Efficient and Precise Dynamic Impact Analysis Using Execute-After Sequences

Taweesup (Term) Apiwattanapong

Alessandro Orso Mary Jean Harrold

College of Computing Georgia Institute of Technology

National Science Foundation awards CCR-0306372, CCR-0205422, CCR-0209322, SBE-0123532, and EIA-0196145 to Georgia Tech, Tata Consultancy Services

ICSE 2005

Development and Maintenance

Outline

- Dynamic Impact Analysis
- Existing Techniques
- Our Technique
- Empirical Studies
- Related Work
- Conclusion

Impact Analysis

Change = {C} Static Impact Analysis Impact Set = {M, A, B, C, D}

Dynamic Impact Analysis Impact Set = {M, A, B, C}

Dynamic Impact Analysis

Impact-analysis techniques that

- Are based on dynamic information (e.g., test suites, field executions)
- Are conservative w.r.t. dynamic information

Quality of the dynamic information is key!

- representativeness of actual usage
 - \rightarrow collect actual usage \rightarrow efficiency is important

Two existing dynamic impact-analysis techniques

- PathImpact
- CoverageImpact

Existing Techniques

Change = {C} PathImpact

Impact Set = {M, B, C}

CoverageImpact

Μ	А	В	С	D
1	1	1	1	0

Impact Set = {M, A, B, C}

Execute-After (EA) Relation

ZNYMX Essential information is "Execute-After Relation"

Definition

Given a program *P*, a set of executions *E*, and two methods *X* and *Y* in *P*, $(X,Y) \in EA$ for *E* if and only if, in at least one execution in *E*,

1. Y calls X (directly or transitively (d/t)),

- 2. Y returns into X (d/t), or
- 3. Y returns into a method Z (d/t), and Z later calls X (d/t).

Computing EA Relation

Our Technique

Our Technique

Our Technique

Analytical Complexity

t = the size of the trace		Trace size: 2 GB
		Program size: 30 KLOC
Execute-After	2m inte	gers O(1)
CoverageImpact	m bits	O(1)
PathImpact	O(t)	<i>O</i> (t)
		(per method call)
Techniques	Space	Time

Outline

- Dynamic Impact Analysis
- Existing Techniques
- Our Technique
- Empirical Studies
- Related Work
- Conclusion

Empirical Studies

Studies

- Efficiency
- Precision

Experimental Setup

Tool: EAT (Execute-After Tool)

Subject Programs:

Program	Versions	Classes	Methods	LOC	Test Cases
Siena	8	24	219	3674	564
Jaba	11	355	2695	33183	125
Jaba-long	11	355	2695	33183	90

EAT (Execute-After Tool)

Collecting method-return-into events

- Normal return
- Exceptional return into a catch block
- Exceptional return into a finally block

Study 1: Efficiency

Goal: To evaluate relative execution costs for Execute-After (EA) wrt CoverageImpact (CI) and PathImpact (PI)

Method: Measure time to execute programs on test cases, gather dynamic data, and output information to disk.

	Running time (ms)			Overhead (%)			
Program	Uninst.	CI	EA	PI	CI	EA	PI
Siena	53	108	110	~263	104	108	~396
Jaba	432	463	486	~54,000	7.18	12.50	~12,400
Jaba-long	5257	5617	5861	-	6.85	11.49	-

Study 2: Precision

Related Work

PathImpact (Law and Rothermel) based on lightweight dynamic forward slicing CoverageImpact (Orso et al.) based on compressed program traces Online impact analysis (Breech et al.) compute impact sets online space complexity: x^2 time complexity (per method call): O(x)(x is the number of methods executed)

Conclusion

Summary

- identify essential information for dynamic impact analysis
- present a new, efficient, and precise technique to collect and analyze that information
- present a set of empirical studies which show the efficiency and effectiveness of our technique

Future directions

- perform studies using the technique in the field
- perform client-analysis
- generalization of the technique
 - levels of granularity
 - programming languages
- apply the technique to other dynamic analyses
 - reverse-engineering
 - recovery of feature interaction

Thank you.

Questions?

