 10,
Oct. 1995.

A. Parekh and R. Gallager, "A generalized processor sharing approach
to flow control in integrated services networks: the single node case,”
|IEEE/ACM Transaction on Networking, vol. 1, no. 3, pp. 344-357, June
1993.

J. Turner, “New directions in communications (or which way to the infor-
mation age?),” |EEE Communications Magazine, vol. 24, pp. 8-15, Oct.
1986.

J. Bennett and H. Zhang, “w f 2q: worst-case fair weighted fair queuing,”
in IEEE INFOCOM'’ 96, Mar. 1996.

M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round
robin,” in Proc. of ACM SGCOMM'’ 95, Aug. 1995, pp. 231-242.

M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighed round-
robin cell multiplexing in general-purpose ATM switch chip,” IEEE Jour-
nal on Selected Areas in Communications, vol. 9, pp. 1265-1279, Oct.
1991.

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]

14

C. Guo, “SSR: an O(1) time complexity packet scheduler for flows in
multi-service packet networks,” in Proc. of Sgcomm’' 01, Sept. 2001.

S. Suri, G. Varghese, and G. Chandranmenon, “Leap Forward Virtual
Clock: an O(log(log(n))) fair queuing algorithm,” in IEEE Infocom’ 97,
Kobe, Japan, Apr. 1997.

D. Stiliadis and A. Varma, “Latency-rate servers: a general model for
analysis of traffic scheduling algorithms,” in Proc. of Infocom’ 96, Mar.
1996.

Q. Zhao and J. Xu, “On the computational complexity of maintaining
gps clock in packet scheduling,” in Proc. of Infocom 2004, Hong Kong,
China, Mar. 2004.

L. Zhang, “Virtualclock: a new traffic control algorithm for packet
switching networks,” ACM Transactions on Computer Systems, vol. 9,
pp. 101-124, May 1991.

D. Stiliadis and A. Varma, “Design and analysis of frame-based fair queu-
ing: A new traffic scheduling algorithm for packet switched networks,” in
Proc. of ACM Sgmetrics 96, May 1996, pp. 104-115.

J. Bennett and H. Zhang, “Hierarchical packet fair queuing algorithms,”
|EEE/ACM Transactions on Networking, vol. 5, no. 5, pp. 675-689, 1997.
J. Xu and R. Lipton, “On fundamental tradeoffs between delay bounds
and computational complexity in packet scheduling algorithms,” in Proc.
of ACM Sgcomm, Aug. 2002.

A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1973.

D. Dobkin and R. Lipton, “A lower bound of %nz on linear search pro-
grams for the knapsack problem,” J. Comput. Syst. <ci., vol. 16, pp. 413—
417, 1978.

F. Heide, "A polynomial linear search algorithm for the n-dimensional
knapsack problem,” J. of the ACM, vol. 31, pp. 668—676, 1984.

M. Fredman and B. Weide, “On the complexity of computing of measure
of U[ai, b;],” Communications of the ACM, vol. 21, no. 7, July 1978.

G. Yuval, “Finding nearest neighbors,” Information Processing Letters,
vol. 5, no. 3, pp. 63-65, Aug. 1976.

I. Stoica and H. Zhang, “Providing guaranteed services without per flow
management,” in Proc. of ACM SGCOMM, Sept. 1999.

J. Kaur and H. Vin, “Core-stateless guaranteed rate scheduling algo-
rithms,” in Proc. of Infocom 2001, Anchorage, AK, Apr. 2001.

S. Keshav, “On the efficient implementation of fair queueing,” Internet-
working: Research and Experiences, vol. 2, pp. 157-173, 1991.

