Proc. of the ACM International Symposium on Software Testing and Analysis (ISSTA’02), ACM Copyright.

Gamma System:
Continuous Evolution of Software after Deployment!

Alessandro Orso, Donglin Liang, Mary Jean Harrold, and Richard Lipton
College of Computing
Georgia Institute of Technology

{orso|dliang|harrold|rjl} @cc.gatech.edu

ABSTRACT

In this paper, we present the GAMMA system, which facil-
itates remote monitoring of deployed software using a new
approach that exploits the opportunities presented by a soft-
ware product being used by many users connected through
a network. GAMMA splits monitoring tasks across different
instances of the software, so that partial information can
be collected from different users by means of light-weight
instrumentation, and integrated to gather the overall mon-
itoring information. This system enables software produc-
ers (1) to perform continuous, minimally intrusive analyses
of their software’s behavior, and (2) to use the information
thus gathered to improve and evolve their software.

1. INTRODUCTION

Developing reliable software is difficult because of soft-
ware’s inherent complexity and the limited availability of
resources. Many analysis and testing techniques have been
proposed for improving the quality of software during devel-
opment. However, because of the limitations of these tech-
niques, time-to-market pressures, and limited development
resources, software products are still being released with
missing functionalities or errors. Because of the growth of
the Internet and the emergence of ubiquitous computing, the
situation has worsened in two respects. First, the widespread
use of computer systems has caused a dramatic increase in
the demand for software. This increased demand has forced
many companies to shorten their software development time,
and to release software without performing required analysis
and testing. Second, many of today’s software products are
run in complicated environments: a software product may
need to interact through a network with software products
running on many other computers; a software product may
also need to be able to run on computers that are each con-
figured differently. It may be impractical to analyze and
test these software products before release under all possible
runtime environments and configurations.

{Patent pending.

In short, software is error-prone due to its increasing com-
plexity, decreasing development time, and the limitations of
current analysis and testing techniques. Thus, there is a
need for techniques that monitor software’s behavior during
its lifetime, and enable software producers to effectively find
and fix problems after the software is deployed in the user’s
environment. The problems include errors, incompatibility
with the running environment, security holes, poor perfor-
mance, poor usability, or failure of the system to satisfy the
users’ needs. Such techniques would let developers prevent
problems or at least efficiently react when they occur.

To address the need for continuous analysis and improve-
ment of software products after deployment in a general way,
we developed a new approach to software monitoring—the
GAMMA system, which is based on two core technologies:
Software Tomography, which (1) divides the task of monitor-
ing software and gathering necessary execution information
into a set of subtasks that require only minimal instrumen-
tation, (2) assigns the subtasks to different instances of the
software, so that none of the instances will experience signif-
icant performance degradation due to instrumentation, and
(3) integrates the information returned by the different soft-
ware instances to gather the overall monitoring information.
Onsite code modification/update, which enables modification
or update of the code on the users’ machines; this capability
lets software producers dynamically reconfigure the instru-
mentation to gather different kinds of information (e.g., to
further investigate a problem) and to efficiently deliver so-
lutions or new features to users.

The main contributions of the paper are: (1) the defini-
tion of a new technology, namely, software tomography, for
partial instrumentation; (2) the use of onsite software up-
dating for dynamically updating instrumentation after de-
ployment; (3) a new approach to software monitoring that
leverages software tomography and onsite updating to let
software producers (a) perform continuous, minimally intru-
sive analysis and testing of their software in the field, and
(b) use the information thus gathered to respond promptly
and effectively to problems and to improve and evolve their
software; and (4) a prototype system that we developed and
that implements our new approach for monitoring.

2. GAMMA CONCEPTS

There are several requirements for the GAMMA system to
be acceptable. The users require the execution monitoring
be low-impact, so that the monitored software executes with-
out noticeable performance loss; also, the execution monitor-
ing should be minimally intrusive, so that monitoring does
not affect users’ normal usage of the software. The develop-

Instance 1

Ol
Software Software Instance 2 \

,gx
L B L
S — |2
7 4%

Subtask 1

/

Instance 3 /

/
(Shescs H—" ﬂ

Figure 1: Software tomography.

ers’ require the system to be general, flexible, and facilitate
easy reconfigurability, so that developers can monitor and
collect information for a broad range of tasks.

This section presents the GAMMA concepts, and describes
how they meet the users’ and developers’ requirements.

2.1 Softwaretomography

Traditional monitoring approaches are based on instru-
mentation, and insert all the probes that are needed for
monitoring into each instance of the software. For most
monitoring tasks, this approach requires inserting probes
at many points in the software, significantly increasing its
size and compromising its performance. Such an approach
is unlikely to be accepted by the software users. For exam-
ple, monitoring for statement coverage may require inserting
probes in many basic blocks in the program, which in general
results in an overhead unacceptable for the user.

To accommodate users’ needs (i.e., to achieve low-impact
and minimally-intrusive monitoring), we developed a new
technique. Our technique divides the monitoring task into a
set of subtasks, each of which involves little instrumentation,
and assigns these subtasks to individual software instances
for monitoring. The technique then synthesizes the informa-
tion collected from the different instances, and obtains the
monitoring information required for the original task.

Figure 1 presents, in an intuitive way, this new monitor-
ing technique. In the figure, the leftmost box represents the
software to be monitored; the cloud shape within the box
indicates the monitoring information we want to collect—
the monitoring task. The geometric shapes in the adjacent
box on the right represent the monitoring subtasks; the fig-
ure shows how the combination of the information provided
within such tasks includes the required monitoring informa-
tion. Boxes labeled Instance 1, Instance 2, and Instance 3
represent the instances of the software running on different
user sites. Each instance performs one subtask, and sends
the information back to the producer. The figure also shows
how this returned information is integrated to provide the
monitoring information for the original task.

To use our new monitoring technique, which we call soft-
ware tomography, for gathering information for a specific
monitoring task, we must perform a set of steps. First, we
determine what information is needed for the task. Then, we
partition the original task into a set of subtasks, determine
the instrumentation required for each subtask, and assign
the tasks to the different instances. Finally, we instrument
the software instances by inserting probes. To perform these
steps, we must address many issues: identification of basic
subtasks, assignment of subtasks to instances, and optimiza-
tion of number and placement of probes.

2.1.1 Identification of basic subtasks.

Some simple tasks, such as monitoring for statement cov-
erage, can be easily partitioned into minimal subtasks—each
of which monitors one statement in the program. In this
case, instrumenting for a given subtask simply consists of
inserting a single probe for the statement associated with
this subtask, and the coverage for the entire program can be
assessed through a union of the information for each subtask.

More complex monitoring tasks may require that each sub-
task monitors more than one point in the program. For ex-
ample, for data-flow coverage, each subtask must monitor for
at least one data-flow association, which requires inserting
probes for the definition, the use, and all possible interven-
ing definitions. Nevertheless, also for this kind of task, the
basic subtasks can still be easily determined. In the case of
data-flow coverage, for example, the basic subtasks are the
data-flow relationships in the program.

Yet other tasks, such as monitoring for memory-access in-
formation, may require even more complicated techniques to
identify the basic subtasks. In fact, these tasks usually re-
quire recording execution facts that occur at several program
points. Thus, each subtask may require insertion of probes
in several points in the program. Moreover, each subtask
may also need to collect a large amount of information at
these program points. This kind of tasks may require static
program analysis techniques to identify the basic subtasks.

Note that software tomography, if suitably exploited, can
enable monitoring tasks that require too much overhead even
for their in-house application. For example, we may be able
to collect path-coverage information using software tomog-
raphy on a large enough number of software instances.

2.1.2 Assignment of subtasks to instances.

Software instances are executed by users at will and differ-
ent users may use different parts of the software. Therefore,
the frequency of execution and the parts of the software ex-
ercised may vary across instances and over time. To ensure
that we gather enough information for each subtask, so that
the overall monitoring information is meaningful, we may
need to assign a subtask to more than one instance. To
address this problem, we defined two main approaches.

The first approach uses feedback information from the
field to tune the instrumentation process. When the system
is instrumented for the first time, the subtasks are evenly
distributed among the different instances. When these in-
stances are deployed, we use dynamic data on the usage of
the instances to ensure that each subtask is assigned to at
least one frequently-used instance.

When we have enough historical data about the execution
of the single instances for such data to be statistically mean-
ingful, we analyze the data and identify which subtasks have
to be reassigned. To increase the efficiency of the approach,
we can also use historical data (if available) and static and
statistical analysis to optimize the initial assignment of tasks
to instances, and then use the dynamically-gathered infor-
mation to fine-tune the distribution of subtasks.

The second approach is also based on updating the code of
the different instances. Unlike the first approach, however,
in this case we change the assignment of the subtasks and re-
instrument the software instances from time to time, without
using feedback from the field. For example, a given subtask
may be assigned to a different instance every given time
period, using a round-robin-like approach. The subtasks to
be reassigned are those not adequately accomplished.

This latter approach is more suitable for cases in which
the different instances are not always accessible, and there-
fore the collection of information about their frequency of
execution may be problematic. An example is the software
running on a palm computer that is mostly disconnected and
provides only limited space for storing information locally.

2.1.3 Optimization of number and placement of probes.

Optimizing the number and placement of probes can fur-
ther reduce the instrumentation overhead for the software in-
stances. For many tasks, static information extracted from
the software can be used to reduce the number of probes
needed for a specific subtask. For example, if a data-flow
relation is such that the execution of the use implies the ex-
ecution of the definition, then the coverage information for
this data-flow relation can be inferred from the coverage in-
formation of the statement containing the use. Therefore,
we can monitor this data-flow relation using only one probe
at the use statement. For more complicated cases, more
sophisticated static-analysis techniques may be needed.

For many tasks, static information can also be used to op-
timize the placement of the probes. Such optimization can
further reduce the number of probes. For example, for path
profiling, we use an existing technique by Ball and Larus [2],
which can reduce the number of probes needed for the task.
The technique instruments a program for profiling by choos-
ing a placement of probes that minimizes run-time overhead.
We have adapted this technique so that it determines the
placement of probes that monitor only the desired paths in-
stead of all acyclic paths in the procedure or program.

When more than one subtask must be assigned to one soft-
ware instance, the way subtasks are grouped may affect the
number of probes needed. Thus, in these cases, optimizing
subtask grouping may let us reduce the instrumentation cost.
For example, in a data-flow coverage task, if two subtasks
are monitoring two data-flow relations that occur along the
same path, then assigning these two subtasks to the same
instance may enable sharing of some of the probes.

2.2 Onsite code modification/update

To use software tomography for software maintenance and
evolution, a software producer may require the capability
of gathering different or more detailed monitoring informa-
tion from time to time. For example, consider monitoring
for structural coverage. We may want to start monitoring
at the procedure level. If an instance behaves incorrectly,’
we can then start monitoring at the statement level to get
more precise information. In this case, we need to modify
the instrumentation of such instances to gather statement
coverage, rather than procedure coverage. Furthermore, to
evolve and maintain the software more effectively, the soft-
ware producer may also require the capability of deploying
updates to the users’ sites with minimal users’ involvement.

The GAMMA system accommodates these requirements us-
ing onsite code modification/update. Onsite code modifica-
tion/update can be implemented using a wide range of tech-
niques. At one end, the software producer can send the up-
dates through regular software distribution channels, such
as regular mail, e-mail, or posting on ftp sites. These tech-
niques require the users to participate actively, and there-
fore may not be effective or appropriate for some monitoring

'Here we assume that we have a way of identifying “abnor-
mal behaviors” in the software. A discussion on how we may
obtain this information is provided in Section 4.

tasks. At the other end, the software producer can connect
to the user’s site and update the software directly. These
techniques do not require the users to participate. However,
they may require sophisticated infrastructure support.
Existing work has proposed various techniques for updat-
ing a component within a software system even when the
program is being run (e.g., [4, 6]). To perform onsite code
modification/update, we can leverage these existing tech-
niques by selecting and adapting them based on the specific
context in which we are operating. More precisely, the way
we perform code modification/update is highly dependent
on several dimensions: connection type, platform character-
istics, software characteristics, and the monitoring task.

Connection type. We distinguish sites based on how of-
ten they are on-line. This dimension defines how much we
can rely on onsite updating. For sites that are always on-
line, such as desktop computers connected to a network, or
mostly on-line, such as cellular phones, we can easily perform
direct on-line updates. Sites that are mostly offline, such as
palm computers occasionally connected for synchronization,
require mechanisms to handle situations in which an update
is required, but a connection is not available. These mecha-
nisms include buffering of changes and polling for user’s on-
line availability, as well as user-driven updates at the time of
the connection. For the connection, we must also consider
the available bandwidth, and distinguish among connections
with different speeds. Obviously, the bandwidth constrains
the amount of information that can be sent from the pro-
ducer to the user. Low-speed connections may require the
use of sophisticated techniques to optimize the size of the up-
dates sent to the users, whereas for high-speed connections
the size of the updates is in general not an issue.

Platform characteristics. If the connection type permits
on-line and onsite updating, an adequate infrastructure must
be available on the users sites for the mechanism to be ac-
tivated. The difficulty involved in the development of such
an infrastructure is highly dependent on the characteristics
of the platform addressed. Some platforms may provide fa-
cilities for code updating at the operating-system level, and
require little additional infrastructure. Some other, more
primitive platforms, may require a very sophisticated infras-
tructure for the code updating to be usable. Yet other plat-
forms, such as mobile phones or not-so-powerful palm com-
puters, may have resources so limited that no infrastructure
can be provided—in these cases, updating can only be per-
formed off-line, despite the connectivity of the platform.

Software characteristics. When identifying onsite code-
updating techniques, we distinguish software systems based
on the level of continuity of their execution. Software that
is continuously running, such as an operating system, a web
server, or a database server, can only be updated using hot-
swapping mechanisms. Software that is not continuously
running, but may execute for a long period of time, such
as a mail client or a web browser, may require either hot-
swapping mechanisms or techniques for storing the updates
locally, until the application terminates its execution. Fi-
nally, software that executes for a short period of time, such
as simple console commands, does not impose in general spe-
cific requirements on the updating mechanism.

Monitoring task. The first characteristic of the monitoring
task that affects the way we perform onsite code modification
is the “locality” of the instrumentation required for the sub-

tasks composing the task. Monitoring that involves only “lo-
cal” instrumentation, such as instrumentation for coverage
of an intraprocedural path, can be modified through changes
affecting only a small portion of the code; updating informa-
tion for this kind of monitoring is in general limited in size
and therefore suitable for on-line code modification. On the
other hand, monitoring tasks that require widespread instru-
mentation, such as instrumentation for coverage of interpro-
cedural definition-use pairs involving several procedures and
several alias relations, require changes in several different
places of the code; this kind of updates may be considerably
large, and may require efficient techniques to reduce their
size before sending them to the users. The second charac-
teristic of the monitoring task that affects the onsite code
modification mechanisms used is the estimated frequency of
updates. Tasks that involve frequent updates require effi-
cient modification mechanism, such as on-line hot swapping,
whereas tasks characterized by infrequent modifications do
not generally constrain the update mechanism used.

3. EXPERIENCE WITH GAMMA

We developed a prototype of the GAMMA system and per-
formed a case study to assess the feasibility of the approach.
We provide only a high-level description of the system and of
the case study; Reference [8] provides a detailed description.

The GAMMA system is composed of four main components:
Instrumentation Policy Generator (IPG), which divides a
monitoring task into a set of subtasks and assigns the sub-
tasks to individual instances of the software to be monitored;
Instrumentation Manager (IM), which instruments a soft-
ware instance according to the directives produced by IPG;
Information Collector (IC), which collects the information
output by the probes when a software instance is executed
and sends it back to software producers for analysis; and
Synthesizer Analyzer/Visualizer (SAV), which synthesizes
and analyzes the information sent back from the IC compo-
nents located at the various user sites, presents the resulting
information to software producers, and assists software pro-
ducers in discovering and investigating problems.

After the software is deployed, the software producers can
use the GAMMA system to start monitoring the software’s
execution. Based on the information collected, software pro-
ducers can then decide to (1) continue monitoring the soft-
ware in the same way, (2) reconfigure the software instances
for further investigation, or (3) modify and evolve the soft-
ware.

The current implementation of GAMMA is targeted to Java
code, is written in Java, and provides software-tomography
and onsite-code-modification/update capabilities. The IPG
module is currently able to define policies for monitoring
structural coverage at different levels—statement, method,
and class coverage. We split the IM module into two parts:
a producer-site component (IM,) and a user-site component
(IM,). For each instance, the producer-site component in-
puts the instrumentation policy generated by the IPG mod-
ule, suitably instruments the instance at the bytecode level
using Soot [12] (for method- and class-level instrumentation)
and Gretel [10] (for statement-level instrumentation), and
sends the instrumented parts of the code to the user-site
component. The user-site component deploys the updates
on the user site using a hot-swapping mechanism [9]. We
implemented the IC module as an in-memory data structure
that is added to the instances by the IM module and gets up-
dated during execution. At given time intervals, and when

the program terminates, the monitoring information is sent
back to the producer site, via TCP sockets. The SAV com-
ponent is composed of (1) a network layer, that listens for
communications from the IC modules at the different sites,
(2) a database, where the monitoring information is syn-
thesized and stored, and (3) a visualization tool that shows
to the producer the monitoring information in a graphical
fashion and lets the producer analyze such data. The vi-
sualization tool shows in real-time the information in the
database using a SeeSoft [3, 7] view of the program moni-
tored, and coloring the different entities in the code based
on coverage information.

To assess the system, we performed a case study using
JABA [1], an analysis tool developed by some of the authors,
as a subject program. JABA consists of 419 classes and
approximately 40KLOC. We monitored for three tasks—
statement coverage, method coverage, and class coverage.
For each task, we (1) generated the instrumentation policies,
(2) used the IM, module to build the instrumented version
of the instances, based on the instrumentation policies pre-
viously defined, and (3) released the different instances to
the (nine) students working in our group. As students used
their version of JABA for their own work, the probes reported
the corresponding coverage information back to a server that
gathered and analyzed the coverage information.

We performed three case studies: residual coverage [10], in
which we used the GAMMA system to reduce the instrumen-
tation by dynamically eliminating probes for those parts of
the code already covered; incremental monitoring, in which
we used the GAMMA system to instrument the subject for
class monitoring and, as soon as a class was reported as
covered in a given instance, to update the code in that in-
stance to collect method and then statement coverage for the
methods in the class; and feedback-based instrumentation, in
which we optimized the assignment of subtasks to instances
using the strategy described in Section 2.1.2. More details
on the case studies are available in Reference [8].

Although preliminary in nature, the results of these stud-
ies are encouraging, in that they provide evidence of the
feasibility of the approach and motivate further research.

4. OPENISSUES

There are issues related to the GAMMA system that we
have not addressed or have only marginally addressed.

41 Oracles

When collecting coverage information through remote mon-
itoring, we may not have information about the program’s
behavior—whether it executes correctly. To effectively use
coverage information collected in the field for testing, we
require information about the program’s behavior. To this
end, we will combine several approaches. First, we expect a
percentage of the users to actually send bug reports contain-
ing information that we can use to relate failures to mon-
itoring information. Second, we will automate part of this
process by trapping failures, such as program crashes, and
possibly using assertions for sanity checks. Third, we will
further investigate the automatic identification of possible
failures using mechanisms that compare programs’ behav-
ior signatures (e.g., [2, 5, 11]) computed in the field with
signatures computed in-house.

4.2 Information Composability

In our preliminary experience, we have found that it is fea-
sible to perform some monitoring tasks by introducing only

a limited number of probes, using software tomography. In
general, dependences among the entities we are monitoring
limit the composability (and thus de-composability) of the
monitoring information, and therefore complicate the use of
software tomography for these kinds of tasks. We will ad-
dress these issues using program analysis techniques. For ex-
ample, we are investigating static identification of subsump-
tion relations among program entities that let us reduce the
number of probes and optimize subtask assignment.

4.3 Scalability

One of the strengths of the GAMMA system is its ability
to split monitoring tasks across different instances of the
software, thus leveraging the presence of several users con-
nected through a network. So far, we addressed only a small
number of users. Interacting with a possibly high number
of users may raise scalability issues unforeseen in our initial
experimental setting. Nevertheless, we are confident that
we will be able to leverage today’s available technology to
address the aforementioned problems. For example, data-
mining and database technologies can be used to address
data-management problems, and the use of a distributed ar-
chitecture can address issues related to network bottlenecks.

4.4 Privacy and Security

Two important issues that we must address are privacy
and security [10]. Privacy concerns arise in the information
collection phase, in which sensitive and confidential infor-
mation may be sent from the user site to the production
site. One way to address the problem is to let users verify
the information returned to the producer site, but this solu-
tion may be unacceptable when monitoring tasks require fast
and frequent communication between producer and users. In
these cases, users can have two choices: (1) permit the gath-
ering of information (which may still be logged and available
for off-line checking) and utilize the presence of the GAMMA
system (e.g., in terms of prompt and customized updates);
and (2) forbid the sending of information and therefore be
excluded from the monitoring. Security concerns involve
both producers and users, and are related to the possibility
of an attacker tampering with the communication between
the two parties. To address these issues, we will leverage ex-
isting mechanisms, such as private/public key cryptography
mechanisms and digital signatures.

5. CONCLUSION

We have presented the GAMMA system, which supports
continuous evolution and maintenance of software products
based on monitoring after deployment. Although previous
approaches exist with similar goals, the GAMMA system is
unique in its exploitation of high numbers of users and net-
work connectivity to split the monitoring tasks across differ-
ent instances of the software. Such splitting, which we call
software tomography, facilitates gathering monitoring infor-
mation through light-weight instrumentation. We described
how GAMMA, by combining software tomography and onsite
code modification/update, enables the software producer to
perform different monitoring tasks and collect useful infor-
mation on the software from the field.

We have also presented our current implementation of the
GAMMA system and described our initial experience with the
system. Although preliminary in nature, our study lets us
assess the practical feasibility of the approach for the set of
monitoring tasks considered, and motivates further research.
The GAMMA system has the potential to change the way we

create, test, debug, and evolve software. Moreover, because
of the way monitoring-based software evolution can be man-
aged, users will perceive that the software they are using
automatically evolves to better serve their needs.

Our ongoing and future work follows three main direc-
tions: (1) extending the set of monitoring tasks, by selecting
tasks with increasing levels of complexity; (2) investigating
effective ways of identifying software instances that are be-
having incorrectly; and (3) further evaluating the system, by
extending the base of users and by targeting different kinds
of systems, such as embedded software on mobile devices.

Acknowledgments

Partially supported by grants to Georgia Tech from Boeing
Aerospace Corp., NSF awards CCR-9988294, CCR-0096321,
and EIA-0196145, and the State of Georgia under the Ya-
macraw Mission. Michal Young provided the tool Gretel,
which we used for instrumentation. T. Apiwattanapong, J.
Bowring, J. Jones, and A. Rao provided useful ideas and
comments, and helped with the system’s implementation.

6. REFERENCES

[1] Aristotle Research Group. JABA: Java Architecture for

Bytecode Analysis. http:

//www.cc.gatech.edu/aristotle/Tools/jaba.html.

T. Ball and J. R. Larus. Efficient path profiling. In

Proc. of the 29th Int’l Symp. on Microarchitecture,

pages 46-57, 1996.

[3] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr.

Seesoft-a tool for visualizing line oriented software

statistics. IEEE TSE, 18(11):957-968, 1992.

D. Gupta, P. Jalote, and G. Barua. A formal

framework for on-line software version change. IEEE

TSE, 22(2):120-131, Feb. 1996.

[5] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and
Y. L. An empirical evaluation of the correlation
between fault-revealing test behavior and differences
in program spectra. Journal of Software Testing,
Verification, and Reliability, 2000.

[6] M. Hicks and J. Moore. Dynamic software updating. In
Proc. of the ACM SIGPLAN 01 Conf. on Prog. Lang.
Design and Implementation, pages 13-23, jun 2001.

[7] J. A. Jones, M. J. Harrold, and J. Stasko.
Visualization of Test Information to Assist Fault
Localization. In Proc. of the 24th Int’l Conf. on Softw.
Eng., 2002.

[8] A. Orso, D. Liang, M. J. Harrold, and R. Lipton.
Gamma System: Continuous Evolution of Software
after DeploymentD. Technical Report GIT-CC-02-06,
Georgia Tech, February 2002.

[9] A. Orso, A. Rao, and M. J. Harrold. Dusc: Dynamic
Updating through Swapping of Classes. Technical
Report GIT-CC-02-24, Georgia Tech, March 2002.

[10] C. Pavlopoulou and M. Young. Residual test coverage
monitoring. In Proc. of the 21st Int’l Conf. on Softw.
Eng., 1999, pages 277-284, May 1999.

[11] T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with
applications to the year 2000 problem. In Proc. of the
6th European Softw. Eng. Conf. , pages 432-449, Sept.
1997.

[12] Sable Group. SOOT: a Java Optimization Framework.
http://www.sable.mcgill.ca/soot/.

[2

[4

