
Visualization of Program-Execution Data

for Deployed Software

Alessandro Orso

College of Computing

Georgia Institute of Technology

orso@cc.gatech.edu

James Jones

College of Computing

Georgia Institute of Technology

jjones@cc.gatech.edu

Mary Jean Harrold

College of Computing

Georgia Institute of Technology

harrold@cc.gatech.edu

Abstract

Software products are often released with missing function-
ality, errors, or incompatibilities that may result in failures
in the field, inferior performances, or, more generally, user
dissatisfaction. In previous work, we presented the Gamma
technology, which facilitates remote analysis and measure-
ment of deployed software and allows for gathering program-
execution data from the field. When monitoring a high num-
ber of deployed instances of a software product, however, a
large amount of data is collected. Such raw data are useless
in the absence of a suitable data-mining and visualization
technique that supports exploration and understanding of
the data. In this paper, we present a new technique for
collecting, storing, and visualizing program-execution data
gathered from deployed instances of a software product. We
also present a prototype toolset, Gammatella, that imple-
ments the technique. We show how the visualization capa-
bilities of Gammatella allows for effectively investigating
several kinds of execution-related information in an interac-
tive fashion.

CR Categories: D.2.5 [Software Engineering]: Testing
and Debugging—Monitors, Testing tools, Tracing

Keywords: Gamma technology, software visualization,
remote monitoring

1 Introduction

The development of reliable and safe software is difficult.
Quality assurance tasks, such as testing, analysis, and per-
formance optimization, are often constrained because of
time-to-market pressures and because products must func-
tion in a number of variable configurations. Consequently,
released software products may exhibit missing functional-
ity, errors, incompatibility with the running environment,
security holes, or inferior performance and usability.

Many of these problems arise only when the software runs
in the users’ environments and cannot be easily detected
or investigated in-house. To analyze and investigate the

behavior of deployed software, we developed the Gamma
technology [Bowring et al. 2002; Orso et al. 2002]. Gamma
is based on the use of lightweight instrumentation to col-
lect various kinds of program-execution data—information
about deployed software gathered during its execution in
the field. Some examples of program-execution data are
coverage data, exception-related information, profiling in-
formation, and performance data such as memory and CPU
usage.

Unfortunately, the monitoring of a high number of de-
ployed instances of a software product can produce a huge
amount of program-execution data. Furthermore, when col-
lecting more and more kinds of program-execution data from
the field, not only does the size of the data grow, but also
their complexity: different kinds of data may have intricate
relations that require such data to be analyzed together to
be understood.

Obviously, such an avalanche of data cannot be analyzed
manually. To be able to extract meaningful information
about the program behavior from the raw data and exploit
their potential, we need suitable data-mining and visual-
ization techniques. In particular, visualization techniques
can be very effective in transforming program-execution data
into visual information that can be explored and easily un-
derstood [Baker and Eick 1995; Gray et al. 2002; Reiss and
Renieris 2001; Stasko et al. 1998; Storey and Müller 1995].

In this paper, we present a new visualization approach
that can efficiently represent different kinds of program-
execution data and allows for investigating the data to study
the behavior of programs in the field. The approach is de-
fined for a context in which a number of instances of a
program are continuously monitored, and has the follow-
ing characteristics: (1) it provides a hierarchical view of the
code, so that the user can navigate the program at different
levels of detail while studying the program-execution data;
(2) it is flexible in the kind of program-execution data it can
show for each execution; and (3) it accounts for a dynamic,
constantly increasing, and possibly very large number of ex-
ecutions through the use of filters and summarizers.

We also present a prototype toolset, Gammatella, that
implements the visualization approach and provides ca-
pabilities for instrumenting the code, collecting program-
execution data from the field, and storing and retrieving
the data locally.

Finally, we report two possible applications of our visu-
alization technique, exceptions and profiling analyses, and
a feasibility study. In the study, we use Gammatella to
collect, store, visualize, and investigate program-execution
data gathered from instances of a real software program dis-
tributed to a set of users. The study shows how the visual-
ization capabilities of Gammatella let us effectively inves-
tigate several kinds of program-execution data in an interac-

tive fashion and get meaningful insights into the monitored
program’s behavior.

The main contributions of the paper are:

• a new visualization approach that allows for visualizing
various kinds of program-execution data and for inter-
actively studying a program’s behavior;

• a toolset, Gammatella, that implements the visualiza-
tion approach and provides instrumentation and data-
collection capabilities; and

• a case study that shows the feasibility of the approach.

2 Visualization Technique

In this section, we describe the visualization approach that
we defined to enable continuous monitoring and exploration
of program-execution data collected from deployed software.

One goal of our work is to provide an interface that can
scale to large programs and that can handle a number of
executions by many users. To achieve this goal, we defined
a visualization approach that provides:

• representation of software systems at different levels of
detail;

• use of coloring to represent program-execution data;

• explicit representation and visualization of program-
execution data about each execution together with its
properties; and

• capabilities for filtering and summarizing the program-
execution data in an interactive way.

2.1 Representation Levels

To investigate the program-execution data efficiently, we
must be able to view the data at different levels of detail. In
our visualization approach, we represent software systems at
three different levels: statement level, file level, and system
level.

Statement level The lowest level of representation in our
visualization is the statement level. At this level, we rep-
resent actual source code, and each line of code is suitably
colored (in cases where the information that we are repre-
senting does involve coloring). Figure 1 shows an example
of a colored set of statements in this view. The statement
level is the level in which users can get the most detail about
the code. However, directly viewing the code is not efficient
for any program of non-trivial size. To alleviate this prob-
lem, our visualization approach provides representations at
higher levels of abstraction.

...
finallyMethod.setName(
 handlers.getFinallyNameForCFGStartOffset(finallyStartOffsets[i]));
if (numFinallyBlocks != 0) {
 finallyMethod.setType(Primitive.valueOf(Primitive.VOID));
 finallyMethod.setContainingType(parentMethod.getContainingType());
}
finallyMethod.getContainingType().getProgram().addSymbol(finallyMethod);
finallyMethod.setDescriptor(new String("()V"));
finallyMethod.setSignature(parentMethod.
...

Figure 1: Example of statement-level view.

File level The representation at the file level provides a
miniaturized view of the source code. We use a technique
similar to the one introduced by Eick and colleagues in the
SeeSoft system [Ball and Eick 1996; Eick et al. 1992]. We
map each line in the source code to a short, horizontal line
of pixels. Figure 2 shows an example of a file-level view for
the statements in Figure 1. This “zoomed away” perspective
lets more of the software system be presented on one screen.
Colors of the statements are still visible at this scale, and the
relative colorings of many statements can be compared. This
approach presents the source code in a fashion that is intu-
itive and familiar because it has the same visual structure as
the source code viewed in a text editor. This miniaturized
view can display many statements at once. However, even
for medium size programs, a significant amount of scrolling
is still necessary to view the entire system. For example,
the subject program for our feasibility study, which consists
of about 60KLOC, requires several full screens to be rep-
resented with this view. Monitoring a program of this size
would require scrolling back and forth across the file-level
view of the entire program, which may cause users to miss
important details of the visualization.

...

...

Figure 2: Example of file-level view.

System level The system level is the most abstracted level
in our visualization. For the representation at this level we
use the treemap view developed by Schneiderman [Shnei-
derman 1992] as well as extensions to this view developed
by Bruls and colleagues [Bruls et al. 2000]. The treemap
visualization is a two-dimensional, space-filling approach to
visualizing a tree structure in which each node is a rectangle
whose area is proportional to some attribute of that node.
Treemaps are extremely effective in showing attributes of
leaf nodes by size and color coding. We chose to use
treemaps because they are especially effective in letting users
spot unusual patterns in the represented data. Moreover,
treemaps can efficiently encode information for large-sized
programs. In a 1280x1024 display, we can visualize, on aver-
age, programs of more than 4,000 files [Shneiderman 1992].

Figure 3 shows an example hierarchy and the resulting
treemap. The traditional tree view shows eight nodes: the
five leaf nodes representing program classes of varying sizes
(shown in parentheses) and the non-leaf nodes represent-
ing their packages. The treemap view shows these eight
nodes as rectangles whose area is proportional to the rela-
tive size of the file (or package). For example, the rectangle
for HashMap occupies 40% of the treemap area because the
size of HashMap is 40% of the size of the java package.

An algorithm to build treemaps (1) starts with a rectangle
that represents the root node and occupies the whole visu-
alization area, (2) divides the root-node rectangle so that
each child is allotted an area proportional to its size (or the
sum of the sizes of its leaves), and (3) recurses for each of
its children until the leaf nodes are reached.

For our system-level view, we build a tree structure that
represents the system. The root node represents the entire
system. The intermediate non-leaf nodes represent modu-
larizations of the system (e.g. Java packages). The leaf

Figure 4: Example that illustrates the steps of the treemap node drawing.

Object(10) System(20) HashMap(40) Stack(10) Vector(20)

util(70)lang(30)

java (100)

Object

System

HashMap

Stack

Vector

T
ra

di
tio

na
l t

re
e

vi
ew

T
re

em
ap

 v
ie

w

Figure 3: Example of treemap view applied to a sample
hierarchy.

nodes represent source files in the system. We then apply
the treemap visualization to this tree. The size of the leaf
nodes is proportional to the number of executable statements
in the source file that it represents.

2.2 Coloring

We use coloring to summarize information about the pro-
gram-execution data. The coloring technique that we apply
is a generalization of the coloring technique that we defined
for fault-localization [Jones et al. 2001]. In the following,
we first describe the general coloring mechanism, without
considering the different levels of the representation. Then,
we describe how the coloring approach maps to the three
levels. The key idea of our coloring is to represent one- or
two-dimensional information for each statement using the
hue and the brightness components.

Hue component For the hue component, we use the con-
tinuous spectrum of colors that goes from red to yellow to
green. The range of hues considered is therefore one third of
the color wheel. The reason why we consider only this subset
of colors is because of the analogy with a traffic light: col-
ors red, yellow, and green intuitively convey the concepts of
danger, caution, and safety, respectively, and can therefore
be used to identify statements that require high, medium,
or no attention. Although to account for different types of
color-blindness, we could use other ranges of the color spec-
trum.

Without loss of generality, we express the hue in terms

of degrees on the color wheel, with red represented by value
0 and green represented by value 120. Each statement is
assigned a hue in such range. The way colors are assigned
to statements depends on the kinds of program-execution
data represented. Section 4 provides examples of uses of the
coloring information for two applications.

Brightness component For the brightness component, we
use the entire range of possible values. We express the
brightness using a real number and assign value 0 to the min-
imum brightness and 1 to the maximum brightness. Again,
the way the value for brightness is assigned to each statement
depends on the kind of program-execution data represented,
as shown in Section 4.

The coloring applies differently to the different represen-
tation levels. For the statement-level and the file-level rep-
resentations, no mapping is necessary: for each statement,
the color (i.e., hue and brightness) of the statement is used
to color the corresponding line of code in the statement-level
representation and the corresponding line of pixels in the file-
level representation. (For the sake of simplicity, we assume
that each line of code contains at most one statement. If this
is not the case, the code can always be suitably formatted
to satisfy this requirement, or the color can be averaged.)

For the system-level representation, there is no one-to-one
mapping between statements and visual entities. Therefore,
we defined a mapping to maintain color-related information
in the treemap view. Each leaf node (i.e., rectangle) in the
treemap view represents a source file.

To map the color distribution of the statements in a source
file to the coloring of the node that represents that source
file, we use, in turn, a treemap-like representation to further
partition each node. (In this sense, we are embedding a
treemap within each treemap node.) For example, if half of
the statements in a source file were colored bright red, and
the other half were colored dark green, the node would be
colored as such—half of it would be colored bright red and
half of it would be colored dark green.

However, using a traditional treemap algorithm for color-
ing the nodes would likely cause the colors to be laid out in
a different fashion for different files. For example, say the
colors assigned to the statements in source file A were evenly
distributed among four colors: bright red, dark red, bright
green, and dark green. To color the node in the treemap
view, we may use a traditional treemap algorithm to fur-
ther divide node A (that represents source file A) into four
equally-sized blocks, each colored by one of the specified
colors. However in a traditional treemap algorithm, relative
placement of nodes is not guarenteed. So, in node A, the
bright red block may be placed in the upper-right corner,
but in node B that represents similar proportions of colored

statements, the bright red block may be placed in the lower-
left corner. In a treemap view that contains many nodes,
a non-uniform look for all nodes will likely cause confusion
as to where the boundaries of the nodes lie. Therefore, we
chose to keep the same layout of colors within each node
while still showing the color distribution in a treemap-like
fashion. The layout we use is characterized by varying the
hue across the horizontal axis and by varying the brightness
across the vertical axis. Figure 4(b) shows an example of
this layout.

This layout determines the relative placement of the col-
ors within each treemap node, but does not define how the
colors are mapped to colors assigned in the statement-level
or file-level representations. We thus defined a technique for
skewing the colors of Figure 4(b) to present the appropriate
proportions of colors assigned while preserving the layout of
the colors.

We explain this technique while illustrating it on the ex-
ample in Figure 4. Assume that the sample miniaturized
source-code view shown in Figure 4(a) is a source file com-
posed of a set of statements, with related colorings, to be
mapped into a treemap node.

The skewing of the color layout is performed in four steps.
The first step plots the color of each statement onto a co-
ordinate system with hue varying across the horizontal axis
and brightness varying across the vertical axis. For the con-
sidered example, this step would result in the points plotted
on the hue/brightness space in Figure 4(b), in which each
point represents a statement in Figure 4(a) positioned at the
appropriate hue and brightness.

The second step segments the space horizontally and ver-
tically into equal-sized blocks to create a discrete bucket for
each block, so as to categorize the statements’ colors. This
segmentation is shown in Figure 4(c). For the sake of sim-
plicity, in this example, we use only four segments vertically
and four segments horizontally, resulting in sixteen blocks;
however, in a real application, we would normally perform a
finer-grained categorization. After the segmentation is com-
plete, each block is drawn with a representative color—the
median color of the colors in the block.

The third step determines, for each row, the width of each
block. To this end, we compute the ratio of the number of
statements in the block to the number of statements in the
entire row. The width of each block is proportional to this
ratio. The widths of the blocks for the considered example
is shown in Figure 4(d). The technique assigns the leftmost
block in the first row 5/6th of the total width of the node
because five of the six points in the row fall into this block.
Likewise, the coloring technique assigns the rightmost block
the remaining 1/6th of the width of the node. The middle
two blocks in the first row are eliminated (i.e., they are as-
signed width 0) because they contain no points. Note that
the technique assigns no widths for the second row because
no points fall into this row.

The final step determines the height of each row by com-
puting the ratio of the number of statements in the row to
the number of statements in the entire node. The height
of the blocks for the considered example is shown in Fig-
ure 4(e), which is the final representation of the node. The
technique assigns the first row 6/10th of the total height of
the node because six of the ten points in the node fall into
this row. The last two rows are each assigned 2/10ths of the
total height of the node.

This coloring technique results in blocks that are propor-
tional in size to the number of statements plotted in them
and, in addition, maintains the layout of the color blocks for

each node. For example, the brightest green block, which
contained five of the ten statements, results in half of the
total area of the node (5/6 ∗ 6/10 = 1/2).

2.3 Representation of Executions

To represent executions, we use an execution bar : a virtually
infinite rectangular bar, of which only a subset is visible at
any time. The bar consists of bands of the same height of
the bar but of minimal width. Minimal width refers to a
width that is as little as possible but can still be seen. The
actual width depends on the characteristics of the graphical
environment, such as the size and resolution of the display.
Figure 5 shows a simple example of an execution bar.

Figure 5: Example of execution bar.

Each band in the execution bar represents a different ex-
ecution of the monitored program in the field (i.e., a run of
the program and the data collected during such execution).
Depending on the kind of program-execution data that we
are representing, the bands in the execution bar may or may
not be colored. For the coloring of the bands, we can use
one or both of the two dimensions that we use for the code
coloring: hue (from red to green) and brightness.

We defined the execution bar to be of virtually infinite size
to account for a high and continuously increasing number of
program-execution data collected from the field. Because
we can show only a part of the execution bar on the screen,
we assume the actual implementation of an execution bar to
provide navigation capabilities, such as scroll bars.

2.4 Filtering and Summarization

To support the investigation of a possibly high number of
program-execution data, our visualization technique encom-
passes filtering and summarization capabilities. Before de-
scribing filtering and summarization, we briefly discuss the
concept of execution properties. Execution properties are
properties that we associate with each execution. Examples
of execution properties are the version of the Java Virtual
Machine used to perform the execution, the ID of the user
that performed the execution, and the name and version of
the operating system used.

The set of execution properties collected may depend on
the specific execution context and on the goal of the moni-
toring. For the discussion of filtering and summarization it
is enough to know that we consider execution properties that
can be expressed as a set of alphanumeric pairs (key, value).
Table 1 presents an example for the four properties men-
tioned above.

java.version = 1.4.1 01
user.id = nXrPEQ7zq8w5JeY99FAxfThrFn
os.name = Linux
os.version = 2.4.18-18.8.0

Table 1: Four example properties.

Section 3 discusses in greater detail the specific set of
properties that we currently collect from deployed software.

Filters A filter lets us select only a subset of executions to
be visualized. A user can include or exclude a set of ex-
ecutions based on the properties of such executions. For
example, the user may choose to show only the executions
that were run at a particular site, on a particular day, and to
exclude those executions that raised a particular type of ex-
ception. More precisely, a filter is expressed as a disjunction
or conjunction of predicates over the set of execution prop-
erties, with the syntax described in Table 2. For example,
the following filter

(java.version 6= ′1.3.0′) and (os.name = ′Linux′)

would select only those executions of the monitored program
for which the version of the Java Virtual Machine used is not
1.3.0 and the operating system is Linux.

〈filter〉 ::= 〈predicate list〉
〈predicate list〉 ::= 〈predicate〉 | ′(′ 〈predicate list〉

〈bool op〉 〈predicate list〉 ′)′

〈predicate〉 ::= 〈property〉 〈op〉 〈value〉
〈op〉 ::= ′ =′ | ′ 6=′

〈bool op〉 ::= ′and′ | ′or′

〈value〉 ::= alphanumeric string
〈property〉 ::= property name

Table 2: Syntax for the filters.

Summarizers A summarizer lets us aggregate the program-
execution data for a set of executions. A summarizer is sim-
ply expressed as a list of properties over which to aggregate:

〈summarizer〉 ::= (〈property〉)∗

For example, summarizer “java.version, user.id” would
group all the executions for which the properties
java.version and user.id have the same value. This opera-
tion corresponds to identifying equivalence sets in the execu-
tions with respect to the specified properties. Currently, the
only equivalence relations that we consider is equality, but
we plan to extend our technique to include a richer and more
powerful set of relations. From the visualization standpoint,
all the executions in an equivalence class are represented by
only one band in the execution bar. If the summarization is
performed for a representation that involves coloring of the
execution bar, the color of each band is computed by av-
eraging the color (i.e., hue and brightness) of all the bands
whose executions are in the corresponding equivalence class.

Filtering and summarization are powerful instruments
for managing, investigating, and understanding the large
amount of program-execution data. Filtering can help the
user focus on only a subset of executions at a time. Summa-
rization can help the user identify correlations among execu-
tions. Section 4 provides examples of the usefulness of these
two features.

3 The Toolset

In this section, we describe the Gammatella toolset. Be-
sides implementing the visualization approach described in
Section 2, Gammatella also provides capabilities for instru-
menting the code, collecting program-execution data from
the field, and storing and retrieving the data locally. Gam-
matella is written in Java, supports the monitoring of Java
programs, and consists of three main components: an Instru-
mentation, Execution, and Coverage Tool, a Data Collection
Daemon, and a Program Visualizer.

3.1 InsECT

Before describing InsECT, we introduce the concepts of
code coverage, profiling, and instrumentation. Code cov-
erage is a measure of the extent to which some entities in a
program have been exercised as a consequence of one or more
executions of the program. In general, code coverage for a
given type t of entities with respect to a set of executions
E is expressed in terms of the number of t entities exer-
cised by E over the total number of t entities. For example,
statement coverage is expressed as the number of statements
in the program exercised by the considered executions with
respect to the total number of statements in the program.

Profiling is a measure of how much some entities in a
program have been exercised during one or more executions
of the program. In general, profiling for an entity e with
respect to a set of executions E is expressed in terms of how
many times e has been exercised by E.

The measuring of code coverage and profiling generally
requires instrumentation of the code: probes are inserted in
specific parts of the code prior to execution so as to report
when they are executed. For example, for edge profiling,
a probe can be inserted for each edge so that, as the pro-
gram executes, it reports the number of times each edge is
executed.

The Instrumentation, Execution, and Coverage Tool (Ins-
ECT) that we developed is a modular, extensible, and cus-
tomizable instrumenter and coverage analyzer written in
Java. Within Gammatella, we use InsECT to instrument
for statement coverage, branch coverage, call coverage, ex-
ception coverage, and statement and branch profiling. In
addition, InsECT reports, for each execution, various in-
formation about the user environment, including a unique
identifier for the machine and the user, the operating sys-
tem brand and version, and the Java Virtual Machine brand
and version.

It is worth noting that, with InsECT, we can instrument
the whole program or only parts of it. For example, in the
case of a program that consists of multiple components, we
can instrument only a subset of the components (e.g., the
ones developed in house or the most critical ones) and collect
execution data only for those components.

All the above information is collected during the execution
by monitor classes that are called by the probes inserted in
the code. At the end of the execution, the information is
dumped, compressed, and sent back to a central server over
the network. For the sake of the description, and without
loss of generality, we assume a network connection to be
available. If this is not the case, we can store the information
locally and send it when a connection is available.

To be general, we use the SMTP protocol [Postel 1982]
to transfer the program-execution data from the users’ ma-
chines to the central server collecting them (collection server
hereafter). The compressed data are attached to a regular
electronic-mail message whose recipient is a special user (col-
lection user hereafter) on the collection server and whose
subject contains a given label (coverage label hereafter) and
an alphanumeric ID that uniquely identifies both the pro-
gram that sent the data and its version. The only require-
ment for the collection server is thus to run an SMTP server.

3.2 Data Collection Daemon

The Data Collection Daemon (DCD) is a simple tool written
in Java that runs as a daemon process on servers on which
we store the execution data. Each instance of the tool mon-
itors for information from all instances of a specific version
of a specific program, provided to the tool in the form of the

Execution
Bar

Treemap
Viewer

Code
Viewer

Statement level

File level

System level

Figure 6: A screenshot of the Gammatella Program Visualizer.

corresponding alphanumeric ID. The tool, upon execution,
retrieves the incoming mail for the collection user from the
collection server. To facilitate access of the data from differ-
ent machines, we use the Internet Message Access Protocol
(IMAP [University of Washington 2002]).

For each message retrieved that contains coverage data,
DCD extracts the attachment from the message, uncom-
presses it, and suitably stores the program-execution data in
a database. The additional information about each execu-
tion, such as the Java Virtual Machine version and the user
ID, are stored as properties of the execution. This approach
lets us efficiently perform filtering and summarization over
the executions, as described in Section 2.

3.3 Program Visualizer

The Program Visualizer (PV) is the module of Gam-
matella that implements the visualization technique de-
scribed in Section 2. PV is divided into JavaBeans com-
ponents written in Java using the graphical capabilities of
the Swing toolkit. PV uses the coverage-analysis module
of InsECT to retrieve and query the coverage data stored
by the DCD. These data are used to update all appropri-
ate views. PV is composed of the following components:

Execution Bar, Code Viewer, and Treemap Viewer, shown
together in Figure 6.

Execution Bar In the Execution Bar, executions are dis-
played as (possibly colored) vertical bands, as described in
Section 2. Each band represents one or more executions (this
latter case occurs when using summarizers). The user of our
tool can interact with the execution bar in a variety of ways.
The scroll bar below the Execution Bar lets the user quickly
navigate the set of executions. The user can also use the
two pairs of red and green arrows on each side of the bar
to navigate to the previous (or next) red- and green-colored
execution, respectively. Selecting an execution or a set of
executions causes the other displays to update their views
to show only the information pertaining to the selected exe-
cutions. Executions can be selected by left-clicking with the
mouse on the corresponding band(s). In addition, the three
buttons under the execution bar let the user select all red-
colored, all green-colored, or all executions. Right-clicking
on a band causes a modal window to appear, which shows
one of two possible types of information: (1) if the band
represents only one execution, it shows all the properties
of the execution in plain textual format (Figure 7(a)); (2)
if the band represents the summary of more executions, it

(a) (b)

Figure 7: Windows that show executions properties.

shows only the common properties of those executions (Fig-
ure 7(b)). Filters and summarizers are currently provided
to the tool using a configuration file that can be loaded dy-
namically. In the final implementation of the tool, filters
and summarizers will be defined using the GUI as well.

Code Viewer The Code Viewer displays both the file-level
view and the statement-level view described in Section 2.
Right-clicking on a statement in the file-level view causes a
context menu to appear that permits the viewing of differ-
ent types of information about the statement, such as the
number executions that covered it or the types of exceptions
that were thrown by the executions that covered it. The
statement-level view shows a small number of statements in
its full-sized text, at the bottom of the Code Viewer window.
Moving the mouse cursor over the file-level view causes the
statement-level view to display those statements under the
cursor, so allowing the user of the PV to investigate sections
of code in detail.

Treemap Viewer The Treemap Viewer displays the system-
level view described in Section 2. On the upper-left corner,
each node shows the name of the file it represents (without
the .java extension), which also corresponds to the name
of the public class in the file. Hovering the mouse over
a node causes a tool-tip to appear describing the name of
the package to which the represented file (i.e., the classes
in the file) belongs. We utilized the TreeMap Java Library
by Bouthier [Bouthier 2002] to implement the treemap algo-
rithm that performs the layout of the source-file and package
nodes. We also utilized the squarified treemap algorithm
built into the library [Bruls et al. 2000] to present more
visible nodes. The Treemap Viewer displays a treemap at
the finest level of detail. In future work, we will extend
the Treemap Viewer to provide capabilities for viewing the
package structure at different levels (e.g., by collapsing all
the files in one package into only one node and incrementally
expanding a package into its next-level sub-packages and/or
source files).

The three visual components in the PV communicate and
interact with one another. For example, the selection of exe-
cutions in the execution bar causes the source-level, file-level,
and system-level views to update their displays to display
only the information about those executions. Due to the

component-based architecture of our implementation, addi-
tional views can be integrated and the current components
can be updated and substituted with low effort.

The PV dynamically updates the information displayed to
reflect the latest data. As the DCD receives additional exe-
cutions from the field, the visualizations are updated based
on the new information. This approach permits an almost
real-time monitoring of the behavior of the monitored pro-
gram by developers and maintainers.

4 Applications

To investigate the usefulness of our data collection and visu-
alization technique, we applied it to two tasks: investigation
of exceptions generated during users’ executions and profil-
ing analysis. We also performed a feasibility study for the
former. In the rest of this section, we first describe the two
applications and then present the feasibility study.

4.1 Exceptions Analysis

We applied our technique to the visualization of exception-
related information. To this end, we used an approach sim-
ilar to the approach that we previously used for fault local-
ization [Jones et al. 2001]. The idea is to assign a color to
each statement in the program to represent how likely it is
for the statement to be responsible for the behavior that led
to the throwing of an exception. Red, yellow, and green are
used in this case to represent “very likely,” “possibly,” and
“unlikely,” respectively.

Consider a statement s, a set of executions that result
in an uncaught exception F , and a set of executions that
do not result in an uncaught exception P . Let f represent
the percentage of executions in F that execute s, and let p
represent the percentage of executions in P that execute s.
We assign to s a hue value based on the percentages f and p.
As a result, if p is larger than f (that is, if a larger percentage
of the executions terminating without an uncaught exception
executed s than the percentage of executions terminating
with an uncaught exception) s is assigned a more green hue
to represent some confidence in its correctness. Conversely,
if f is larger than p for s, a more red hue is assigned to
represent suspiciousness of the correctness of s.

We use the brightness component to encode the relevance
of the information represented by statement s. More pre-

cisely, we use the larger of the two percentages f and p.
Reference [Jones et al. 2001] provides additional details on
the described coloring technique.

4.2 Profiling Analysis

The second application of our technique is the visualization
of profiling information. The goal is to let the user identify
hot spots in the programs (i.e., places in the code that are
executed most often). This information is valuable for sev-
eral software-related tasks such as targetting parts of code
for optimization, determining feature-usage, aiding in the re-
duction of software-bloat, and aiding the guidance of future
enhancements.

In this case, we assign a color to each statement in the
program to represent how often the statement is executed:
a red statement is executed very often, a yellow statement
is executed often, and a green statement is executed rarely.
For each statement s and set of executions E that traverse
s, we first assign to s a score by adding the number of times
s is traversed in all executions in E. Then, we normalize
the computed score for all statements over the range 0–120,
and we assign to each statement a hue corresponding to the
normalized score.

For this application, we do not currently need to represent
two-dimensional information. Therefore, we assign a con-
stant value to the brightness component of the coloring. In
future work, we will investigate the usefulness of the bright-
ness component to represent additional information about
the profiling. First, we will investigate the use of bright-
ness to distinguish between statements that are executed by
only a small number of executions and statements that are
executed by most executions. Second, we will use the bright-
ness to dim the information pertaining to older executions.
(Because the profiling information is likely to change over
time, it is important to characterize the time frame of the
visualized information.)

4.3 Feasibility Study

We implemented in Gammatella the visualization for ex-
ceptions analysis described in Section 4.1 and performed a
feasibility study using a real system: Jaba. Jaba (Java Ar-
chitecture for Bytecode Analysis [Aristotle Research Group
2003]) is a framework for analyzing Java programs developed
in Java within our research group that consists of 550 classes
and approximately 60KLOC. Jaba consists of components
that read bytecode from Java class files and perform anal-
yses such as control flow and data flow, thus enabling the
development of program-analysis techniques and program-
analysis-based software-engineering tools for Java.

We instrumented Jaba using the InsECT component of
Gammatella and released it to a set of users who agreed to
have information collected during execution and sent back
to our server. Although instrumentation overhead is not the
main concern for this feasibility study, it is worth reporting
that the instrumentation caused a 28% degrade in Jaba’s
performances.

We distributed the instrumented version of Jaba to nine
people who already used Jaba for their work. Five of the
nine people involved in the study are working in our de-
partment: two are part of our group and use Jaba for their
research; another two are students working in our depart-
ment who use Jaba for a graduate-level project; the last
one is an M.S. student who developed a regression testing
tool on top of Jaba. The remaining four people involved in
the study are two researchers and two students working on
a research project in two different universities abroad.

After releasing the instrumented version of Jaba, we
started the DCD and the PV on a dedicated machine in
our lab. We used a different machine as the collection server.
While users used Jaba for their work, the program-execution
data was sent to the collection server, the DCD retrieved and
stored the data, and PV visualized the corresponding infor-
mation on a monitor located in the common area of our lab.

Within the first month, we collected more that 1,000 ex-
ecutions. Using Gammatella, we have been able to save
the information about the executions automatically and vi-
sualize them. Figure 8 shows a screenshot of Gammatella
visualizing all the execution data received at the time of the
submission (1,214). We have also been able to use Gam-
matella to perform an initial investigation of the data.

The first, immediate finding of our investigation, not di-
rectly related to the exceptions analysis, was that a number
of classes were never used in any of the executions, illustrated
by gray nodes in the treemap view. In particular, the en-
tire package of Jaba responsible for performing dominance
analysis was never utilized. The treemap view provided by
Gammatella let us spot immediately the large uncovered
parts and identify the corresponding parts in the code. Such
information, if confirmed by subsequent executions, could
motivate the next release of a trimmed-down or optimized
version of Jaba—one without the unused package and/or
classes.

Another finding of our investigation is related to the oc-
currence of exceptions and their meaning in terms of anoma-
lies in the program behavior. By inspecting the program-
execution data using Gammatella, we realized that in most
cases exceptions are raised because of trivial errors on the
user side (e.g., errors in the parameters passed to Jaba and
errors in setting the classpath). In all such cases, consid-
ering the corresponding execution as a failure is misleading
and distracting from real sources of errors. Using the tool,
we have been able to identify at least two exceptions that
are always generated due to users’ errors. Then, we used
such information to filter out all the executions resulting in
an uncaught exception of one of those two types, so reducing
the amount of spurious information.

Finally, an important finding was that there is a specific
combination of operating system and Java Virtual Machine
for which executions of Jaba fail systematically. Using the
summarization facilities of the tool and summarizing per
user, we discovered that all executions for one of the students
in our lab were terminating with an exception. By looking
at the execution properties for the executions coming from
that user, we discovered that all the failing executions were
run using the Sun Java Virtual Machine version 1.4.0 on So-
laris 2.8, a combination that no other user was using and
that caused Jaba to fail. It is worth noting that this kind of
problem is common for software that have to function in sev-
eral different environments and configurations, and therefore
cannot be adequately tested in-house.

5 Related Work

There are several visualization techniques that are related
to our approach.

Eick and colleagues developed the SeeSoft system [Eick
et al. 1992], which shows source code by mapping each line
of code to a row of pixels. We utilize a similar technique for
our file-level view of the code. We have extended this work
by applying our coloring technique to the visualization, as
well as applying it to a new domain.

Figure 8: Jaba execution data visualized in Gammatella.

Shneiderman developed the treemap visualization [Shnei-
derman 1992] for visualizing hierarchical data in a space-
filling manner. Bruls and colleagues developed an ap-
proach [Bruls et al. 2000] to display treemaps in a “squari-
fied” fashion to reduce the aspect ratio of the nodes. We uti-
lized both techniques for our system-level view of the code.
We have extended this work by defining a technique for col-
oring the nodes of the treemap in a treemap-like fashion
that has two properties: (1) preservation the color layout
within the nodes, and (2) visualization of the appropriate
proportions of colors to reflect the coloring of the entities
represented by each node. Such a technique can be applied
in general for the layout of treemaps that represent flat hier-
archies (i.e., with depth of one) in situations in which preser-
vation of node layout is important.

Baker and Eick developed the SeeSys system [Baker and
Eick 1995], which shows source code in a treemap fashion.
They used this system to show various properties of the
source code. We utilize this idea of applying treemaps to
software to visualize properties of the software. In our ap-
proach, we use a different technique, based on visualization
of two-dimensional data, to represent the information within
the treemap nodes.

Leon and colleagues, in their work on observation-
based testing, describe some uses of multivariate visualiza-
tion [Leon et al. 2000] applied to execution profiles. They

use multivariate visualization to project many-dimensional
profiling information onto a specific visualization, a two-
dimensional scatter plot, which is then used to perform tasks
such as clustering. Our approach aims to provide a generic
visualization framework that can be instantiated for differ-
ent tasks.

Reiss and Renieris developed the Bloom system [Reiss
and Renieris 2001], which provides a framework for soft-
ware visualization and exploration. Similarly, we have sev-
eral components that visualize software, its execution, and
its properties. In fact, the visualization techniques described
in this paper may probably be also implemented leveraging
the Bloom framework.

Storey and colleagues developed the SHriMP Views sys-
tem [Best et al. 2001; Storey and Müller 1995], which is a
visualization based on zooming to display hierarchical views
of software. Their work is mainly concerned with exploring
the software itself and its hierarchical structure, whereas the
technique described in this paper is directed at visualizing
program-execution data and its relation to the program.

Jones and colleagues developed the Tarantula [Jones et al.
2001] system to visualize test-case information for fault lo-
calization. In this paper, we utilized and abstracted the
color-mapping concepts from that work for a variety of pur-
poses. In fact, Tarantula’s fault-localization technique could
be a specific instance of the approach described in this paper.

6 Conclusion

In this paper, we presented a new approach for visualizing
program-execution data collected from deployed instances of
a software system. Our technique is generic enough to allow
for representing different kinds of data, and allows for inves-
tigating such data visually to study the software system’s be-
havior. Furthermore, because of its hierarchical approach to
visualization and its coloring, filtering, and summarization
capabilities, the technique lets the user efficiently visualize
and explore large amounts of data and large programs.

We also presented the Gammatella toolset, which imple-
ments our approach, and a feasibility study in which we used
the toolset on a real program deployed to a set of real users.
Besides showing the feasibility of the approach, the study
led to some initial discoveries about the subject program
and the way it is used. Although we cannot consider such
discoveries more than very preliminary results, they provide
some evidence of the usefulness of the approach. The feasi-
bility study also helped us identify a number of important
directions for future work.

First, we will investigate scalability issues. To this end,
we will expand the initial study to involve additional par-
ticipants. We will also consider using other widely-used and
freely-available subjects, such as open-source software sys-
tems. Finally, we will investigate monitoring at a higher
level of abstraction than statements (e.g., procedures).

Second, we will further investigate the use of the ap-
proach for exception analysis. We will investigate the use
of data-mining techniques to improve the visualization (e.g.,
by automatically grouping correlated executions) and con-
sider monitoring and visualizing different kinds of informa-
tion, such as features usage and memory layouts).

Third, we will investigate additional tasks to which our
approach can be applied. During these investigations, we
may discover the need for optimization of the visualization
for the specific tasks, such as the need for different summary
colorings in the treemap, or the need for new visualizations
altogether. These investigations will also give us the oppor-
tunity to make our framework easier to customize, so as to
let users develop their own visualization.

Finally, from a more practical standpoint, we are investi-
gating the possibility of providing a web interface to some
of the visualizations so that they can be publicly displayed
and monitored.

Acknowledgments

This work was supported in part by National Science Foun-
dation awards CCR-9988294, CCR-0096321, CCR-0205422,
SBE-0123532 and EIA-0196145 to Georgia Tech, and by the
State of Georgia to Georgia Tech under the Yamacraw Mis-
sion. Preeti Bhat helped with the implementation of the
visualization components in the Program Visualization mod-
ule of Gammatella. Anil Chawla helped with the develop-
ment of InsECT and its integration in Gammatella. John
Stasko provided useful suggestions and comments.

References

Aristotle Research Group, 2003. Jaba: Java Architec-
ture for Bytecode Analysis. http://www.cc.gatech.edu/
aristotle/Tools/jaba.html.

Baker, M. J., and Eick, S. G. 1995. Space-filling software
visualization. Journal of Visual Languages and Comput-
ing 6, 2, 119–133.

Ball, T., and Eick, S. G. 1996. Software visualization in
the large. Computer 29, 4 (Apr.), 33–43.

Best, C., Storey, M.-A. D., and Michaud, J. 2001.
SHriMP views: An interactive and customizable environ-
ment for software exploration. In Proceedings of Inter-
national Workshop on Program Comprehension (IWPC
’2001).

Bouthier, C., 2002. Treemap java library. http://
treemap.sourceforge.net/.

Bowring, J., Orso, A., and Harrold, M. J. 2002. Mon-
itoring deployed software using software tomography. In
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering
(PASTE 2002), 2–8.

Bruls, M., Huizing, K., and van Wijk, J. J. 2000. Squar-
ified treemaps. In Proceedings of the Joint Eurographics
and IEEE TCVG Symposium on Visualization, 33–42.

Eick, S. G., Steffen, J. L., and Sumner, E. E. 1992.
Seesoft – a tool for visualizing line oriented software. IEEE
Transactions On Software Engineering 18, 11 (Nov), 957–
968.

Gray, J., Slutz, D., Szalay, A., Thakar, A., vanden-
Berg, J., Kunszt, P., and Stoughton, C. 2002. Data
Mining the SDSS SkyServer Database. Tech. Rep. MSR-
TR-2002-01, Microsoft Research, January.

Jones, J. A., Harrold, M. J., and Stasko, J. 2001.
Visualization of test information to assist fault localiza-
tion. In Proceedings of the 24th International Conference
on Software Engineering (ICSE’01), 467–477.

Leon, D., Podgurski, A., and White, L. J. 2000. Multi-
variate visualization in observation-based testing. In Pro-
ceedings of the 22th International Conference on Software
Engineering (ICSE’00), 116–125.

Orso, A., Liang, D., Harrold, M. J., and Lipton,
R. 2002. Gamma system: Continuous evolution of soft-
ware after deployment. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA’02),
65–69.

Postel, J. B., 1982. RFC821: Simple Mail Transfer Pro-
tocol. http://www.ietf.org/rfc/rfc0821.txt.

Reiss, S. P., and Renieris, M. 2001. Encoding program
executions. Proceedings of the 23rd International Confer-
ence on Software Engineering (ICSE’01) (may), 221–230.

Shneiderman, B. 1992. Tree visualization with tree-
maps: A 2-D space-filling approach. ACM Transactions
on Graphics 11, 1, 92–99.

Stasko, J., Domingue, J., Brown, M., and Price, B.,
Eds. 1998. Software Visualization: Programming as a
Multimedia Experience. MIT Press, Cambridge, MA.

Storey, M.-A. D., and Müller, H. A. 1995. Manipulat-
ing and documenting software structures using SHriMP
views. In Proceedings of the 1995 International Confer-
ence on Software Maintenance (ICSM ’95) (Opio (Nice),
France, October 16-20, 1995).

University of Washington, 2002. The IMAP Connection.
http://www.imap.org/.

