 The Working Prototype of PeerCQ
1. Introduction

This prototype was intended as an infrastructure of information monitoring systems

on the web based Peer-to-Peer system. Using this prototype as a tool, we expected to make it effective to develop various applications dealing with decentralized Internet scale distributed information monitoring services on top of this prototype. To become a useful platform for developments of such applications, this prototype should be enhanced to more reliable, robust, and secure underlying system. Some important factors of PeerCQ [Gedik et al. 2003] have been implemented in the prototype such as the routed query based Peer-to-Peer protocol, a donation based peer-aware mechanism for handling the peer heterogeneity, and strict matching service partitioning approach by integrating CQ-aware and peer-aware information with respect to balance loads among peers and overall system utilization. By promoting such factors and some programming paradigms, we have achieved successfully a scalable and self-configurable working prototype. We can also simulate PeerCQ on top of the prototype. As a result of these experiences, we have built a foundation for extending further our prototype into more reliable, secure, and efficient underlying infrastructure to allow interested developers to create distributed information monitoring applications with our infrastructure. During the simulation of PeerCQ, we have faced some issues to cope with. One of them is that the service-partitioning scheme of PeerCQ connotes the possibility to form hotspot peers. It drives us to employ another fine tuned service partitioning scheme. Since PeerCQ is an Internet scale application, there will be a lot of users and their behavior is not predictable. Another issue caused by the fact is that some users who are participating in PeerCQ may not stay for enough time. Information monitoring job like CQs are long running entities. It is not useful at all to break a CQ execution and resume it at some arbitrary time or run it over from the beginning. Therefore, we need additional capabilities to cope with the issue. The other issue related with above unpredictability is that users may disconnect from the Peer-to-Peer network arbitrarily without notification. It can cause the forever loss of monitoring information. To maintain all monitoring information without any loss, a replication scheme has to be employed. In section 2, we introduce the implemented features in the prototype and in section 3, we describe the architecture of the prototype and two main processes, locating a CQ object and a peer’s nodes that enter the Peer-to-Peer network. In section 4, we specify some main API of the prototype and in section 5, we discuss the issues mentioned above in more detail and how we can cope with them in later version.

2. Implemented Features of Prototype

The main objectives of this prototype is to represent how efficient the routed query based Peer-to-Peer protocol is running to look up a target node, how each peer initiates its routing information when it starts up its service, how workloads can be balanced among peers with only strict matching approach, how CQ objects assigned to participating peers can be moved to new entering peers under the strict matching approach, and when a participating peer leaves from Peer-to-Peer system, how CQ objects assigned to the peer is moved to other remaining peers also based on the strict matching approach. In this section, we introduce what factors introduced in PeerCQ and other programming paradigms are used when implementing this prototype in detail.

Using strict matching approach when assigning CQ objects to peers to cope with load

balancing problems among peers.

Unique properties what PeerCQ has are that it introduces a donation based peer-aware mechanism for handling the peer heterogeneity, and that it integrates CQ-aware and peer-aware information into its service-partitioning scheme. Peers participating in Peer-to-Peer system are heterogeneous with respect to many characteristics, such as CPU power, network bandwidth, the amount of memory, and the amount of hard disk. These characteristics can be measured as each peer’s donated resources perceived by PeerCQ system. The concept of ED (effective donation) is used in PeerCQ to calculate those donated resources. The main idea behind this property is the peer, which has higher ED, is assigned more peer identifiers so that the probability that more CQ objects will be matched to the peer is also higher. In our prototype implementation, the calculation of ED is omitted to make the implementation simple, but this ED value is set by parameter when running a peer. We are planning to include the calculation of ED in later version. We use MD5 hashing function to map peer to identifiers. Concatenating the IP address of the peer and the index number creates each identifier of a peer. MD5 hashing function is also used when mapping of CQ objects to identifiers, but it is little bit complex, since it includes grouping factor intended to map CQ objects with similar information update interests to the same peers as much as possible in order to achieve higher overall utilization of the system. CQ object identifier consists of two parts. The first part is decided by the grouping factor as assigning as many digits as grouping number from the first digit of identifier space. This first part is expected to be identical for similar CQ objects since this first part consists of the monitor trigger part of each CQ, and using current time randomizes the second part. This mechanism allows similar CQ object to be mapped into a contiguous region on the virtual ring structure. When the grouping factor is small, forming hotspots is experienced in the prototype. Conversely, when it is large, system utilities could be wasted as many peers execute similar CQ objects that have the same monitor sources. To reduce these problems, we will implement the relaxed matching scheme in later version.

Employing master-slaves multithreads programming paradigm.

In the strict matching scheme, the number of identifiers to which a peer is mapped is calculated based on a peer’s ED when the peer is initiated to enter Peer-to-Peer network. According to PeerCQ paper, each identifier of the participating peer has its own routing data structures, which are a routing table and a neighbor list, to look up and assign CQ objects requested by other participating peers to an appropriate peer or locate a new peer’s identifiers to appropriate routing structures. That is, each identifier can be considered as a separate object that has its own functionalities and data. By using multithreads programming, this property can be efficiently and explicitly implemented in the sense that each identifier of a peer can be considered as a separate running slave thread controlled by main thread. In our prototype implementation, those slave threads are called nodes, which are created when the peer enters Peer-to-Peer network, and the main thread is called peer manager that controls nodes’ activities, assigns requests posted by other peers to one of its nodes, and maintains CQ objects. The number of slave threads is determined by the peer’s ED when the peer is initiated to participate in Peer-to-Peer network and each thread, i.e. node, waits until the peer manager obtains a packet and wakes it up for assigning the packet to the node. The waken node puts the assigned packet into its own queue, fetches a packet located at the head of the queue, and run one of its handler operations that can be a join/disjoin operation, a lookup operation, a neighbor list handling operation, or a routing table handling operation. The handler is decided by the purpose of the requested packet. This master-slave architecture can make failure handling more efficient as separating node identifier space into two parts, peer identifier and node identifier (see section 5 for more detail).

Using Java RMI as the communication protocol among peers.
In a distributed based application like PeerCQ, Java RMI offers many advantages including a seamless integration with Java’s object model, heterogeneity, and flexibility [Waldo 1998] even though it has communication overhead when compared to Unix Socket. Java RMI model makes the design of communications among peers simple since we can perform a remote method call just like calling local method regardless of which operating system is run at remote peer. In the prototype implementation, each peer acts as a servant in the sense that each peer plays as a server and also client. Therefore, each peer needs server skeleton and also client stub to communicate each other. As a servant, each peer mainly contains the server processing, which takes care of requested packets posted by other peers, and client processing, which sends packets to target peers. The peer manager of each peer plays the role of the server processing in the prototype. Whenever it is invoked by other peers’ requests, it makes a decision which process has to be run and which node has to take care of the requested packet, and then it forwards the packet to the chosen node. Node handlers owned by each node of a peer plays the role of the client processing in the prototype. Each node of a peer possesses several node handlers, which are created by other peers, and located in the node’s neighbor list and/or routing table as a result of initiating peers. Each node handler contains the information of its origin peer and node including the peer’s IP address and port number. Using the information of the node handler, each node can invoke the remote method of the node handler’s origin peer manager.
Implementing the routed query based Peer-to-Peer protocol as a basis for its lookup operation.

In routed query protocol, each peer keeps routing information. Lookup operations are performed with the help of routing decisions based on the routing information. Each peer also has its own unique identifier. The lookup process can be described as locating the peer that is specified by the key identifier in the lookup query. In the prototype implementation, these protocol and lookup operation with neighbor list and routing table are used to locate each new joining node at an appropriate place on the virtual identifier ring structure, and to assign CQ objects posted by other peers to an appropriate node. Lookup algorithm is described as forwarding a packet containing a key identifier from a node’s lookup handler to another node’s lookup handler until the key identifier of the packet is reached to the node that has the closest identifier to the key identifier in terms of the strict matching.

Creating and maintaining the virtual identifier ring of nodes in Peer-to-Peer system.

When a peer enters Peer-to-Peer network, the peer’s nodes are deployed on the virtual identifier ring. This ring is consists of numerically ordered identifiers increasing in the clockwise direction. The locations of nodes on the ring are decided by lookup operations through entering peer’s join requests.

Creating and maintaining neighbor list and routing table data structures of each node.
Routing structures used for lookup operation in route query based Peer-to-Peer protocol consists of two data structures, which are routing table and neighbor list. Routing table is used to route packets towards their destination nodes. Assuming an m-bit identifier space, the number of rows that a routing table has is (m/b(, where b is a parameter such that 2eq \o(\s\up 5(b　),\s\do 2(　))represents the radix of the identifier. The routing table also has 2eq \o(\s\up 5(b　),\s\do 2(　))columns corresponding to integers in the range [0…2eq \o(\s\up 5(b　),\s\do 2(　))- 1]. In the prototype implementation, m = 128 and b = 4 are applied. Therefore, we use 32 x 16 routing table. JKYRoutingTable class has routing table data and its operation. Entries of a routing table are node handlers that have the owner node identifier and the method used to call remote method. These node handlers can also have some node properties for relaxed matching. This will be employed in later version. The main idea behind the routing table is to support fast routing of packets. The routing table structure makes it possible for a node to route packets to other nodes that have identifiers sharing longer prefixes with the key identifier in the packet. Another routing structure is neighbor list. Each neighbor list consists of right side neighbors and left side neighbors. Entries of neighbor list are also node handler just like routing table. The most left side neighbor has the numerically largest node identifier and the most right side neighbor has the numerically smallest node identifier. JKYNeighborList class has neighbor list data and its operations.

Moving CQ objects to proper nodes based on the strict matching approach when a new peer enters to the system or a participating peer departs from the system.
One of the main objectives that PeerCQ has is the system must be self-configurable when new peers enter the system and participating peers depart from the system. The self-configuration property can be considered in two fold. First, membership changes in neighbor lists and routing tables of participating peers as the result of new peers’ entrances or/and departures are reflected in PeerCQ system. Second, executed CQ objects in peers that just depart from PeerCQ system must be moved to appropriate peers under the strict matching mechanism and when new peers enter the PeerCQ system, executed CQ objects in other participating peers are moved to these new peers also under the strict matching mechanism. This mechanism has a challenge. It could be possible that some CQ objects are lost forever and deadlock is happened caused by rebooting a peer machine without notifying the peer’s departure to other peers related with the peer. This problem can be solved by applying a replication scheme (see section 5 for more detail).

Initiating each node’s neighbor list and routing table of a new entering peer by making use of fixed well known bootstrap peers.

The routing structures of a peer’s nodes are initiated when the peer joins the system. At the moment of joining, the peer needs an entry point peer as the first connecting point to Peer-to-Peer network. There are several ways to determine an entry point peer. One of ways is to make use of well-known directory peers that are online most of the time as done in [Gnutella 2002]. In the prototype implementation, we use file cache as a list of entry point peers, called bootstrap peers in the implementation. This list is loaded to memory when a peer joins the system and read by the peer until all nodes of the peer are connected to Peer-to-Peer network.

Developing command line user interface.

In the prototype implementation, we make a command line user interface to send CQ objects, show various data owned by a peer, and depart the system.

3. Architecture of Implementation

In this section, we describe the architecture of the prototype PeerCQ, and the processes of CQ request and joining to PeerCQ system.

[image: image1.jpg]TP

TKPeiiomager

®©0

I ReutingTble

T NedsHandler

T NoasHandler

TP

 Fig 1. Architecture of Prototype

There are three main components, which make up the architecture of the prototype (see Figure 1). The first is user interface component. In the prototype, we implement a command line user interface. When running a peer, the system shows a cursor and waits a user command such as sending a CQ object. JKYCli class is the component in the above figure. The second is application component. This component can be layered on top of infrastructure component to execute its job by using underlying infrastructure. JKYPeerCQ class is the component. Since we just simulate the PeerCQ in the prototype, the application component looks very simple. This architecture allows any interested third parties to develop their own applications on top of our infrastructure. The third is infrastructure component. JKYP2P class generates first peer manager object and then node objects as many as the number of donated resources given by a parameter in the prototype. JKYP2P class also generates neighbor list object and route table object that are empty at initiation phase, and then give them to each node object. There are some other classes and methods such as JKYIDCreator, and JKYIdentifier not shown in the above figure. These classes create identifiers for nodes and give them to each node object.

When a CQ object is sent by user through JKYCli and JKYPeerCQ.send method (white label 1 in the figure), JKYP2P creates a packet, which includes the CQ object, and forwards the packet to JKYPeerManager (white label 2 in the figure). JKYPeerManager finds out an appropriate node that has the closest node identifier to the CQ identifier and forwards the packet to the node (white label 3 in the figure). The node executes its lookup operation located in JKYLookupHandler class (white label 4 in the figure) and JKYLookupHandler sends the packet to the target peer manager through node handler (white label 5 in the figure). When the packet reaches the target peer manager, JKYPeerManager forwards the packet to the target node (white label 6 in the figure). 3 ~ 6 steps are repeated until the packet reaches the target peer.

When a peer joins the PeerCQ system, JKYP2P first generates a peer manager, and then creates a node, the node’s neighbor list object and routing table object (gray label 1, 2 in the figure). The node calls join handler to create a packet (gray label 3 in the figure) and JKYJoinHandler sends the packet to a bootstrap peer (gray label 4 in the figure). When the packet reaches the bootstrap peer manager, it forwards the node that has the closest node identifier with the packet’s node identifier (gray label 5 in the figure). The node forwards the packet to JKYLookupHandler to operate lookup to find an appropriate place on a ring structure of Peer-to-Peer network (gray label 6 in the figure). If it finds the place, it sends the packet to the target node to locate the joining node handler at the target node’s neighbor list (gray label 7 in the figure). The target node and nodes in-between the joining node and the target node on the routing path of the query have to update their own neighbor lists and routing tables to reflect the fact that the new node has been entered. They also make up a packet including their routing table entries for the joining node to construct its own routing table (gray label 8 in the figure). Finally, the target node sends a packet including its neighbor list to the joining node for the joining node to create its own neighbor list (gray label 9 in the figure). All of these steps are repeated until all nodes of the joining peer are done with joining to the PeerCQ system.

4. API of the Implementation

In this section, we briefly describe core API used in the prototype version. The presented API is slightly simplified for clarity.

JKYPeerCQ class includes the main method that calls startP2P() included in JKYP2P class.

interpreter () waits a user command in a loop. When it meets a user commnad, it parses the command through JKYCli class. If it is proper command, it calls an appropriate method.

startP2P () repeats fetching a bootstrap node, creating node identifier using the peer’s IP address and index number, and creating node by calling createNode().

createNode (node identifier, bootstrap node handler) creates a node handler object with the node identifier, the owner peer’s IP address, and port number. The IP address and the port number are used to communicate with the owner peer manager when this node handler is put in other nodes’ routing structures. That is, if the other node has this node handler, the node can send a CQ object as contacting the peer manager known by the IP address and port number. This method also creates empty neighbor list object and routing table object. Using these objects, this method can configure its own node. After finishing configuration, it runs this node as a thread and registers this node to the owner peer manager. If this is the first time to create a node of the owner peer manager, then it registers the peer manager to RMI registry for other nodes to start to communicate with the peer manager. Finally, this process is blocked until the node is located on the virtual ring structure of Peer-to-Peer network.

sendMessage (object, messge name) creates an object identifier, which is a CQ object in PeerCQ, with message name, which is a monitor trigger in PeerCQ, and peer address. This method also creates an object request packet and sets the object, CQ object in PeerCQ, and the identifier. Finally, this method put this packet into the node’s queue.

terminatePeer () sends disjoin init packets to remove every node handler from every routing structures that includes those node handlers. This method iterates until all the peer’s nodes give away their CQ objects to appropriate nodes.

demultiplexPacket (packet) decides which handler has to run with packet type. It can run join handler, neighbor list handler, routing table handler, or lookup handler according to packet type.

distributePacket (packet) invokes remote method with the peer’s IP address and port number. This method branches its operation based on its packet. Some of them need CQ objects. After setting CQ objects, this method puts its packet into the chosen node’s queue or calls directly demultiplexPacket ().

handleRemotePacket (packet, identifier) is invoked by node handlers from remote peers.

lookup (packet) searches target node handler in current node's neighbor list or routing table. First, it searches its neighbor list. If target node handler is found, then return a packet including target node handler. If not, it searches routing table. If target node handler is found in its routing table, then return a packet including the target node handler. If not, it looks for the closest one with key identifier from its routing table, and looks for the edge node handler from neighbor list. Among these node handlers, the closest one with key identifier is returned. This lookup method consists of two parts. One is for joining to PeerCQ, the other is for locating CQ object.
handlePacket (packet) branches out as its packet types. All Hanlder classes have this method. These methods’ functionalities are similar.

5. Further Enhancements

In this section, we discuss features that will be included to improve the prototype into more reliable, robust, and secure infrastructure.

Using the relaxed matching approach.

Relaxed matching is intended to fine tune PeerCQ service partitioning by utilizing the characteristics of the information-monitoring domain, and making use of neighbor information. The owner of a CQ object has the opportunity to query its neighbors to see if there exists a better peer to execute the CQ object in the sense of relaxed matching factors such as cache affinity, peer loads, and data source distance factor.

Employing a replication scheme for failure handling.

Peers are user machine spread out in Internet and their behavior is not predictable. One of serious issues caused by the unpredictability is that there could be users who reboot their machines without notifying their departures to other users who have requested CQ objects but do not have any notifications as results of requests. To avoid problems, PeerCQ systems must use a replication scheme such as duplicating CQ objects to the mirror peer, which is another peer that has the numerically closest node from the original owner node. It may be one of the original owner node’s neighbors. After this step, the node that has duplicated CQ objects checks periodically if the original node is alive. If there is no response from the original node for a threshold time, the checking node should run the original node’s CQ objects if it has replica of failed node’s CQ objects. This scheme needs a lot of communications among nodes to check the neighbor’s aliveness causing wasting network bandwidth. Another suggestion to reduce the problem efficiently is to use peer identifiers. We can include peer identifier approach on top of the prototype such that an identical peer identifier with all nodes, which are created by a peer, can be applied by using grouping factor just like CQ identifier scheme. When a node finds out its neighbor is disconnected, it can inform the fact to its peer manager with the disconnected peer identifier, then the peer manager can broadcast this fact to its other all nodes to remove the disconnected peer’s nodes from their routing structures and let them execute replica CQ immediately.

Implementing Reputation-Based Trust Model [Xiong et al. 2002] on top of the prototype version.

Another issue caused by the unpredictability of users is to make PeerCQ system unstable as those peers enter and leave the system very frequently. Integrating reputation based trust model on top of the prototype will be implemented in later version so that we will include trusts value to the service-partitioning scheme.

Implementing Continual Queries [Liu et al. 1999] on top of the prototype version.

Continual Queries (CQs) are employed in PeerCQ as its primitives to describe information-monitoring requests. In the prototype implementation, we just use a part of CQs’ components to simulate CQ-aware mechanism. We are planning to include the actual information updates monitoring and notifying results of those updates to requesters through employing whole CQ components in later version.

Others to further implement
We will include a special purposed monitoring peer on a dedicated machine to collect statistics regarding the status of the system and joining peers. We will also employ a graphical user interface in later version. Through this user interface, user should give peer donation factors such as the speed of the CPU, the amount of the hard disk, the amount of the memory, and the amount of the network bandwidth to PeerCQ system. With these factors, the system calculates ED to apply it in a donation based peer-aware mechanism.
References

GNUTELLA. 2002. The gnutella home page. http://gnutella.wego.com/.

LIU, L., PU, C., AND TANG, W. 1999. Continual queries for internet scale event-driven information delivery. IEEE Transactions on Knowledge and Data Engineering, 610-628.

ROWSTRON, A. AND DRUSCHEL, P. 2001. Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Systems Platforms.

ROWSTRON, A., KERMARREC, A., CASTRO, M., AND DRUSCHEL, P. 2001. Scribe: The design of a large-scale event notification infrastructure. In International Workshop on Networked Group Communication. 30-43.

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M., AND BALAKRISHNAN, H. 2001. Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of SIGCOMM Annual Conference on Data Communication.

WALDO, J. 1998. Remote procedure calls and Java Remote Method Invocation. IEEE Concurrency 6, 3 (July-September), 5-7.

L. Xiong, L. Liu. A Reputation-Based Trust Model for Peer-to-Peer eCommerce Communities. To appear as Poster Paper in the Fourth ACM Conference on Electronic Commerce (EC'03), San Diego, USA, June, 2003
