Human Abilities

John Stasko

Spring 2007

This material has been developed by Georgia Tech HCI faculty, and continues to evolve. Contributors include Gregory Abowd, Al Badre, Jim Foley, Elizabeth Mynatt, Jeff Pierce, Colin Potts, Chris Shaw, John Stasko, and Bruce Walker. Permission is granted to use with acknowledgement for non-profit purposes. Last revision: January 2007.

Agenda

• Human role in larger system
• Human capabilities
 – Senses
 – Information processing
 – Motor systems
• Project
Human Role

- How is human viewed in HCI
 - What is human role?

- Different roles engender different frameworks

Human Roles

- Human considered to be a...
- 1. Sensory processor
 - Experimental psych, sensory psych
 - e.g. Model-Human Processor (Card, Moran & Newell)
- 2. Interpreter/Predictor
 - Cognitive psych, AI
 - e.g. Distributed cognition (Hutchins)
- 3. Actor in environment
 - Activity theory, ethnography, ecol psych
 - e.g. Situated action (Suchman)
 - e.g. Activity theory (Vygotsky, Nardi)
What Makes a System Usable

<table>
<thead>
<tr>
<th>Human considered to be a...</th>
<th>Usability results when the system...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensory processor</td>
<td>Fits within human limits</td>
</tr>
<tr>
<td>Interpreter/Predictor</td>
<td>Fits with knowledge</td>
</tr>
<tr>
<td>Actor in environment</td>
<td>Fits with task and social context</td>
</tr>
</tbody>
</table>

Evaluation Methods

<table>
<thead>
<tr>
<th>Human considered to be a...</th>
<th>Evaluation methods...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensory processor</td>
<td>Quantitative experiments</td>
</tr>
<tr>
<td>Interpreter/Predictor</td>
<td>Task analysis, cognitive walkthrough</td>
</tr>
<tr>
<td>Actor in environment</td>
<td>Ethnographic field work, participatory design</td>
</tr>
</tbody>
</table>
Two Views of Interaction

• Interaction with
 – Software system is a tool or machine
 – Interface is a usability-engineered membrane
 – Human-as-processor & -interpreter models

• Interaction through
 – Software is a medium used to interact with task objects or other people
 – Interface plays a role in social context
 – Human-as-interpreter & -actor models

What are Humans Really Like?

• Models of behavior are only part of the information we need for successful design
• Need to know how users really are
• Abilities, needs, preferences
Human Capabilities

- Why do we care? (better design!)
- Want to improve user performance

- Knowing the user informs the design
 - Senses
 - Information processing systems
 - Physical responding

Overview

I. Senses
 A. Vision
 B. Hearing
 C. Touch
 D. Smell?

II. Information processing
 A. Perceptual
 B. Cognitive
 1. Memory
 a. Short term
 b. Medium term
 c. Long term
 2. Processes
 a. Selective attention
 b. Learning
 c. Problem solving
 d. Language
 C. Motor system

III. Motor system
I. Senses

- Sight, hearing, touch important for current HCI
 - smell, taste ???

- Abilities and limitations affect design

Key concepts for Senses

Just noticeable difference (jnd)

- How much of a change in stimulus is needed before can be sensed
- Tends to be logarithmic - Weber’s Law

Magnitude of physical stimulus versus perceived magnitude

- (Doubling number of photons does not double perceived intensity)
Vision

- Visual System
 - Eye
 - Retina
 - Neural pathway
 • ~80% of brain’s operation

Visual Abilities

- Sensitivity
 - luminance: 10^{-6}-10^{-7} mL

- Acuity
 - detection, alignment, recognition (visual angle)
 - retinal position: fovea has best acuity

- Movement
 - tracking, reading, vibrations

- Note: Vision decreases with age

- Implications (??)
 - Font size & location depends on task
 - Much done by context & grouping
Physiological Fundamentals

- Retina has
 - 6.5 M cones (color vision), mostly at fovea (1/3)°
 - About 150,000 cones per square millimeter
 - Fewer blue sensing cones than red and green at fovea
 - 100 M rods (night vision), spread over retina, none at fovea

- Adaptation
 - Switching between dark and light causes fatigue

Color

- Sensory response to electromagnetic radiation in the spectrum between wavelengths 0.4 - 0.7 micrometers
Color Vision

- Color & the retina
 - 380 (blue) ~ 770nm (red)
 - Problems with cones or ganglion cells cause problems with color perception
 - (Not really “color blindness”)
 - 8% males, 0.5% females

- Implications (??)
 - Avoid saturated colors
 - Color coding should be redundant when possible

Color/Intensity Discrimination

- The 9 hues most people can identify are:

<table>
<thead>
<tr>
<th>Color</th>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>629</td>
</tr>
<tr>
<td>Red-Orange</td>
<td>596</td>
</tr>
<tr>
<td>Yellow-Orange</td>
<td>582</td>
</tr>
<tr>
<td>Green-Yellow</td>
<td>571</td>
</tr>
<tr>
<td>Yellow-Green</td>
<td>538</td>
</tr>
<tr>
<td>Green</td>
<td>510</td>
</tr>
<tr>
<td>Blue-Green</td>
<td>491</td>
</tr>
<tr>
<td>Blue</td>
<td>481</td>
</tr>
<tr>
<td>Violet-Blue</td>
<td>460</td>
</tr>
</tbody>
</table>
Color Surround Effect

- Our perception of a color is affected by the surrounding color

Color Surround
Hearing

- Capabilities (best-case scenario)
 - pitch - frequency (20 - 20,000 Hz)
 - loudness - amplitude (30 - 100dB)
 - location (5° source & stream separation)
 - timbre - type of sound (lots of instruments)

- Often take for granted how good it is (disk whirring)

• Implications (??)

Touch

- Three main sensations handled by different types of receptors:
 - Pressure (normal)
 - Intense pressure (heat/pain)
 - Temperature (hot/cold)

- Sensitivity, Dexterity, Flexibility, Speed

- Where important?
 - Mouse, Other I/O, VR, surgery
II. Information Processing

- How do people think?
Information Processing

• Three major systems of human information processing:
 – Perceptual (read-scan)
 – Cognitive (think)
 – Motor system (respond)
1. Perceptual

- Memory structures
 - Sensory buffer - Holds fixed image of outside world long enough for some analysis (will come back to this)

- Processes - Info goes to brain for more processing
 - e.g. Pattern recognition
 - Uses context & knowledge

2. Cognitive

- Cognitive model
 - How does it work?
Memory

• Four “types”
 – Perceptual “buffers”
 • Brief impressions
 – Short-term memory
 • Conscious thought, calculations
 – Intermediate
 • Storing intermediate results, future plans
 – Long-term
 • Permanent, remember everything ever happened to us

Perceptual Store

• Visual and auditory impressions
 – visuospatial sketchpad, phonological loop

• Very brief, but veridical representation of what was perceived
 – Details decay quickly (~.5 sec)
 – Rehearsal prevents decay
 – Another task prevents rehearsal
Short-term memory

- Use “chunks”: 4-5 units (not 7±2)
- Display format should match memory system used to perform task
- New info can interfere with old info
- **Exercises**
 - My name is John, I like ...
 - Numbers

Long-term Memory

- Seemingly permanent & unlimited
- Access is harder, slower
 - Activity helps (we have a cache)
LT Memory Structure

- **Episodic memory**
 - Events & experiences in serial form
 - Helps us recall what occurred

- **Semantic memory**
 - Structured record of facts, concepts & skills
 - One theory says it’s like a network
 - Another uses frames & scripts (like record structs)

Memory Characteristics

- Things move from STM to LTM by rehearsal & practice and by use in context

- We “forget” things due to decay and interference
 - Unclear if we ever really forget something
 - Lack of use
 - Exercise
 - Similar gets in way of old
Exercises

- Some fun...

Processes

- Four main processes of cognitive system:
 - Selective Attention
 - Learning
 - Problem Solving
 - Language
1. Selective Attention

- We can focus on one particular thing
 - Cocktail party chit-chat

- Salient visual cues can facilitate s.a.
 - Examples? Boldface, blinking and beeping

- Visual or Auditory Streams form after a few seconds

2. Learning

- Two types:
 - Procedural – How to do something
 - Declarative – Facts about something

- Involves
 - Understanding concepts & rules
 - Memorization
 - Acquiring & automating motor skills
 - Bike riding, typing, tennis
Learning

• Facilitated
 – By analogy
 – By structure & organization
 – If presented in incremental units
 – Repetition

• Hindered by
 – Previous knowledge (move from Mac to Windows)

• ---> Use user’s previous knowledge in interface

Observations

• Users focus on getting job done, not learning to effectively use system

• Users apply analogy even when it doesn’t apply
3. Problem Solving

- Storage in LTM, then application
- Reasoning
 - Deductive: If A, then B
 - Inductive: Generalizing from previous cases to learn about new ones
 - Abductive: Reasons from a fact to the action or state that caused it

Reasoning about a UI

- Deductive: If I want to delete something, I must first select it. Facilitate by animating the disappearance of selected object
- Inductive: I could make text bold by selecting it and then using the Bold command. Maybe I could italicize in the same way. Facilitate by putting bold and italic commands together
- Abductive: Timeout on the web browser if not connected. Facilitate by telling the user why the timeout occurred
Observations

- People are more heuristic than algorithmic
 - Try a few quick shots rather than plan
 - Resources simply not available
- People often choose suboptimal strategies for low priority problems
- People learn better strategies with practice

Implications

- Allow flexible shortcuts
 - Forcing plans will bore user
- Allow multiple ways of doing
- Provide active rather than passive help
 - Recognize dead ends and inefficient methods
4. Language

- Rule-based
 - How do you make plurals?

- Productive
 - We make up sentences

- Key-word and positional
 - Patterns

- Should systems have natural language interfaces?

People

- Good
- Bad
People

- **Good**
 - Infinite capacity LTM
 - LTM duration & complexity
 - High-learning capability
 - Powerful attention mechanism
 - Powerful pattern recognition

- **Bad**
 - Limited capacity STM
 - Limited duration STM
 - Unreliable access to LTM
 - Error-prone processing
 - Slow processing

III. Motor System

- **Capabilities**
 - Range of movement, reach, speed, strength, dexterity, accuracy

- **Often cause of errors**
 - Wrong button
 - Double-click vs. single click

- **Principles**
 - Feedback is important
 - Minimize eye movement
Work Station Ergonomics – to Facilitate I/O

The Ergonomically Positioned Workstation

1. Place the center of the screen at eye level. Adjust to a distance of 20 inches.
2. Wheels should be equipped with brakes.
3. Elbow rest and arm rest at the same height as the seat.
4. Headrest should be adjustable to accommodate the natural curve of the neck.
5. Keyboard and mouse are at a comfortable height.
6. Sit with your feet flat on the floor.
7. Keep elbows at 90 degrees.
8. Adjust chair height to keep knees at a 90 degree angle.

Recap

I. Senses
 A. Sight
 B. Sound
 C. Touch
 D. Smell?

II. Information processing
 A. Perceptual
 B. Cognitive
 1. Memory
 a. Short term
 b. Medium term
 c. Long term
 2. Processes
 a. Selective attention
 b. Learning
 c. Problem solving
 d. Language
 C. Motor system
Project

- Part 0 – Topics
- Part 1 - Understanding the problem
 - Work with client
 - Understand users, their tasks, environment
 - Informal evaluation of current interface, if it exists
 - Establish objectives, requirements for design
 - Implications of what you learn!
 - No design! No assumptions!
 - Read project description
- Make a nice top co-web page

Upcoming

- Predictive Evaluation
- Understanding Users
- Task Analysis & Requirements Gathering