
Capturing Best Practice for Microarray Gene Expression
Data Analysis

Gregory Piatetsky-Shapiro
KDnuggets

gps@kdnuggets.com

Tom Khabaza
SPSS

tkhabaza@spss.com

Sridhar Ramaswamy
MIT / Whitehead Institute

sridhar@genome.wi.mit.edu

ABSTRACT
Analyzing gene expression data from microarray devices has
many important applications in medicine and biology, but
presents significant challenges to data mining. Microarray data
typically has many attributes (genes) and few examples (samples),
making the process of correctly analyzing such data difficult to
formulate and prone to common mistakes. For this reason it is
unusually important to capture and record good practices for this
form of data mining. This paper presents a process for analyzing
microarray data, including pre-processing, gene selection,
randomization testing, classification and clustering; this process is
captured with "Clementine Application Templates". The paper
describes the process in detail and includes three case studies,
showing how the process is applied to 2-class classification,
multi-class classification and clustering analyses for publicly
available microarray datasets.

Keywords
microarrays, gene expression, data mining process,
application template, Clementine.

Categories
H.2.8 Database Applications - Data Mining, I.5.2 Design
Methodology - classifier design and evaluation.

1. MICROARRAYS: AN OVERVIEW
Cells in the same organism normally have the same genes, but
these genes can be expressed differently, i.e. manufacture
different messenger RNA or mRNA, which in turn manufacture
different proteins, allowing creation of a huge variety of different
cells. Virtually all differences in cell state or type are correlated
with changes in the mRNA levels of many genes. Detection and
cure of many diseases can be assisted by understanding gene
expression in human and animal tissues and cells.

Microarray chips measure the expression levels of many
genes simultaneously. There are several different types of
microarrays, including

 Short oligonucleotide arrays (made by Affymetrix);

 cDNA or spotted arrays (originated by Pat Brown lab at
Stanford);

 Long oligonucleotide arrays (Agilent Inkjet);

 Fiber-optic arrays.

Different types of microarray use different technologies for
measuring RNA expression levels; detailed description of these

technologies is beyond the scope of this paper. Here we will focus
on the analysis of data from Affymetrix arrays, which are
currently the most popular commercial arrays. However, the
methodology for analysis of data from other arrays would be
similar, but would use different technology-specific data
preparation and cleaning steps.

Figure 1: Affymetrix GeneChip® (right),
its grid (center) and a cell in a grid (left).

This type of microarray is a silicon chip that can measure the
expression levels of thousands of genes simultaneously. This is
done by hybridizing a complex mixture of mRNAs (derived from
tissue or cells) to microarrays that display probes for different
genes tiled in a grid-like fashion. Hybridization events are
detected using a fluorescent dye and a scanner that can detect
fluorescence intensities. The scanners and associated software
perform various forms of image analysis to measure and report
raw gene expression values. This allows for a quantitative readout
of gene expression on a gene-by-gene basis. As of 2002,
microarrays such as the Affymetrix U133 2-chip set, can measure
expression of over 30,000 genes, likely a majority of the
expressed human genome.

Microarrays have many potential applications, including:
• More accurate disease diagnosis from gene expression

levels;
• Predicting treatment outcome;
• Tailoring drug therapy based on gene expression levels

(pharmacogenomics);
• Drug discovery and toxicology studies;
• Assisting fundamental biological discovery.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-737-0/03/0008…$5.00.

407

Figure 2: An example raw mi
single sample (image courtesy
Brightness of dots represents
expressed. The image on the
microarray software into num
right

Microarray data analysis is fast
biomedical research.
The main types of data analysis
applications include:
• Gene Selection – in data mi

attribute selection, which f
related to a particular class.

• Classification – here we cla
expression patterns, predict o
treatment.

• Clustering – using clusterin
classes and refine existing one

2. DESCRIBING A KN
DISCOVERY PROCESS
CLEMENTINE APPLIC
TEMPLATES
To get the best results from data m
to use a well-defined process and
task at hand. In this section we o
data mining process model, and
given application can be capture
using a visual programming enviro

2.1 CRISP-DM – a CRo
Process model for Data M
Now widely adopted as a standard
CRISP-DM [3,16] offers man
practitioners; one of these is to
structure and terminology for the d
to capture best practice for a part
we must describe the process in de
framework for doing so.

Figure 3 shows the “phases” of t
main information flows between
high-level classification of data m
understanding”, “data preparation
describe data mining.
Gene Value
D26018_at 193
D26067_at -70
D26068_at 144
D26129_at 33
croarray image for a
 of Affymetrix).
the intensity of genes
left is translated by
bers like the ones on the

becoming an essential tool in

 needed to support the above

ning terms this is a process of
inds the genes most strongly

ssify diseases based on gene
utcomes and/or select the best

g we can find new biological
s.

OWLEDGE
 WITH
ATION

ining in any field it is advisable
 to adopt best practices for the
utline the CRISP-DM standard
show how best practices for a
d in a CRISP-DM framework
nment.

ss-Industry Standard
ining

 process model for data mining,
y benefits to data mining
provide a standard high-level
ata mining process. If we wish
icular data mining application,
tail, and CRISP-DM gives us a

he CRISP-DM process and the
them; these phases provide a
ining activities, such as “data

” and “modeling”, to help us

Figure 3: Phases and Information flow in CRISP-DM

2.2 Describing a Data Mining Process
For a given data mining application, best practice will specify a
number of steps, for example certain data preparation and
modeling steps, which are combined to solve the problem at hand.
Figure 4 shows a diagram depicting how a collection of data
preparation and modeling steps fit together for the task of genome
classification in a multi-class problem. (In figure 4, ellipses
represent operations applied to the data and rectangles represent
raw data or intermediate data which is created by one step and
used in another. Codes starting with P represent data preparation
steps and codes starting with M represent modeling steps.)

Figure 4: Data Mining Process Diagram for a

Multi-Class Classification Task

A diagram such as that in figure 4 describes a “module”; a
collection of modules forms an “application template”, a complete
description of the data mining process for one application. The
steps in the process are realized using a data mining toolkit. The
diagram in figure 4 uses only an informal notation, to help an
analyst understand how a collection of steps and data files fit
together.

408

2.3 Using a Data Mining Toolkit to Realize the
Steps of a Data Mining Process
To capture a data mining process in sufficient detail that it can be
re-used, each step must be realized in an executable form. This
can be achieved using a data mining toolkit based on visual
programming, such as Clementine [6,12], depicted in figure 5.

In figure 5, Clementine’s main drawing area contains a stream
diagram; an executable visual program which performs one of the
modeling steps in figure 4. Each icon in the stream diagram
depicts a low level operation in the data mining process; data
flows from data sources (circular icons) through data
manipulation operations (hexagonal icons) to a C5.0 modeling
operation (a pentagon) and through t(a pentagon) and through the model (diamond-shaped)
to various reports and visualizations.

he model (diamond-shaped)
to various reports and visualizations.

Figure 5: Clementine Visual Programming Interface & Microarray Analysis Stream Diagram Figure 5: Clementine Visual Programming Interface & Microarray Analysis Stream Diagram

Each step in a data mining process can be realized using a
stream diagram of this kind. A collection of stream diagrams and
data files designed to achieve a particular goal is called a
Clementine Application Template, or “CAT” [7].

Each step in a data mining process can be realized using a
stream diagram of this kind. A collection of stream diagrams and
data files designed to achieve a particular goal is called a
Clementine Application Template, or “CAT” [7].

The CRISP-DM process model is used to classify the
streams of a CAT according to the role they play in this standard
view of the data mining process. Clementine also supports the
use of CRISP-DM via its CRISP-DM Project facility; figure 5
shows the streams from one module of a Microarray analysis
CAT organized using this tool.

The CRISP-DM process model is used to classify the
streams of a CAT according to the role they play in this standard
view of the data mining process. Clementine also supports the
use of CRISP-DM via its CRISP-DM Project facility; figure 5
shows the streams from one module of a Microarray analysis
CAT organized using this tool.

A Clementine Application Template (CAT) can be used to
capture best practice for a specific data mining application.
Clementine streams form the detailed realization of a process.
The higher-level structure of the process is a collection of
modules, each of which is depicted informally as a data mining
process diagram, and the CRISP-DM framework is used to
classify the steps of the process. The remainder of this paper

specifies in detail the capture of best practice for microarray gene
expression data analysis.

A Clementine Application Template (CAT) can be used to
capture best practice for a specific data mining application.
Clementine streams form the detailed realization of a process.
The higher-level structure of the process is a collection of
modules, each of which is depicted informally as a data mining
process diagram, and the CRISP-DM framework is used to
classify the steps of the process. The remainder of this paper

specifies in detail the capture of best practice for microarray gene
expression data analysis.

Figure 6: Microarray CAT Module 2 Streams

organized as a CRISP-DM Project

409

3. MICROARRAY DATA ANALYSIS
ISSUES

Comparing microarray data analysis with the more widespread
applications of data mining, such as analytical CRM using
customer data, we can see that it presents quite different
challenges, for two reasons. First, the typical number of records
(or samples) for microarray analysis is small – usually less than
100. This is likely to remain so for many areas of investigation,
especially for human data, because of the difficulty of collecting
and processing samples.

Second, the number of columns (or genes) in microarray data
is normally large – typically many thousands. When building
predictive models, having so many columns relative to the
number of rows is likely to lead to “false positives” – gene
combinations what correlate with a target variable purely by
chance. This is particularly true for learning algorithms such as
decision trees and neural networks, which find complex non-
linear combinations of features, and therefore have a large model
space in which to find spurious models.

Figure 7: Microarray Classification Process Overview

4. 1 Microarray Data Cleaning and
Preparation
At a very high level, the goal of data preparation in microarray
data analysis is the same as for all data mining, that is to
transform the data to make it suitable for analysis and to aid in
producing the best possible models. However the unusual
properties of microarray data give a special character to this phase
of the data mining process; in this context data preparation takes
place in two stages.

One useful technique in this situation is to assess the
likelihood of getting chance correlations by using randomization.
This technique randomly permutes the class column many times,
and compares the strength of correlation obtained with a
randomized class column with that from the actual class column.

Another useful technique is to select a smaller number of the
most promising genes, for example 100-200, and build models
using only these genes. Genes can be ranked by comparing the
mean expression value for each class with that of the rest, and
computing measures like T-values or signal-to-noise (S2N) ratios.
Models produced in this way are more accurate, and generalize
better, than models produced using the complete set of available
genes.

The first stage could be characterized as “pure” data
preparation. This stage contains those aspects of data preparation
which are independent of any class data; these are thresholding,
normalization and filtering. The thresholding and filtering
operations achieve a substantial amount of feature reduction,
typically by about 50%.

Thresholding and filtering are “low-level” forms of data
cleaning; techniques of this kind are broadly applicable, but the
details will vary with the microarray device used to produce the
data. The thresholding and filtering details given in this paper
therefore have the status of examples only, and are specific to the
Affymetrix device.

These techniques for reducing the number of columns in the,
otherwise very wide, microarray data, are collectively referred to
as “feature reduction”.

4. MICROARRAY DATA ANALYSIS
PROCESS The second stage contains those aspects which make specific

use of class data, and are broadly termed “feature selection”.
Here we are performing data reduction by narrowing the set of
features to those relevant to the specific set of classes to be
analyzed. These operations are therefore specialized to the
character and number of these classes, and are also not suitable
for “pure” discovery, for example uses of clustering to discover
new classes which may be independent of known classes.

The process of analyzing microarray gene expression data is
summarized in figure 7, which shows the major flows of data and
the iterative relationship between model building and feature and
parameter selection.
The process in figure 7 is that used for modeling the classification
of genomes, where both gene data and class data are used – the
modeling is “supervised learning”. For data-sets which are too
small to separate training and test data (a common situation with
Microarray data), cross-validation can be used to evaluate the
likely quality of a model. Where the modeling is unsupervised,
no separation of training and test data is required, and feature
selection based on class is explicitly excluded because the
purpose of the exercise is to discover new classes.

4.1.1 Thresholding
The goal of all microarray devices is to measure the expression
level of mRNA, which in Affymetrix devices is measured
indirectly by comparing PM (perfect match), and MM (mismatch)
probes, using 20 probes in the HuFL6800 chip, and 11 probes in
the latest chip. The MAS-4 software combines the PM and MM
values by subtracting MM from PM values, so it is possible for
gene expression to be negative, which means that MM probes
have stronger signals than PM. Since we do not know what is
matching the MM probes, these signals are not useful, and for this
reason, data processed with MAS-4 software is heuristically set to

410

a minimum of 20. Affymetrix MAS-5 software does not generate
negative expression values and does its own thresholding.

Studies of measurement error, which process the same
sample several times [17], have shown that the measurements
were reproducible above values of 100, and much less
reproducible below 100. For data believed to be more noisy, a
lower threshold of 100 would be appropriate.

The upper threshold is usually 16,000, because image
intensities above this level tend to have a non-linear correlation
with the actual expression levels.

4.1.2 Normalization
While classification algorithms can use the actual expression
levels, data normalization is required for clustering.
The best results are obtained by normalizing the data to mean
zero, standard deviation 1 across genes.

4.1.3 Filtering
Since many genes are not expressed at all or do not vary
sufficiently to be useful, a filtering operation is usually applied
before adding the class information. Typical filtering excludes
genes with low variation across samples, for example

MaxValue(G) / MinValue(G) < 5 and
MaxValue(G) – MinValue(G) < 500

where MaxValue(G) and MinValue(G) are the maximum and
minimum values of gene G across all samples.

4.2 Feature Selection
After data preparation and cleaning, we apply feature selection by
adding class information and looking for genes that can
distinguish between classes.
Most learning algorithms look for non-linear combinations of
features and can easily find many spurious combinations given
small number of records and large number of genes. To deal with
this problem, we next reduce number of genes by a linear method,
such as T-values for mean difference between classes:

T-test for Mean Difference =

or a simplified version,

called Signal to Noise ratio (S2N) =

where NK is the number of examples in class K, AvgK is the
sample mean gene expression for class K, and sK is the sample
standard deviation of gene expression for class K.

These formulas assume 2 classes. In a multi-class case, we
compute these formulas for each class vs. all the other classes.

In a typical multi-class data analysis (such as Ramaswamy
[11] or Pomeroy [10] which analyze different tumor types), we
frequently see that some of the classes are much more clearly
characterized than others. Thus, if we select genes only with the

highest values of the statistic, we risk having only genes
representative of only one class and not get enough genes from all
classes.

To avoid this problem, we apply an additional heuristic:
select an equal number of genes from each class. This is
implemented by computing for each gene a separate measure rank
for each class, and then ordering genes by the rank.

4.3 Dealing with False Positives
Because of the large number of columns compared to a relatively
small number of samples, we are likely to get false positives, i.e.
genes that appear to be correlated with the target classes but are
not.

We can measure the likelihood of false positives in several
ways. First, if we use T-value, we can compute the significance
value for the T-value. If we can assume equal variances, number
of degrees of freedom is computed as (N1 + N2 -2). However, the
variances are rarely equal. For example, applying F-test to the
top 200 genes with the highest T-value for the ALL/AML
experiment, we find that about 80% of the genes have
significantly different (at p=0.01) variance. We should then use
the version of T-test for different variances. In that case, the
number of degrees of freedom is estimated as [9]

)1/()/()1/()/(
)//(

2
2

2
2
21

2
1

2
1

2
2
21

2
1

−+−
−

=
NNsNNs

NsNs
 df

Using this formula, we can compute the significance value for the
top genes. For example, among the top 200 genes for ALL/AML
case, the p-value for the most significant gene is around 10-9 ,
while the p-value for the least significant gene is around 0.001.

Since we evaluate several thousand genes, we can expect
that by chance at least one from a thousand will have a value at
p=0.001 level.

We can test for this randomness effect by randomization,
that is randomly permuting the class column a number of times.
We then compute the T-value value for the mean difference for
each randomization and for each gene, and compute for each gene
the maximum and minimum T-value obtained.

)//(
)(

2
2
21

2
1

21

NsNs
AvgAvg

+

−

)(
)(

21

21

ss
AvgAvg

+
−

Figure 8: Randomization T values for ALL/AML data, for
gene J04027 after 500 randomizations. Note that the lowest

value is less than -4.

411

5. BUILDING CLASSIFICATION MODELS After performing 500 randomizations on the top 100 genes for
each class, only about 11 genes have maximum (or minimum) T-
values that exceed the actual values. Many different classification methods have been applied to

microarray data. From biological considerations, we know that a
typical diagnostic is more likely to have weak inputs from
multiple genes working in parallel, rather than strong inputs from
one gene. For this reason, sequential classifiers like Decision
Trees, though they have been applied to microarray data, do not
work well (see e.g. Dubitzky[4]), because they try to find the
smallest gene sets. This also makes them less robust against false
positives.

A faster, but more conservative way to compensate for
multiple tests is to use Bonferroni adjustment. i.e. to divide the
desired significance by the number of tests. To get genes with
expression difference significant at 0.01 value, if we test 1000
genes, we would establish a threshold of 0.01/1000 = 0.00001 for
each gene.

However, removing genes whose T-value falls below some
arbitrary significance threshold is not the best way to get a good
classifier, since we risk eliminating valuable genes. Other methods that have been applied to microarray data

classification include:
Instead, we suggest using the wrapper approach, as described

in the following sections, to select the best subset. • K-nearest neighbors (Pomeroy [10]) – robust for small
numbers of genes;

We note the many biologists use S2N measure for its
simplicity. However, unlike the T-test, there is no obvious
analytical solution for measuring the significance of S2N, so the
randomization approach can be used to estimate the significance
level.

• Support Vector Machines [1] - these seem to produce the
best classification accuracy, but are hard to explain to
biologists in terms of genes.

Neural Nets are more noise tolerant and are designed to handle
many parallel inputs, thus well suited to genetic classification.
Although they usually cannot handle thousands of genes in the
full dataset, they seem to work well for reduced number of genes.
We have experimented with a number of approaches available
within Clementine (e.g. C5.0 and C&RT) , but obtained the best
results with neural nets.

More detailed analysis of randomization and assessing the
significance level and false detection rate is provided by Tusher
[14].

Figure 9: Stream for Subset selection by Cross-Validation

412

5.1 Finding a Good Gene Set Using the
Wrapper Approach
Reducing the number of genes to those with sufficiently low
significance level is only the beginning. Usually, we still get
several hundred genes that satisfy those conditions which is still
too many for most classification algorithms. We can further
determine a good subset of genes by using a wrapper approach.

This approach was suggested by Kohavi & John [8] to
determine the optimal set of parameters for a classification
algorithm. Here we propose to use it to determine a “good”
subset of genes.

For this step, we suggest selecting the top 100-200 genes per
class ordered by their rank within each class. The exact number
to select is not that critical, but we usually select fewer genes if
the number of samples is small, and we also can select more
genes if the significance testing indicates that there are many
genes with significant differences.

For example, if we have 5 classes, then the first 5 genes are
the top genes for each class, then we have the second best genes
for each class, etc. If there are duplicate genes, we leave them in.

We next test models using 1, 2, 3, 4, 5, 6. 8, 10, 12, 16, 20,
30, 40, ... genes from each class. For each model, we perform a
V-fold cross-validation. Five fold is sufficient for an initial run,
while leave-one-out cross-validation is considered to give most
accurate results. If we are using a randomized algorithm, such as
Clementine neural nets, the results may differ from run to run, so
we suggest repeating each cross-validation run at least 10 times.

6. CASE STUDY 1: ANALYZING
LEUKEMIA
As an example of a 2-class classification, we used Leukemia data
with 2 classes: ALL/AML (Golub, [5]), available from the MIT
Whitehead Institute. This dataset has a training set with 38
samples and a separate test set of 34 samples. Both have raw
Affymetrix expressions for about 7,000 genes.

F

Fir
exp

(M
(M

filter has a biological motivation and helps to reduce the number
of genes. We next computed the mean expression values of genes
for each class, and computed T-value for the difference, assuming
unequal variances. We then select the top 100 genes from each
class with the highest T-value. We used randomization stream to
verify that the selected genes had T-values significantly higher
than those obtained by randomization.

We then selected the best gene set by building neural net
models using potential subsets with 1, 2, 3, 4, 5, 10, etc genes
from each class, and for each gene subset evaluated the error rate
by using 10-fold cross-validation.

A good cross-validation curve will show a high error in the
beginning (when number of genes is too small), with a gradual
decrease as the number of genes approaches the optimum plateau,
and then a gradual increase as the number of genes becomes too
large and we begin to overfit the data. The best gene subset to
select is the one in the middle of the plateau with the lowest error.

For ALL/AML data, the cross-validation curve shows the
desired behavior, with 10 genes being at the center of the
optimum plateau. We selected this gene subset to build a new
neural net model on the full training data (using 70 percent as the
training data) and applied it to the test data (34 samples), which
up to this point has not been used in any way in model
development.

Evaluation on the test data gave us 33 correct predictions out
of 34 (97% accuracy), which compares well with many
previously reported results on the same data.

Figure 11: Cross-validation errors for different gene subsets,
for ALL/AML data, each cross-validation repeated 10 times.
Central point is the average error for each cross-validation,

bars indicate one St, Dev up and down.
Note: the single misclassification was on sample 66 which has
been consistently misclassified by other methods and is believed
to be incorrectly labeled by the pathologist [13], which suggests
that the classifier was actually 100% correct. These results are as
good as any reported on this dataset, which was the subject of

ALL
igure 10: ALL and AML Leukemia – Visually
genetically very different

st we applied a preprocessing stream to th
ression values to at least 20 and at most 16,000.

Then we used a filtering stream to remove th
aximum value – minimum value) < 500 acros
aximum value / minimum value) < 5 across sa
AML
 similar, but

reshold gene

e genes where
s samples and
mples. This

CAMDA-2000 conference and competition [2].

413

7. CASE STUDY 2: ANALYZING BRAIN
DATA

8. CASE STUDY 3: CLUSTER ANALYSIS
The goals of cluster analysis for microarray data include finding
natural classes in the data, identifying new classes and gene
correlations, refine existing taxonomies and supporting biological
analysis and discovery.

As an example of multi-class data, we used Brain dataset A, from
[10], available from the MIT Whitehead institute [15]. This
dataset has 42 examples, about 7,000 genes, and 5 classes:
Medulloblastoma, Malignant glioblastoma, AT/RT (rhabdoid),
Normal cerebellum, and PNET.

A number of different methods have been used for
clustering. We applied two clustering algorithms included in
Clementine (Kohonen SOM and TwoStep) to the Leukemia data.
We subdivided ALL into 2 classes: ALL-T and ALL-B. This
gave us 3 natural classes: ALL-T, ALL-B, and AML, and we
were interested in seeing whether the clustering could rediscover
the natural classes.

The preprocessing and filtering was the same as for
Leukemia dataset.

We selected the top genes most strongly related to each class
by analyzing each class against all others and computing a signal
to noise statistic (a simplified version of the T-test), which is
simply the difference between average for this class and the rest,
divided by sum of standard deviations for this class and the rest.

Preprocessing included the same thresholding and filtering as
for classification; we also normalized each sample separately to
Mean = 0, Std. Deviation = 1 by subtracting from each gene
expression the mean value for the sample and dividing it by the
standard deviation. (It is also possible to normalize across genes,
but we found that these results are harder to interpret).

For multi-class data, one class might be expressed much
more strongly than the others, so if we choose genes solely by
decreasing T-values we might choose the most representative
genes for one class only. To avoid this problem we use the
heuristic of choosing an equal number of genes from each class We then applied both Kohonen clustering and TwoStep to

the normalized data and compared the discovered classes to
natural classes. When run without specifying the number of
clusters, TwoStep quickly found 2 clusters, which matched well
with AML/ALL division (see Figure 13).

We evaluated subsets with 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, and
20 genes per class, and for each subset built neural net models
using 10-fold cross-validation. We aggregated average errors per
class.

The lowest average error, of about 15%, was obtained using
12 genes per class (60 genes in total), which is equal to the best
reported results on this data [10]. Due to the small size of this
dataset, we did not have a separate test set.

Figure 13: Proportion of natural classes in 2 clusters found
by TwoStep algorithm

When asked to find 3 clusters, TwoStep produced clusters that
matched closely the separation between AML, ALL-T, and ALL-
B (see Figure 14).

Figure 14: Proportion of natural classes in 3 clusters found

by TwoStep algorithm
Figure 12: Cross-validation errors for different gene

subsets, for multi-class brain data,
each cross-validation repeated 10 times.

Similar results were obtained with Kohonen clustering.

414

9. FUTURE DIRECTIONS AND
CONCLUSIONS
Other types of analysis possible with Clementine include
combining clinical and genetic data and performing outcome /
treatment success prediction.

While this paper was focused on analysis of microarray data,
many ideas presented here are applicable to other domains, such
as cheminformatics or drug design, where the number of attributes
is very large and much larger than the number of samples. For
example, a version of these techniques was used to analyze
chemical structure data with 100,000 Boolean attributes and
20,000 examples.

One promising idea for future extension is to perform cost-
sensitive classification. In many domains, classification errors are
not equal - for example, missing a treatable cancer is a much more
serious error than missing an untreatable cancer. The C5.0
algorithm allows cost-sensitive learning that can be used to
develop models that minimize cost of errors, according to a
custom error cost matrix; this could be used to develop
classification models which would be more useful in practice.

Clementine is also integrated with text-mining technology,
which can be used to access the huge medical textual resources.

In conclusion, we emphasize that using a principled
methodology can lead to good results. In this paper we have
shown how to use Clementine Application Templates to obtain
very good results in analyzing microarray datasets, based on best
practice and organized using CRISP-DM.

10. ACKNOWLEDGMENTS
Our thanks to Pablo Tamayo for helpful suggestions and ideas.

11. REFERENCES
[1] Brown et al., Knowledge-based analysis of microarray gene

expression data by using support vector machines, PNAS
97(1):262–267, 2000.

[2] CAMDA 2000, Proceedings of Critical Assessment of
Microarrays Conference, Duke University, 2000.

[3] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz,
T., Shearer, C. and Wirth, R. CRISP-DM 1.0 Step-by-step
data mining guide, CRISP-DM Consortium, 2000, available
at http://www.crisp-dm.org

[4] Dubitzky et al., Symbolic and Subsymbolic Machine
Learning Approaches for Molecular Classification of Cancer
and Ranking of Genes, in Proceedings of CAMDA 2000,
Duke University, 2000.

[5] Golub et al., Molecular Classification of Cancer: Class
Discovery and Class Prediction by Gene Expression
Monitoring, Science, vol. 286, October 1999.

[6] Khabaza, T. and Shearer, C., Data Mining with Clementine,
IEE Colloquium on Knowledge Discovery in Databases, IEE
Digest No 1995/021(B), London, February 1995.

[7] Khabaza, T. & Sigerson, D., WebCAT: the Clementine
Application Template for Web-Mining and Analytical
eCRM, web-mining workshop paper, First SIAM
International Conference on Data Mining, Chicago, April
2001.

[8] Kohavi, R, John, G., Wrappers for Feature Subset
Selection, Artificial Intelligence, 1997.

[9] NIST Engineering and Statistics Handbook, http://
www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm

[10] Pomeroy et al., Prediction of central nervous system
embryonal tumour outcome based on gene expression,
Nature, vol. 415, January 2002.

[11] Ramaswamy, S. et al, Multiclass cancer diagnosis using
tumor gene expression signatures, PNAS 98(26):15149-
15154, 2001.

[12] Shearer, C. and Khabaza, T., Data Mining by Data Owners,
Intelligent Data Analysis, Baden-Baden, Germany, August
1995.

[13] Tamayo, P., personal communication, 2002.

[14] Tusher, Tibshirani, and Chu, Significance analysis of
microarrays applied to the ionizing radiation response. PNAS
2001 98: 5116-5121.

[15] Whitehead (MIT) Institute Cancer Genomics Publications
Data Sets,
http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi

[16] Wirth, R. & Hipp, J., CRISP-DM: Towards a Standard
Process Model for Data Mining, in Proc. of the 4th Int. Conf.
on The Practical Applications of Knowledge Discovery and
Data Mining, Manchester UK, April 2000, The Practical
Application Company.

[17] Saccone, R. A., Rauniyar, R. K. and Patti M.-E., Sources of
Experimental Variability In Expression Data Derived From
High-Density Oligonucleotide Microarrays: Practical
Experience From An Academic Core Laboratory, 2nd
Annual UMass Bioinformatics Conference, UMass Lowell,
2002.

415

