RoadAlarm

A Spatial Alarm System on Road Networks

Emre Yigitoglu, Kisung Lee, Ling Liu, Binh Han, Balaji Palanisamy, Calton Pu www.cc.gatech.edu/projects/disl/RoadAlarm

Introduction

Spatial Alarms

Georgia

Tech

- > Extend the concept of time-based alarms to **spatial** dimension
- Remind us when we enter some predefined location of interest in the future

Target Applications of Spatial Alarms

Iocation-based advertisement system, factory danger zone alert system, sex offender monitoring system, etc.

Categorization of Spatial Alarms

- Private : one subscriber who is also the publisher
- > **Shared** : one publisher and several subscribers approved by the publisher
- Public : one publisher and no restriction on subscribers

Challenges of spatial alarm processing

- Energy consumption of mobile devices
 - Negligent management of spatial alarms can lead to excessive energy consumption of mobile devices, especially those with limited battery power


Scalability

• It should scale to large number of spatial alarms and growing base of mobile users

Accuracy

• It should ensure zero or very low alarm miss rate

Demonstration

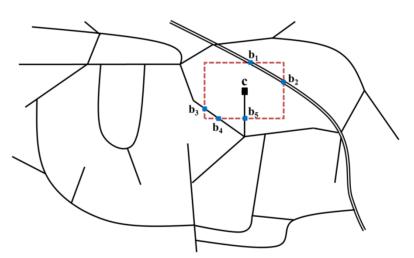
Approach

Design principle

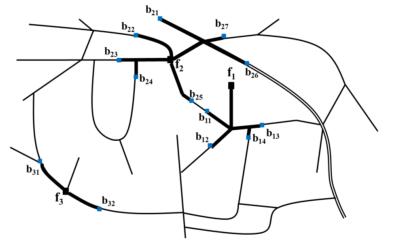
- > Utilizes spatial constraints on road networks and mobility patterns of mobile users to
 - increase the sleep time of mobile users (i.e. energy saving)
 - reduce computation cost of alarm checks

Baseline approach

- Define road network-based spatial alarms
 - Use road network-based spatial alarms to replace rectangular alarms
 - Use road network distance to replace Euclidean distance
- Calculate the sleep time of each moving object
 - When a moving object wakes up, find the nearest spatial alarm based on the road network distance
 - Use the travel time to the nearest alarm as the sleep time of the object
- Reduce the number of spatial alarms to be evaluated
 - Subscriber-based filter: consider only spatial alarms subscribed by the object
 - Euclidean lower bound filter: utilize the fact that the road network distance between two locations is at least equal to or longer than the Euclidean distance between them


Optimization

Goal


To reduce the number of expensive shortest path computations by restricting the search space, when we find the nearest spatial alarm

Steady Motion Assumption

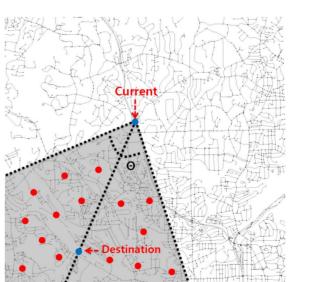
Mobile objects on the road network usually move along its current direction for a certain period of time.

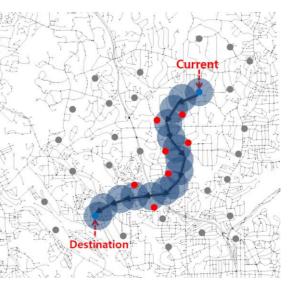
Rectangular alarms

Road network-based alarms

Destination-based motion-aware filter

> Moving objects will move toward their destination within the confidence degree θ , thus only those spatial alarms which reside in the area defined by the destination vector and θ will be examined


Find the nearest spatial alarm in the limited search space using the baseline approach


Shortest path-based motion-ware filter

Calculate the shortest path from the current location to the destination for each moving object

Select some spatial alarms within a boundary distance d from the shortest path

> When a moving object m wakes up, this filter retrieves the stored spatial alarms of m and then finds the nearest spatial alarm among them

