INTRODUCTION

Problem Statement
Most search systems manage Web Crawlers using a centralized client-server model in which the assignment of crawling jobs is managed by a centralized system using centralized repositories. Such systems suffer from a number of problems, including link congestion, low fault tolerance, low scalability, and expensive administration.

Our Solution

DSphere (Decentralized Information Sphere) performs crawling, indexing, searching and ranking using a fully decentralized computing architecture.

DSphere has a Peer-to-Peer network layer in which each peer is responsible for crawling specific sets of documents, referred to as the source collection. A source collection may be defined as a set of documents belonging to a particular domain.

Each peer is also responsible for maintaining an index over its crawled collections and ranking its documents using a source-centric view of the web which replaces the page-centric view used by current search engines.

P2P CRAWLER

P2P Web Crawlers

- **Apollode** - Structured P2P Network
- **PeerCrawl** - Unstructured P2P Network

Most Important Features

- **Division of Labor** – Mapping of URLs to peers for crawling. Duplicate mapping has to be avoided as far as possible.
- **Apollode** uses the DHT protocol for distributing the World Wide Web space among all peers in the network.
- **PeerCrawl** performs the division of labor by introducing a hash-based URL Distribution Function that determines the domains to be crawled by a particular peer. The IP address of peers and domains are hashed to the same m-bit space. A URL U is crawled by peer P if its domain lies within the range of peer P. The range of Peer P, denoted by Range(P), is defined by:
 \[h(P) \times 2^k \text{ to } h(P) + 2^k \]

 where \(h \) is a hash function (like MD5) and \(k \) is a system parameter dependent on the number of peers in the system. In our first prototype of DSphere, we use the number of neighbor peers of \(P \) as the value of \(k \).

SOURCE RANKING

DSphere computes two scores: (1) each source is assigned an importance score based on the analysis of the intra-source link structure; and (2) each page within a source is assigned an importance score based on an analysis of intra-source links.

We plan to incorporate a suite of spam-resistant countermeasures into the source-based ranking model to support more robust rankings that are less difficult to manipulate than traditional page-based ranking approaches.