
Capturing Best Practice for Microarray Gene Expression 
Data Analysis  

Gregory Piatetsky-Shapiro 
KDnuggets 

gps@kdnuggets.com 

Tom Khabaza 
SPSS 

tkhabaza@spss.com 

Sridhar Ramaswamy 
MIT / Whitehead Institute 

sridhar@genome.wi.mit.edu 

 
 

ABSTRACT 
Analyzing gene expression data from microarray devices has 
many important applications in medicine and biology, but 
presents significant challenges to data mining.  Microarray data 
typically has many attributes (genes) and few examples (samples), 
making the process of correctly analyzing such data difficult to 
formulate and prone to common mistakes.  For this reason it is 
unusually important to capture and record good practices for this 
form of data mining.  This paper presents a process for analyzing 
microarray data, including pre-processing, gene selection, 
randomization testing, classification and clustering; this process is 
captured with "Clementine Application Templates".  The paper 
describes the process in detail and includes three case studies, 
showing how the process is applied to 2-class classification, 
multi-class classification and clustering analyses for publicly 
available microarray datasets. 

Keywords 
microarrays, gene expression, data mining process, 
application template, Clementine. 

Categories 
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1. MICROARRAYS: AN OVERVIEW 
Cells in the same organism normally have the same genes, but 
these genes can be expressed differently, i.e. manufacture 
different messenger RNA or mRNA, which in turn manufacture 
different proteins, allowing creation of a huge variety of different 
cells. Virtually all differences in cell state or type are correlated 
with changes in the mRNA levels of many genes. Detection and 
cure of many diseases can be assisted by understanding gene 
expression in human and animal tissues and cells.  

Microarray chips measure the expression levels of many 
genes simultaneously.  There are several different types of 
microarrays, including 

 Short oligonucleotide arrays (made by Affymetrix); 

 cDNA or spotted arrays (originated by Pat Brown lab at 
Stanford); 

 Long oligonucleotide arrays (Agilent Inkjet); 

 Fiber-optic arrays. 

Different types of microarray use different technologies for 
measuring RNA  expression levels; detailed description of these 

technologies is beyond the scope of this paper. Here we will focus 
on the analysis of data from Affymetrix arrays, which are 
currently the most popular commercial arrays.  However, the 
methodology for analysis of data from other arrays would be 
similar, but would use different technology-specific data 
preparation and cleaning steps.  

 
Figure 1: Affymetrix GeneChip® (right), 
its grid (center) and a cell in a grid (left). 

This type of microarray is a silicon chip that can measure the 
expression levels of thousands of genes simultaneously.  This is 
done by hybridizing a complex mixture of mRNAs (derived from 
tissue or cells) to microarrays that display probes for different 
genes tiled in a grid-like fashion. Hybridization events are 
detected using a fluorescent dye and a scanner that can detect 
fluorescence intensities. The scanners and associated software 
perform various forms of image analysis to measure and report 
raw gene expression values. This allows for a quantitative readout 
of gene expression on a gene-by-gene basis. As of 2002, 
microarrays such as the Affymetrix U133 2-chip set, can measure 
expression of over 30,000 genes, likely a majority of the 
expressed human genome.  

Microarrays have many potential applications, including: 
• More accurate disease diagnosis from gene expression 

levels; 
• Predicting treatment outcome; 
• Tailoring drug therapy based on gene expression levels 

(pharmacogenomics); 
• Drug discovery and toxicology studies; 
• Assisting fundamental biological discovery. 
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Figure 3: Phases and Information flow in CRISP-DM 

2.2 Describing a Data Mining Process 
For a given data mining application, best practice will specify a 
number of steps, for example certain data preparation and 
modeling steps, which are combined to solve the problem at hand.  
Figure 4 shows a diagram depicting how a collection of data 
preparation and modeling steps fit together for the task of genome 
classification in a multi-class problem.  (In figure 4, ellipses 
represent operations applied to the data and rectangles represent 
raw data or intermediate data which is created by one step and 
used in another.  Codes starting with P represent data preparation 
steps and codes starting with M represent modeling steps.) 

 
Figure 4: Data Mining Process Diagram for a  

Multi-Class Classification Task 

A diagram such as that in figure 4 describes a “module”; a 
collection of modules forms an “application template”, a complete 
description of the data mining process for one application.  The 
steps in the process are realized using a data mining toolkit.  The 
diagram in figure 4 uses only an informal notation, to help an 
analyst understand how a collection of steps and data files fit 
together. 
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2.3 Using a Data Mining Toolkit to Realize the 
Steps of a Data Mining Process 
To capture a data mining process in sufficient detail that it can be 
re-used, each step must be realized in an executable form.  This 
can be achieved using a data mining toolkit based on visual 
programming, such as Clementine [6,12], depicted in figure 5. 

In figure 5, Clementine’s main drawing area contains a stream 
diagram; an executable visual program which performs one of the 
modeling steps in figure 4.  Each icon in the stream diagram 
depicts a low level operation in the data mining process; data 
flows from data sources (circular icons) through data 
manipulation operations (hexagonal icons) to a C5.0 modeling 
operation (a pentagon) and through t(a pentagon) and through the model (diamond-shaped) 
to various reports and visualizations. 

he model (diamond-shaped) 
to various reports and visualizations. 

Figure 5: Clementine Visual Programming Interface & Microarray Analysis Stream Diagram Figure 5: Clementine Visual Programming Interface & Microarray Analysis Stream Diagram 

Each step in a data mining process can be realized using a 
stream diagram of this kind.  A collection of stream diagrams and 
data files designed to achieve a particular goal is called a 
Clementine Application Template, or “CAT” [7]. 

Each step in a data mining process can be realized using a 
stream diagram of this kind.  A collection of stream diagrams and 
data files designed to achieve a particular goal is called a 
Clementine Application Template, or “CAT” [7]. 

The CRISP-DM process model is used to classify the 
streams of a CAT according to the role they play in this standard 
view of the data mining process.  Clementine also supports the 
use of CRISP-DM via its CRISP-DM Project facility; figure 5 
shows the streams from one module of a Microarray analysis 
CAT organized using this tool.  

The CRISP-DM process model is used to classify the 
streams of a CAT according to the role they play in this standard 
view of the data mining process.  Clementine also supports the 
use of CRISP-DM via its CRISP-DM Project facility; figure 5 
shows the streams from one module of a Microarray analysis 
CAT organized using this tool.  

A Clementine Application Template (CAT) can be used to 
capture best practice for a specific data mining application.  
Clementine streams form the detailed realization of a process.  
The higher-level structure of the process is a collection of 
modules, each of which is depicted informally as a data mining 
process diagram, and the CRISP-DM framework is used to 
classify the steps of the process. The remainder of this paper 

specifies in detail the capture of best practice for microarray gene 
expression data analysis. 

A Clementine Application Template (CAT) can be used to 
capture best practice for a specific data mining application.  
Clementine streams form the detailed realization of a process.  
The higher-level structure of the process is a collection of 
modules, each of which is depicted informally as a data mining 
process diagram, and the CRISP-DM framework is used to 
classify the steps of the process. The remainder of this paper 

specifies in detail the capture of best practice for microarray gene 
expression data analysis. 

 
Figure 6: Microarray CAT Module 2 Streams  

organized as a CRISP-DM Project 
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3. MICROARRAY DATA ANALYSIS 
ISSUES  

 

Comparing microarray data analysis with the more widespread 
applications of data mining, such as analytical CRM using 
customer data, we can see that it presents quite different 
challenges, for two reasons.  First, the typical number of records 
(or samples) for microarray analysis is small – usually less than 
100.  This is likely to remain so for many areas of investigation, 
especially for human data, because of the difficulty of collecting 
and processing samples.  

Second, the number of columns (or genes) in microarray data 
is normally large – typically many thousands.  When building 
predictive models, having so many columns relative to the 
number of rows is likely to lead to “false positives” – gene 
combinations what correlate with a target variable purely by 
chance.  This is particularly true for learning algorithms such as 
decision trees and neural networks, which find complex non-
linear combinations of features, and therefore have a large model 
space in which to find spurious models. 

Figure 7: Microarray Classification Process Overview 

4. 1 Microarray Data Cleaning and 
Preparation  
At a very high level, the goal of data preparation in microarray 
data analysis is the same as for all data mining, that is to 
transform the data to make it suitable for analysis and to aid in 
producing the best possible models.  However the unusual 
properties of microarray data give a special character to this phase 
of the data mining process; in this context data preparation takes 
place in two stages.   

One useful technique in this situation is to assess the 
likelihood of getting chance correlations by using randomization.  
This technique randomly permutes the class column many times, 
and compares the strength of correlation obtained with a 
randomized class column with that from the actual class column. 

Another useful technique is to select a smaller number of the 
most promising genes, for example 100-200, and build models 
using only these genes.  Genes can be ranked by comparing the 
mean expression value for each class with that of the rest, and 
computing measures like T-values or signal-to-noise (S2N) ratios.  
Models produced in this way are more accurate, and generalize 
better, than models produced using the complete set of available 
genes. 

The first stage could be characterized as “pure” data 
preparation.   This stage contains those aspects of data preparation 
which are independent of any class data; these are thresholding, 
normalization and filtering.  The thresholding and filtering 
operations achieve a substantial amount of feature reduction, 
typically by about 50%. 

Thresholding and filtering are “low-level” forms of data 
cleaning; techniques of this kind are broadly applicable, but the 
details will vary with the microarray device used to produce the 
data.  The thresholding and filtering details given in this paper 
therefore have the status of examples only, and are specific to the 
Affymetrix device. 

These techniques for reducing the number of columns in the, 
otherwise very wide, microarray data, are collectively referred to 
as “feature reduction”. 
 

4. MICROARRAY DATA ANALYSIS 
PROCESS The second stage contains those aspects which make specific 

use of class data, and are broadly termed “feature selection”.  
Here we are performing data reduction by narrowing the set of 
features to those relevant to the specific set of classes to be 
analyzed.  These operations are therefore specialized to the 
character and number of these classes, and are also not suitable 
for “pure” discovery, for example uses of clustering to discover 
new classes which may be independent of known classes. 

The process of analyzing microarray gene expression data is 
summarized in figure 7, which shows the major flows of data and 
the iterative relationship between model building and feature and 
parameter selection. 
The process in figure 7 is that used for modeling the classification 
of genomes, where both gene data and class data are used – the 
modeling is “supervised learning”.  For data-sets which are too 
small to separate training and test data (a common situation with 
Microarray data), cross-validation can be used to evaluate the 
likely quality of a model.  Where the modeling is unsupervised, 
no separation of training and test data is required, and feature 
selection based on class is explicitly excluded because the 
purpose of the exercise is to discover new classes. 

4.1.1 Thresholding  
The goal of all microarray devices is to measure the expression 
level of mRNA, which in Affymetrix devices is measured 
indirectly by comparing PM (perfect match), and MM (mismatch) 
probes, using 20 probes in the HuFL6800 chip, and 11 probes in  
the latest chip.  The MAS-4 software combines the PM and MM 
values by subtracting MM from PM values, so it is possible for 
gene expression to be negative, which means that MM probes 
have stronger signals than PM.  Since we do not know what is 
matching the MM probes, these signals are not useful, and for this 
reason, data processed with MAS-4 software is heuristically set to 
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a minimum of 20. Affymetrix MAS-5 software does not generate 
negative expression values and does its own thresholding. 

Studies of measurement error, which process the same 
sample several times [17], have shown that the measurements 
were reproducible above values of 100, and much less 
reproducible below 100.  For data believed to be more noisy, a 
lower threshold of 100 would be appropriate. 

The upper threshold is usually 16,000, because image 
intensities above this level tend to have a non-linear correlation 
with the actual expression levels. 

4.1.2 Normalization 
While classification algorithms can use the actual expression 
levels, data normalization is required for clustering. 
The best results are obtained by normalizing the data to mean 
zero, standard deviation 1 across genes. 

4.1.3 Filtering 
Since many genes are not expressed at all or do not vary 
sufficiently to be useful, a filtering operation is usually applied 
before adding the class information. Typical filtering excludes 
genes with low variation across samples, for example  

MaxValue(G) / MinValue(G) < 5 and  
MaxValue(G) – MinValue(G) < 500 

where MaxValue(G) and MinValue(G) are the maximum and 
minimum values of gene G across all samples. 

4.2 Feature Selection 
After data preparation and cleaning, we apply feature selection by 
adding class information and looking for genes that can 
distinguish between classes. 
Most learning algorithms look for non-linear combinations of 
features and can easily find many spurious combinations given 
small number of records and large number of genes.  To deal with 
this problem, we next reduce number of genes by a linear method, 
such as T-values for mean difference between classes: 
 
T-test for Mean Difference  = 
 
 
or a simplified version, 
 
called Signal to Noise ratio (S2N)  =  
 

where NK is the number of examples in class K, AvgK is the 
sample mean gene expression for class K, and sK is the sample 
standard deviation of gene expression for class K. 

These formulas assume 2 classes.  In a multi-class case, we 
compute these formulas for each class vs. all the other classes.  

In a typical multi-class data analysis (such as Ramaswamy 
[11] or Pomeroy [10] which analyze different tumor types), we 
frequently see that some of the classes are much more clearly 
characterized than others.  Thus, if we select genes only with the 

highest values of the statistic, we risk having only genes 
representative of only one class and not get enough genes from all 
classes. 

To avoid this problem, we apply an additional heuristic: 
select an equal number of genes from each class.  This is 
implemented by computing for each gene a separate measure rank 
for each class, and then ordering genes by the rank. 

4.3 Dealing with False Positives 
Because of the large number of columns compared to a relatively 
small number of samples, we are likely to get false positives, i.e. 
genes that appear to be correlated with the target classes but are 
not. 

We can measure the likelihood of false positives in several 
ways. First, if we use T-value, we can compute the significance 
value for the T-value.  If we can assume equal variances, number 
of degrees of freedom is computed as (N1 + N2 -2).  However, the 
variances are rarely equal.  For example, applying F-test to the 
top 200 genes with the highest T-value for the ALL/AML 
experiment, we find that about 80% of the genes have  
significantly different (at p=0.01) variance.  We should then use 
the version of T-test for different variances.  In that case, the 
number of degrees of freedom is estimated as [9]  
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Using this formula, we can compute the significance value for the 
top genes.  For example, among the top 200 genes for ALL/AML 
case, the p-value for the most significant gene is around 10-9 , 
while the p-value for the least significant gene is around 0.001.  

Since we evaluate several thousand genes, we can expect 
that by chance at least one from a thousand will have a value at 
p=0.001 level.   

We can test for this randomness effect by randomization, 
that is randomly permuting the class column a number of times.  
We then compute the T-value value for the mean difference for 
each randomization and for each gene, and compute for each gene 
the maximum and minimum T-value obtained.   
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Figure 8: Randomization T values for ALL/AML data, for 
gene J04027 after 500 randomizations.  Note that the lowest 

value is less than -4. 

411



5. BUILDING CLASSIFICATION MODELS After performing 500 randomizations on the top 100 genes for 
each class, only about 11 genes have maximum (or minimum) T-
values that exceed the actual values.    Many different classification methods have been applied to 

microarray data.  From biological considerations, we know that a 
typical diagnostic is more likely to have weak inputs from 
multiple genes working in parallel, rather than strong inputs from 
one gene. For this reason, sequential classifiers like Decision 
Trees, though they have been applied to microarray data, do not 
work well (see e.g. Dubitzky[4]), because they try to find the 
smallest gene sets. This also makes them less robust against false 
positives.  

A faster, but more conservative way to compensate for 
multiple tests is to use Bonferroni adjustment. i.e. to divide the 
desired significance by the number of tests.  To get genes with 
expression difference significant at 0.01 value, if we test 1000 
genes, we would establish a threshold of 0.01/1000 = 0.00001 for 
each gene.   

However, removing genes whose T-value falls below some 
arbitrary significance threshold is not the best way to get a good 
classifier, since we risk eliminating valuable genes.  Other methods that have been applied to microarray data 

classification include: 
Instead, we suggest using the wrapper approach, as described 

in the following sections, to select the best subset. • K-nearest neighbors (Pomeroy [10]) – robust for small 
numbers of genes; 

We note the many biologists use S2N measure for its 
simplicity.  However, unlike the T-test, there is no obvious 
analytical solution for measuring the significance of S2N, so the 
randomization approach can be used to estimate the significance 
level.   

• Support Vector Machines [1] - these seem to produce the 
best classification accuracy, but are hard to explain to 
biologists in terms of genes. 

Neural Nets are more noise tolerant and are designed to handle 
many parallel inputs, thus well suited to genetic classification.  
Although they usually cannot handle thousands of genes in the 
full dataset, they seem to work well for reduced number of genes.  
We  have experimented with  a number of approaches available 
within Clementine (e.g. C5.0 and C&RT) , but obtained the best 
results with neural nets. 

More detailed analysis of randomization and assessing the 
significance level and false detection rate is provided by Tusher 
[14]. 
 

 

 
Figure 9: Stream for Subset selection by Cross-Validation 
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5.1 Finding a Good Gene Set Using the 
Wrapper Approach 
Reducing the number of genes to those with sufficiently low 
significance level is only the beginning.  Usually, we still get 
several hundred genes that satisfy those conditions which is still 
too many for most classification algorithms.   We can further 
determine a good subset of genes by using a wrapper approach. 

This approach was suggested by Kohavi & John [8] to 
determine the optimal set of parameters for a classification 
algorithm.  Here we propose to use it to determine a “good” 
subset of genes. 

For this step, we suggest selecting the top 100-200 genes per 
class ordered by their rank within each class.  The exact number 
to select is not that critical, but we usually select fewer genes if 
the number of samples is small, and we also can select more 
genes if the significance testing indicates that there are many 
genes with significant differences.  

For example, if we have 5 classes, then the first 5 genes are 
the top genes for each class, then we have the second best genes 
for each class, etc.  If there are duplicate genes, we leave them in.  

We next test models using 1, 2, 3, 4, 5, 6. 8, 10, 12, 16, 20, 
30, 40, ... genes from each class.  For each model, we perform a 
V-fold cross-validation.  Five fold is sufficient for an initial run, 
while leave-one-out cross-validation is considered to give most 
accurate results.  If we are using a randomized algorithm, such as 
Clementine neural nets, the results may differ from run to run, so 
we suggest repeating each cross-validation run at least 10 times.  
 

6. CASE STUDY 1: ANALYZING 
LEUKEMIA 
As an example of a 2-class classification, we used Leukemia data 
with 2 classes: ALL/AML (Golub, [5]), available from the MIT 
Whitehead Institute.  This dataset has a training set with 38 
samples and a separate test set of 34 samples.  Both have raw 
Affymetrix expressions for about 7,000 genes. 
 
 
 
 
 
 
 
 

 
F

Fir
exp
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filter has a biological motivation and helps to reduce the number 
of genes. We next computed the mean expression values of genes 
for each class, and computed T-value for the difference, assuming 
unequal variances.  We then select the top 100 genes from each 
class with the highest T-value.  We used randomization stream to 
verify that the selected genes had T-values significantly higher 
than those obtained by randomization.  

We then selected the best gene set by building neural net 
models using potential subsets with 1, 2, 3, 4, 5, 10, etc genes 
from each class, and for each gene subset evaluated the error rate 
by using 10-fold cross-validation.   

A good cross-validation curve will show a high error in the 
beginning (when number of genes is too small), with a gradual 
decrease as the number of genes approaches the optimum plateau, 
and then a gradual increase as the number of genes becomes too 
large and we begin to overfit the data.  The best gene subset to 
select is the one in the middle of the plateau with the lowest error.   

For ALL/AML data, the cross-validation curve shows the 
desired behavior, with 10 genes being at the center of the 
optimum plateau.  We selected this gene subset to build a new 
neural net model on the full training data (using 70 percent as the 
training data) and applied it to the test data (34 samples), which 
up to this point has not been used in any way in model 
development.   

Evaluation on the test data gave us 33 correct predictions out 
of 34 (97% accuracy), which compares well with many 
previously reported results on the same data.   

 

 

Figure 11: Cross-validation errors for different gene subsets, 
for ALL/AML data, each cross-validation repeated 10 times. 
Central point is the average error for each cross-validation, 

bars indicate one St, Dev up and down. 
Note: the single misclassification was on sample 66 which has 
been consistently misclassified by other methods and is believed 
to be incorrectly labeled by the pathologist [13], which suggests 
that the classifier was actually 100% correct.  These results are as 
good as any reported on this dataset, which was the subject of 
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7. CASE STUDY 2: ANALYZING BRAIN 
DATA 

8. CASE STUDY 3: CLUSTER ANALYSIS 
The goals of cluster analysis for microarray data include finding 
natural classes in the data, identifying new classes and gene 
correlations, refine existing taxonomies and supporting biological 
analysis and discovery. 

As an example of multi-class data, we used Brain dataset A, from 
[10], available from the MIT Whitehead institute [15].  This 
dataset has 42 examples, about 7,000 genes, and 5 classes: 
Medulloblastoma, Malignant glioblastoma, AT/RT (rhabdoid), 
Normal cerebellum, and PNET.  

A number of different methods have been used for 
clustering.  We applied two clustering algorithms included in 
Clementine (Kohonen SOM and TwoStep) to the Leukemia data.  
We subdivided ALL into 2 classes: ALL-T and ALL-B.  This 
gave us 3 natural classes: ALL-T, ALL-B, and AML, and we 
were interested in seeing whether the clustering could rediscover 
the natural classes.  

The preprocessing and filtering was the same as for 
Leukemia dataset.   

We selected the top genes most strongly related to each class 
by analyzing each class against all others and computing a signal 
to noise statistic (a simplified version of the T-test), which is 
simply the difference between average for this class and the rest, 
divided by sum of standard deviations for this class and the rest. 

Preprocessing included the same thresholding and filtering as 
for classification; we also normalized each sample separately to 
Mean = 0, Std. Deviation = 1 by subtracting from each gene 
expression the mean value for the sample and dividing it by the 
standard deviation.  (It is also possible to normalize across genes, 
but we found that these results are harder to interpret). 

For multi-class data, one class might be expressed much 
more strongly than the others, so if we choose genes solely by 
decreasing T-values we might choose the most representative 
genes for one class only.  To avoid this problem we use the 
heuristic of choosing an equal number of genes from each class  We then applied both Kohonen clustering and TwoStep to 

the normalized data and compared the discovered classes to 
natural classes.   When run without specifying the number of 
clusters, TwoStep quickly found 2 clusters, which matched well 
with AML/ALL division (see Figure 13). 

We evaluated subsets with 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, and 
20 genes per class, and for each subset built neural net models 
using 10-fold cross-validation.   We aggregated average errors per 
class.  

The lowest average error, of about 15%, was obtained using 
12 genes per class (60 genes in total), which is equal to the best 
reported results on this data [10].  Due to the small size of this 
dataset, we did not have a separate test set. 

 
 

 

Figure 13:  Proportion of natural classes in 2 clusters found  
by TwoStep algorithm 

When asked to find 3 clusters, TwoStep produced clusters that 
matched closely the separation between AML, ALL-T, and ALL-
B (see Figure 14).   

 
Figure 14: Proportion of natural classes in 3 clusters found  

by TwoStep algorithm 
Figure 12: Cross-validation errors for different gene  

subsets, for multi-class brain data,  
each cross-validation repeated 10 times. 

Similar results were obtained with Kohonen clustering. 
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9. FUTURE DIRECTIONS AND 
CONCLUSIONS 
Other types of analysis possible with Clementine include 
combining clinical and genetic data and performing outcome / 
treatment success prediction. 

While this paper was focused on analysis of microarray data, 
many ideas presented here are applicable to other domains, such 
as cheminformatics or drug design, where the number of attributes 
is very large and much larger than the number of samples.  For 
example, a version of these techniques was used to analyze 
chemical structure data with 100,000 Boolean attributes and 
20,000 examples. 

One promising idea for future extension is to perform cost-
sensitive classification. In many domains, classification errors are 
not equal - for example, missing a treatable cancer is a much more 
serious error than missing an untreatable cancer. The C5.0 
algorithm allows cost-sensitive learning that can be used to 
develop models that minimize cost of errors, according to a 
custom error cost matrix; this could be used to develop 
classification models which would be more useful in practice. 

Clementine is also integrated with text-mining technology, 
which can be used to access the huge medical textual resources. 

In conclusion, we emphasize that using a principled 
methodology can lead to good results. In this paper we have 
shown how to use Clementine Application Templates to obtain 
very good results in analyzing microarray datasets, based on best 
practice and organized using CRISP-DM. 
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