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ABSTRACT
Geo-distributed Situation Awareness applications are large
in scale and are characterized by 24/7 data generation from
mobile and stationary sensors (such as cameras and GPS
devices); latency-sensitivity for converting sensed data to
actionable knowledge; and elastic and bursty needs for com-
putational resources. Fog computing [7] envisions provid-
ing computational resources close to the edge of the net-
work, consequently reducing the latency for the sense-pro-
cess-actuate cycle that exists in these applications. We pro-
pose Foglets, a programming infrastructure for the geo-dis-
tributed computational continuum represented by fog nodes
and the cloud. Foglets provides APIs for a spatio-tempo-
ral data abstraction for storing and retrieving application
generated data on the local nodes, and primitives for com-
munication among the resources in the computational con-
tinuum. Foglets manages the application components on
the Fog nodes. Algorithms are presented for launching ap-
plication components and handling the migration of these
components between Fog nodes, based on the mobility pat-
tern of the sensors and the dynamic computational needs of
the application. Evaluation results are presented for a Fog
network consisting of 16 nodes using a simulated vehicular
network as the workload. We show that the discovery and
deployment protocol can be executed in 0.93 secs, and join-
ing an already deployed application can be as quick as 65
ms. Also, QoS-sensitive proactive migration can be accom-
plished in 6 ms.

CCS Concepts
•Computer systems organization → Distributed ar-
chitectures; Cloud computing; •Software and its en-
gineering → Distributed systems organizing princi-
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1. INTRODUCTION
The pervasive deployment of static and mobile sensors and

actuators; and the computational fabric for gathering and
processing sensor data are opening up opportunities for pro-
totyping a variety of situation awareness applications includ-
ing emergency response, disaster recovery, surveillance, and
traffic congestion. Indeed, one could argue that we are wit-
nessing a shift from the Information Age to the Intelligence
Age [17]. One of the prime enablers for this shift is, of course,
the ubiquity of connected hardware devices, often referred
to as the Internet of Things (IoT), the network of physical
objects or“things”embedded with electronics, software, sen-
sors, and connectivity. Situation awareness applications use
the IoT fabric to convert information to intelligence as a nat-
ural evolution of the connected world imagined by the work
in Mobile Information Access by Satyanarayanan [27] and
the vision of ubiquitous computing imagined by Weiser [34].

The applications that can be built to leverage the IoT in-
frastructure are limited only by human imagination. How-
ever, there is a gap between the hardware connectivity at the
physical level and the programming and dynamic resource
requirements of the applications. Situation awareness appli-
cations are geo-distributed, latency-sensitive, data intensive,
involve heavy-duty processing, run 24/7, and result in ac-
tuation with possible re-targeting of sensors. Further, they
are bursty in resource requirements across space (e.g., cam-
eras in the vicinity of an accident on the highway leading to
congestion on the roadways) and time (e.g., rush hour traffic
versus late night traffic); thus, the resource needs of the ap-
plications are not statically determinable across space and
time. Although utility computing could be a cost-effective
solution as an execution framework, today’s cloud comput-
ing platforms have been designed, optimized and used to run
traditional n-tier enterprise applications such as web apps,
database servers, and batch apps such as MapReduce. More-
over, current cloud platforms have been purposely designed
to be opaque, making it difficult if not impossible for a de-
veloper to specify and satisfy timeliness/latency constraints



in their applications through the available cloud interfaces.
Fog computing [7] is an infrastructure model for situa-

tion awareness applications running on the IoT fabric. The
idea is fairly simple and intuitive. In order to meet the
latency and scalability requirements of emerging latency-
sensitive applications, the utility computing model offered
by the cloud platforms should be extended to the edge of the
network and the resources should become location-aware.
Fog computing is a natural evolution to the utility comput-
ing model that recognizes that (a) the interfaces available in
the cloud are not friendly to latency-sensitive applications,
and (b) the communication latency from the sensing sources
and actuation points to the cloud may be too prohibitive.
It extends the cloud model by leveraging the computational
resources in the network both for compute and storage. Al-
though fog computing is a promising approach to address
the latency constraints of situation awareness applications,
it has to be augmented with the right distributed program-
ming model, which is the focus of this paper.

For seamlessly dealing with the resource continuum of-
fered by the IoT fabric, we need the right primitives that al-
low the placement of application components (generated by
such stream programming models), data movement among
the components and migration of computation and state
commensurate with the mobility pattern of the sensors (e.g.,
self-driving cars). In this paper, we propose the Foglets pro-
gramming model that facilitates distributed programming
across the resource continuum from the sensors to the cloud.
Foglets supports four main functionalities. Firstly, it auto-
matically discovers fog computing resources at different lev-
els of the network hierarchy and deploys application compo-
nents onto the fog computing resources commensurate with
the latency requirements of each component in the appli-
cation. Secondly, it supports multi-application collocation
on any compute node. Thirdly, it provides communica-
tion APIs for components of the application that are de-
ployed at different physical levels of the network hierarchy
to communicate with one another to exchange application
state. Lastly, it supports both latency- and workload-driven
resource adaptation and state migration over space (geo-
graphic) and time to deal with the dynamism in situation
awareness application1.

In the rest of the paper, we survey related work (Sec-
tion 2), the details of the foglets programming infrastruc-
ture (Section 3), the system architecture (Section 4), the
implementation details (Section 5), the evaluation results
(Section 6), and concluding remarks (Section 7).

2. RELATED WORK
There is limited prior art in distributed programming mod-

els for situation awareness applications executing over the
IoT fabric consisting of sensors, edge nodes, and the cloud.
Proposals such as cloudlets [28] and Mobile Edge Comput-
ing (MEC) [20] help in off-loading latency-sensitive parts
of the computation from the cloud to the edge computing
node. Stream-oriented programming models [10, 21, 31, 26]
have been proposed for small instances of situation aware-

1A preliminary version of the Foglets programming model
(dubbed “mobile fog”) was presented in an earlier work-
shop [15]. The focus of the DEBS paper is the implemen-
tation of the APIs presented in our earlier work, extending
it with discovery and migration algorithms, and conducting
experimental evaluation.

ness applications. The application is expressed as a stream
graph consisting of computation vertices and communica-
tion edges. Once a programmer provides the necessary in-
formation including a stream graph, the underlying stream
processing system manages the statically configured compu-
tational resources to execute the stream graph. In our prior
research Hilley, et al. [13] have investigated programming
idioms that elevate time as a first class entity at the appli-
cation level, in the persistent temporal streams (PTS) sys-
tem, which handles seamless integration of live and archived
streams and automatic application-specified persistence of
streams. Regarding the stream-oriented programming mod-
els, there have been other proposals for supporting edge
computing for IoT applications. Belli, et al. [5] propose and
implement a graph-based system architecture for processing
real-time data coming from smart objects. Papageorgiou, et
al. [25] present a framework for applying user-defined reduc-
tion function to data emanating sensors to reduce the down-
stream bandwidth requirements. Nisihio [22] presents a uni-
fied framework for heterogeneous resource sharing wherein
the services are modeled as tasks and the resource require-
ments are modeled as time quanta to enable efficient execu-
tion.

Foglets is complementary to the aforementioned propos-
als for structuring IoT applications in that it can serve as
the systems infrastructure for orchestrating the deployment,
communication, and migration of the application compo-
nents.

3. THE FOGLETS SYSTEMS MODEL
As a programming model for large-scale situation aware-

ness applications, Foglets has two design goals: The first is
to provide a high-level programming model that simplifies
development on a large number of heterogeneous devices dis-
tributed over a wide area. The second goal is to provide an
execution environment that enables incremental and flexible
provisioning of resources from the sensors to the cloud.

3.1 System Assumptions
Foglets assumes the existence of a computational contin-

uum that includes sensors and sensor platforms (such as
cameras and connected vehicles), on-demand computing in-
stances in a fog computing infrastructure, and a compute
cloud with an Infrastructure as a Service (IaaS) interface
(see Figure 1). The physical devices are placed at different
levels of the network hierarchy from the edge to the core net-
work. We assume each device is associated with a certain
geophysical location through a localization technique such
as GPS.

For the fog computing infrastructure, we assume physical
devices called fog computing nodes are placed in the network
infrastructure. For example, specialized routers can accom-
modate generic application computing in addition to packet
forwarding, while dedicated computing devices can also be
placed within the network for the sole purpose of fog com-
puting. We further assume that the fog provides a program-
ming interface that allows managing on-demand computing
instances, similar to an IaaS cloud, including creating and
terminating computing resources for a specific geospatial re-
gion and at a certain level of network hierarchy. Each com-
puting instance has certain system resource capacities such
as CPU speed, number of cores, memory size, and storage
capacity, as specified by Foglets. Once computing instances
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Figure 1: Fog+Cloud Infrastructure: Computa-
tional resources exist in the edge and the core
routers in addition to the cloud. F<i> denotes an
application component launched on a specific com-
putational resource. A and B denote geographical
regions.

are created in the fog, Foglets can use the instances to exe-
cute application code.

3.2 Application Model
Many large-scale future Internet applications require lo-

cation and hierarchy-aware processing to handle the data
streams from widely distributed edge devices. In Foglets,
an application consists of distributed Foglet processes (each
representing an application component that are mapped onto
distributed computing instances in the fog and cloud, as well
as various edge devices. Each process performs application-
specific tasks such as sensing and aggregation with respect
to its location and level in the network hierarchy.

Foglets exposes the physical hierarchy of devices through
a logical hierarchy of Foglet processes shown in Figure 1. As
shown in the figure, a process on an edge device is a leaf node
while a process in the cloud is the root node of a hierarchy,
while processes on fog computing nodes are intermediate
nodes. A connection between two processes indicates a com-
munication path allowed through the Foglets communication
API, which is not necessarily a direct physical connection,
but rather a logical one. Since communication costs within
a data center are relatively inexpensive, root processes are
connected to each other in a mesh network (e.g., F1 and F9
in the cloud).

Each Foglet process handles the workload for a certain
geospatial region. For instance, Figure 1 shows processes
F5 and F6 launched on a smartphone and a connected ve-
hicle, respectively, within region A. These leaf processes are
connected to process F3 running on an edge fog node that
covers the region A. Similarly, processes F3 and F4 are con-
nected to F2 running on a core fog node that covers a region
encompassing A and B.

Interface Description

void send up (message m)
Sends a message asyn-
chronously from a child
node to its parent node.

void send down (message m)
Sends a message asyn-

chronously from a parent
node to a child node.

void send to (message m,
node destination)

Sends a message to a
specific destination node.

set<object> get(key k,
location l, time t)

Get the application data
that matches a key, loca-

tion range, and time range.

void put object(object o,
key k, location l, time t)

Put application data
associated with a key,

location, and time.

Table 1: Foglets API. The first three are communi-
cation primitives. The last two are for manipulating
the local object store.

Handler Description

void on send up (msg m)
Called when a new message
arrives from a child node.

void on send down (msg m)
Called when a new message
arrives from a parent node.

void on receive from (msg m,
node source)

Called when a new message
arrives from a peer node.

Table 2: Foglets Handlers. Application handlers
that are invoked by the Foglets runtime on message
arrival

3.3 API
In Foglets, application code consists of a set of event han-

dlers that the application must implement (Table 2) and a
set of functions that applications can call (Table 1). Running
processes on different devices can communicate with each
other using our hierarchical communication API, send up()
and send down(), as well as a point-to-point communication
API, send to(). We provide the hierarchical communication
API to encourage application developers to perform more
efficient in–network processing. On the other hand, we pro-
vide the point-to-point API to support communication be-
tween application components hosted on peer Fog nodes.
The event handlers are invoked by the Foglets runtime sys-
tem upon certain events. For example, on send down() is
invoked on a child node when when a message arrives from
a parent. Foglets runs the same application code on various
devices, including smartphones, smart cameras, connected
vehicles, and the computing nodes in the fog and the cloud.
This symmetric design simplifies large–scale application de-
velopment since a developer does not need to write different
programs for heterogeneous devices with different connec-
tivity.

An application stores its application–specific data in a lo-
cal object store called the spatio–temporal object store. An
application can store its objects tagged by type, location,
and time using put object() and get object(). For example,
a traffic monitoring application may store detected license
plate numbers, tagged by the detection time, camera loca-
tion, and type LicensePlateNumber.

There are other API calls (not shown in Table 1) to query
the available system resources at a fog node, as well as
location-specific information. Similarly, there are other han-



dlers (not shown in Table 2) mainly for application initial-
ization, pre-processing prior to migration at a source fog
node, post-processing at the destination fog node upon mi-
gration, triggering setup/cleanup activities when a new child
joins/leaves a parent, etc.

Once the code is written, an application developer com-
piles the code to generate a Foglet process image that can be
deployed with an associated unique identifier called an app-
key. With the appkey, a developer can manage the applica-
tion using the management interfaces provided by Foglets.
To launch an application, a developer invokes start app()
with five parameters. The first parameter, appkey, specifies
the application code to deploy. Region specifies a geospa-
tial region where the application will run. Level specifies
the total number of levels in the hierarchy of Foglets pro-
cesses. For instance, a video surveillance application may
need three levels of hierarchy to perform motion detection at
smart cameras, face recognition at fog computing instances,
and aggregation of identities at a cloud computing instance.
The Capacity parameter specifies the class of on–demand
computing instances at each level of the network hierarchy.
The last parameter, QoS, indicates communication latency
requirements at each level of network hierarchy. Foglets uses
this parameter to find appropriate upper-tier computing re-
sources for hosting upper-level application components. In
the previous example, each fog computing instance requires
high CPU capacity for face recognition while the cloud com-
puting instance requires high storage capacity to record the
location of each individual over time.

Unlike the computing instances in the fog and the cloud,
edge devices join an application by invoking connect fog()
with the appkey. As a result, the edge device creates a
local Foglet process, using its local system resources, that
connects to the Foglet process on a fog computing instance
covering the location of the edge device.

Foglets runtime automatically discovers the appropriate
fog computing node to host an application component for
processing sensor data from an edge device. Further, if an
edge device is mobile, the connection from the edge device
may have to be changed from one fog computing node to
another as the location of the edge device changes. Both
the discovery and migration of application components (in-
cluding the state transfer of the object store from one fog
node to another) are automatically managed by the Foglets
system architecture to be described next.

4. SYSTEM ARCHITECTURE

4.1 Design Space Exploration
We first explore how we can leverage existing prior re-

search in the design of Foglet system architecture.

4.1.1 Hosting Application Components
An application may consist of several components. Be-

sides, there may be multiple applications that are simul-
taneously using the IoT infrastructure. Resource isolation
(especially, memory) across components of different applica-
tions is a must for the security and integrity of the individual
applications; even within an application such isolation be-
tween the application components is good from the point
of view of bug proliferation and performance tuning. We
will explore the pros and cons of Virtualization technology,
specifically full blown virtual machines and containers, from

the point of view of hosting application components.

Application Components hosted in Virtual Machines.
Virtualization is a staple of data centers and is the basis

for accountability and containment of resource usage. Ad-
ditionally, virtual machine migration enables load balancing
and resource provisioning in data centers. More recently,
Xen [18] and VMWare [3] have implemented live migration
of VMs with downtimes ranging from tens of milliseconds
to a second. satyanarayanan, et al., [28] propose the con-
cept of cloudlet to exploit standard VM technology in edge
computing. Ha, et al. [11] discuss the limitations of live
VM migration for use on edge devices. Both Ha, et al. [11]
and Yao, et al. [36] discuss approaches for efficient cloudlet
migrations. There are newer approaches to VM migration
with less involvement of the hypervisor [19] or with a reduc-
tion in the startup time by using delta encoding between
an original VM and the changes that occurred during exe-
cution [29]. However, despite such advances in VM migra-
tion techniques, given the latency requirements of situation
awareness applications, full blown virtualization may be im-
practical for hosting application components in the Foglets
environment. Recent advances in container-based virtualiza-
tion simplify the deployment of applications while isolating
them from one another [8].

Application Components hosted in Containers.
Container-based virtualization [6, 30, 24] is an alternative

to full-blown virtual machines. It is finding increasing adop-
tion in mainstream operating systems as a means of provid-
ing isolation and resource control. Docker [16] has emerged
as a standard for Linux containers. Google, IBM/Softlayer,
and Joyent are all examples of extremely successful public
cloud platforms using containers [6].

In the container technology, applications (contained in the
containers) share the OS (and where appropriate the bina-
ries and libraries). Consequently, the memory footprint of
containers is significantly smaller than in a hypervisor envi-
ronment, allowing hundreds of containers to be hosted on a
physical host. Since the containers use the host OS as a base
for system services, restarting a container (upon container
migration) does not necessitate restarting the OS [6].

Further, once the Linux-based container is installed, only
the extra difference layers, such as additional binaries and
libraries, need to be migrated to correctly execute the han-
dlers in the context of Foglets. Docker uses the union file
system [35] to combine these layers into a single image [9].
For all these reasons, containers are ideal for hosting appli-
cations components in the Foglets programming model.

4.1.2 Selection Strategies for Migration
There is prior work in selecting where and when to mi-

grate an application component (or the entire application)
in a mobile environment. Ottenwalder, et al. [23] present
a placement and migration method for cloud and fog re-
sources, ensuring application-defined end-to-end latency re-
strictions and reducing the network utilization by planning
the migration ahead of time. Urgaonkar et al. [32] model the
migration problem as a Markov Decision Problem (MDP).
They decouple the initial MDP into two independent MDPs
that allows the problem to be solved using a Lyapunov op-
timization. Wang, et al. [33] propose further refinements to
this solution developing a polynomial time algorithm with



some relaxation in the system assumptions regarding the
error bounds on the costs of hosting and migration. In
the Foglets implementation, any of these strategies could
be used for deciding on when and where to migrate. Ad-
ditionally, we take the resource pressure on the nodes as in
important component in taking the migration decisions.

4.2 Foglets Runtime
There are four entities in the Foglets runtime system:

1. Discovery Server: This is a partitioned name server
that maintains a list of fog nodes available for host-
ing application components at different levels of the
network hierarchy for a given geographic area.

2. Docker Registry Server: This is a server (replicated
for different geographical areas) that contains the bi-
naries for the applications that have been launched on
the Foglets infrastructure. As we mentioned earlier
(Section 3.3), every application has a unique appkey .
Upon launch, the registry maintains a key-value store
for the binary images of the application components
for each level of the network hierarchy. The key is the
appkey and the value is the set of application binary
images for the different levels. Both the discovery and
registry servers may be hosted on the same physical
machine.

3. Entry Point Daemon: This daemon is started on
each non-leaf fog node at system boot time. This dae-
mon executes directly on top of the host OS in the fog
node and awaits requests from the immediately lower
level in the fog hierarchy to host a parent (application
component) for a child (application component). This
daemon periodically sends “I am alive” message to the
Discovery server so that the information in the Dis-
covery server remains up to date. It participates in
the discovery and migration protocols to be described
shortly.

4. Worker Process: This is the process that will carry
out the functionality contained in a particular appli-
cation component assigned to it. For each leaf node
of the launched application, the Foglets runtime will
spawn a worker process to execute on the edge device
(e.g., a camera) assigning the appropriate application
component that has to be hosted on the device. For
each non-leaf node, worker processes will be incremen-
tally created with the dynamics of the applications as
will be described shortly.

4.3 Launching an Application
To make the discussion concrete, let us continue with the

simple example application we mentioned in Section 3.3: a
simple video surveillance application needing three levels of
hierarchy to perform motion detection at smart cameras,
face recognition at fog computing instances, and aggregation
of identities collected over space and time at a cloud comput-
ing instance. The roadmap for developing and launching the
application using Foglets is a 2-step process as follows: (1)
The developer writes the application logic for each of detec-
tor, face recognizer, and aggregator, as well as the handlers
for each of the three levels. (2) The developer creates the
binary images for each of the application component (de-
tector, face, aggregator), and using a system-wide unique

appkey registers the appkey and the images with the Docker
registry server.

To launch the application, as we mentioned before in Sec-
tion 3.3, the developer would use the API start app spec-
ifying the five parameters (appkey, region, level, capacity,
QoS). The Foglets runtime will ensure that Fog computing
resources at the different levels are up in the region spec-
ified by the application. Further, the registry server will
retrieve the detector process image from its key-value store
(using the appkey) and start up worker processes to host
the detector on all the cameras in the region specified. Note
that neither the resources nor the worker processes for the
upper-tiers are provisioned for this application at the time of
launch. Such provisioning will occur incrementally based on
the application dynamism, which is the crux of the dynamic
discovery and deployment protocol to be discussed next.

Algorithm 4.1 Discovery and Deployment Protocol

1: candidates← from Discovery Server
2: Send Discovery ping to each candidate
3: The candidate responds back its Id n and state s,
4: s ∈ {READY-DEPLOYED,READY,BUSY}
5: Let R be the set of responses (n, s) ∀ candidates with n

the Id and s the state.
6: Let S = {s|s = state(r),∀r ∈ R}, be the set of all the

received states.
7: if READY-DEPLOYED ∈ S then
8: run the Join Protocol in Algorithm 4.2
9: return

10: else . Application is not deployed in area
11: if READY ∈ S then
12: RREADY ← {c|c ∈ candidates, state(c) =

READY}
13: Obtain the best candidate cclosest from RREADY

14: Send a DEPLOY container message to cclosest
15: else . No available fog node in area
16: Restart the Discovery and Deployment algo-

rithm, increasing the geographical area to be queried
from the Discovery Server.

17: end if
18: end if
19: r ← response from join to bc.
20: if r = Accept then
21: Select bc as the new parent
22: return
23: else
24: RREADY ← RREADY \ {cclosest}
25: if RREADY is not empty then
26: go to 13
27: else . No fog node with available resources
28: Restart the Discovery and Deployment algo-

rithm, increasing the geographical area to be queried
from the Discovery Server.

29: end if
30: end if

4.4 Discovery and Deployment Protocol
Discovery has to do with finding the fog computing nodes

(matching the capacity constraints) at the right level of the
computational hierarchy for hosting an application compo-
nent. Deployment has to do with spinning up a Docker con-
tainer in a fog node to run a Worker process that will carry



out the work of the application component to be hosted on
this node. The EntryPoint daemon in each fog node main-
tains the state of that node, which can be one of: READY
- DEPLOYED (RD), READY (R), and BUSY (B). Both
RD and R indicates that the fog node has the capacity to
host the application component at this level. RD addition-
ally says that the required application component is already
launched at this node (i.e., a container with that application
component is already present at this node), which would be
advantageous in reducing the latency for resource provision-
ing. The B state, on the other hand, indicates that the fog
node does not have resource capacity to accommodate new
hosting requests. Resource discovery and provisioning occur
incrementally in Foglets. The first time an application com-
ponent attempts to do a send up, the Foglets runtime at that
fog node contacts the Discovery server to obtain a list of fog
nodes in the upper-tier commensurate with the level and
the capacity requirements stated by the application. The
child node then executes a 2-phase join protocol to choose a
parent from the list (Figure 2). The pseudo-code for the dis-
covery and deployment algorithm is shown in Algorithm 4.1.
Upon getting the list of possible candidate parent fog nodes,
the child sends a ping message to each of them. Each of the
candidate parents sends back a response with their node-id
(n) and state (s). There are three possibilities:

1. The set of potential parent nodes that have the ap-
plication component already deployed (s = READY-
DEPLOYED) in a container is non-empty (Line 8 of
Algorithm 4.1). In this case, the Join protocol is called
(Algorithm 4.2).

2. There are no nodes with the application component
already deployed. However, there are nodes that are
ready (s = READY) to accept a child (Line 12 of Al-
gorithm 4.1). In this case, choose the best candidate
node from the set of READY nodes to deploy a con-
tainer hosting the application component as follows:

RREADY = {c|c ∈ R, response(c) = READY }, (1)

choose the closest fog node,cclosest, using equation (2),

min
∀e∈RREADY

distance(e, child) (2)

and initiate the second phase of the Deployment pro-
tocol (Line 14 of Algorithm 4.1), wherein the child
node sends a DEPLOY message to cclosest and waits
for the response, which could be either ACCEPT or
REJECT . If the response is ACCEPT , then the child
has successfully joined the parent. If the response is
REJECT , then the child chooses the next closest can-
didate node in the set RREADY \ {cclosest} and sends
a DEPLOY message to it. If all the candidates send
REJECT responses, then the Discovery algorithm is
reinitialized with a bigger geographical area (currently
we double the radius on each iteration).

3. All the candidate nodes are loaded (s = BUSY) and
cannot accept any more children. In this case, the
Discovery algorithm is reinitialized with a bigger geo-
graphical area.

Algorithm 4.2 Join Protocol

1: function Join Protocol(WREADY−D)
2: Obtain best candidate bc from the set WREADY−D =
{c|c ∈ R, state(c) = READY −DEPLOY ED}

3: Send a Join message to bc
4: Wait for response w
5: if w is ACCEPT then
6: select bc as the parent and start connection
7: else
8: WREADY−D ←WREADY−D \ {bc}
9: if |WREADY−D| > 0 then . Set is not empty

10: Choose the next best candidate bc in
WREADY−D

11: go to 3
12: else
13: Restart the Discovery and Deployment Algo-

rithm
14: end if
15: end if
16: end function

4.5 Join Protocol
The join protocol is shown in Figure 2. Algorithm 4.2

gives the pseudo code. The child chooses the best candidate
bc, which is geographically close to it to send a join message
per the following equation:

min
∀e∈WREADY −D

distance(e, child) (3)

If there are many candidates with equivalent distances,
then their current load conditions could be taken into ac-
count in the choice. When the candidate node receives the
join request for an application component that is already
deployed, it queries the worker process in the container as-
sociated with that application component. If the Worker
process is ready to accept this child, then this node become
the parent and an ACCEPT response is sent to the child.
If the load conditions have changed since the first phase of
the Discovery protocol, the Worker process may deny the
join request, in which case the candidate node would reply
with a REJECT response to the child. In this case, the
child node would try the next best candidate (Lines 8-11
of Algorithm 4.2). It is conceivable that the network state
may have changed during the execution of the join proto-
col in which case the Discovery and Deployment protocol is
started all over again (Line 13 of Algorithm 4.2).

Such an incremental application deployment ensures highly
adaptive and elastic resource utilization driven by applica-
tion dynamics and QoS needs from the edge of the network.
Application components are deployed at any level of the logi-
cal network hierarchy, only if a node in a lower-level executes
a send up message. Using the dynamic resource discovery
protocol, Foglets incrementally maps the logical hierarchy
of an application onto the physical hierarchy of the network
infrastructure. The EntryPoint in a fog node deploys an ap-
plication by launching a Docker container with the Worker
process in it to carry out the functionality of the application
component for that level.

4.6 Migration
In Foglets, migration of an application component from

one fog node to another (at the same level, usually the edge



Figure 2: Join Protocol: The Discovery server gives
a list of fog nodes in the upper-tier to the requesting
child node. The protocol pictorially shown above
results in the child choosing a parent to join from
the list.

nodes close to the sensors) may be warranted due to one of
two reasons:

1. Meeting QoS expectations: We expect in the fu-
ture many situation awareness applications would in-
volve mobile sensors and sensor platforms (e.g., self-
driving cars). In this case, the edge fog node hosting
the application component that processes the sensor
data cannot be statically defined but should be dynam-
ically provisioned to adjust to the mobility pattern of
a given application. Thus, meeting latency constraints
for processing sensor data could be a trigger for migra-
tion of application components.

2. Load balancing considerations: In the Foglets sys-
tem, a given fog node could be hosting application
components of multiple situation awareness applica-
tions using the same IoT sensing infrastructure. De-
pending on the situation (e.g., traffic incident, riot,
etc.) a particular fog node could experience resource
pressure. Thus, resource pressure at a fog node could
be a trigger for migration of application components.

There are two inter-related aspects with respect to migra-
tion in the Foglets system:

1. Computation Migration: This is related to chang-
ing the parent of a given child in the network hierarchy
(usually the fog node close to the sensors) either due
to QoS or load-balancing considerations. To facilitate
computation migration, Foglets expects the applica-
tion to provide two handlers (Table 3), one to be exe-
cuted at the current parent and the other at the new
parent.

The handler, on migration start(child), allows the cur-
rent parent to package the volatile state of the compu-

Handler Description

state on migration start (child)

Called before a migration process
starts. Application code running

at the original parent node provides
a stream context by returning a

state object.

void on migration end (state s)

Called after a migration process
ends. Application code running

at a new parent node can recover a
stream context from the provided

state object.

Table 3: Foglets Migration API.

tation of the parent node with respect to the specific
child node. The handler, on migration end(s), allows
the new parent to initialize its local state using the
transferred state for the child. Foglets calls the first
handler on the current parent node and ships the state
to the new parent node. Once the transfer is complete,
it is safe to switch the child to the new parent. The
new parent node will start processing send up calls
from this transferred child as soon as the initialization
of its local state is complete.

2. State Migration: This relates to the persistent data
that is generated by an application component (in the
object store mentioned in Section 3.3), which has to
be made available in case the application component
is migrated to a new fog node. The state migration is
done in parallel with execution in the new node.

4.7 QoS-driven Migration
In Foglets, QoS is specified as the upper bound T on the

latency between an application component and its parent.
We discuss two mechanisms that exist in Foglets for sup-
porting QoS-driven migration: proactive, and reactive.

4.7.1 Proactive Migration
There are two parameters associated with proactive mi-

gration in the Foglets system: α and β (both between 0
and 1), with α < β. The values of α and β are chosen
commensurate with the QoS needs of an application. The
runtime system uses default values for these parameters if
an application does not explicitly specify them. The Worker
process in the Foglets runtime has a one-to-one relationship
with an application component. It is aware of the QoS re-
quirements (latency bound T ) of the application component
bound to it in the container. The Worker process contin-
ually monitors the actual latency experienced on send up
and/or ping messages from its children. When the latency
from a given child goes above a threshold, α · T , proactive
migration starts. The Worker process at the current parent
will find a suitable candidate parent node from the list of
available neighbors at the same level obtained from the Dis-
covery server. The choice is facilitated by the fact that each
Worker is periodically exchanging ping times and resource
utilization information with its neighbors at the same level.
First only the object store state associated with this appli-
cation component will be migrated gradually in anticipation
of a change of parent. We call this state replication. If and
when the actual latency goes above the second threshold,
β ·T , then a decision is made to migrate the parent itself. In
either case, the choice of the parent to migrate to is based on
a number of factors including the geo-location of the child



relative to the future parent, measured ping latencies, and
the capacity constraints of the future parent (measured by
available uncommitted resources such as CPU and memory,
which can be obtained from statistics maintained by the host
OS of the parent).

Upon a decision to migrate the parent, the Worker process
sends a Start Migration message to the candidate future
parent. Upon receiving an ACCEPT message from this
future parent, migration will proceed in parallel to move the
computation and the object store state. On the other hand,
if a REJECT message is received for the migration request,
then the Worker process will initiate Start Migration with
the next best candidate in the list of potential future parents.

Once a new parent has been identified to migrate, the par-
ent migration proceeds as we described before with the in-
vocation of the application-specific handlers on the old and
new parents to transfer the child to the new parent. In
parallel with moving the computation, Foglets also initiates
moving the object store state of the application from the old
to the new parent. Some of this state may have already been
replicated proactively before the parents were switched. In
any event, now that the new parent is alive and well, the
state can actually be moved to the new parent instead of
being replicated. There are several opportunities for op-
timization. First, not all state needs to be moved to the
new parent. Since situation awareness applications tend to
work mostly with recent data, it may be sufficient to move
the most recent historical data to the new parent. If there
is a need, the new parent can demand-load older historical
data2.

4.7.2 Reactive Migration
It is conceivable that due to the system dynamics, the

proactive migration detailed above does not happen in a
timely manner to adhere to the latency requirements of the
application. It could even be that a parent fog node has
become unresponsive due to overload. In this case, reac-
tive migration may be triggered by the child. That is, the
child will decide to find a new parent by going through the
Discovery protocol (Algorithm 4.1). Once a new parent has
been found, the process of transferring the computation and
object store state from the old parent to the new parent will
proceed exactly as in proactive migration. The only differ-
ence is that the new parent will contact the old parent to
initiate the migration.

4.8 Workload-driven Migration
Multiple applications may be collocated in the same fog

node. Bursty resource requirements of one application could
detrimentally affect the performance of other applications in
meeting their respective QoS constraints. Foglets provides
a mechanism for workload-driven migration.

To support workload-driven migration, the EntryPoint
daemon in each fog node keeps statistics on resource us-
age by all the containers deployed at this node. The Worker

2For the sake of conserving space, we do not elaborate on
all the details of state movement from the old to the new
parent. There are also corner cases to be handled in the
runtime system, wherein a sequence of parent moves could
result in the object store state being fragmented in multiple
previous parents’ nodes. Foglets does all the book-keeping
to make sure that it has the trail of previous parents to
retrieve historical items in any object store in the presence
of such migration.

processes associated with these containers periodically re-
port their respective resource usages (CPU, memory, missed
deadlines if any) and geospatial information of the children
that they are communicating with. Foglets runtime uses
the stats provided by the EntryPoint daemon to make mi-
gration decisions if it finds the fog node is overloaded. While
the QoS-conscious migration techniques deal with individual
children migration, workload-driven migration does entire
container migration when possible. The system sorts the
containers by the number of children each container is con-
nected to. It chooses the top γ containers from this sorted
list as candidates for migration. Using the geo-location
information of the children catered to by the containers,
Foglets chooses to migrate containers with children farther
away from the location of the fog node. The intuition is that
such children are drifting away and are likely to move to a
different parent anyhow. Similar to proactive migration, an
overloaded fog node pings its neighbors at the same level
in different geo-locations to find a home for the containers
it wants to migrate. Migrating whole containers will help
reduce the load on the depressed fog node rapidly.

5. IMPLEMENTATION DETAILS
The Foglets system is implemented using C++ with the

operating system Ubuntu 12.04. The communication proto-
cols are implemented using the ZMQ [14] library for message
delivery and the protobuf library from google [1] to serialize
the data. The Foglets implementation uses docker contain-
ers [16] and RocksDB [2]. The base image used to develop
the container with the Foglets library and the Worker pro-
cess runtime is ubuntu:latest (version 14.04). Instantiating
and creating a new instance of a container is fast, given
that the images created by a developer will use an image
developed on top of the Foglets framework as a base im-
age. This allows a developer to test the different charac-
teristics of the system locally in their development system,
without the need to deploy their application on top of the
real hardware. Further, if the Foglets container images are
pre-installed in a fog node, then to start an application com-
ponent on that node only the delta (the specific application)
needs to be pulled from the Registry server, reducing the
overhead. RocksDB has two main features that help in an
efficient implementation of the object store: prefix iterator,
and read-only access mode. The prefix iterator allows fast
access to the object store (using time as the prefix in our
implementation), and the read-only access mode eliminates
the need for locks during migration of the object store state.
Finally, the Discovery server can easily be replicated for scal-
ability since it only maintains connection endpoints that are
updated infrequently, namely the fog nodes (and not the IoT
devices themselves).

6. EVALUATION
In this section, we begin our evaluation by measuring

the costs, in time, associated with launching a container
in the Foglets runtime system. Using a workload derived
from SUMO traffic simulation to drive our system, we con-
duct experiments to measure the time for the incremen-
tal deployment operations of Foglets (namely, Discover-Join
and Discovery-Deployment) for launching application com-
ponents in the fog infrastructure. Next, we conduct exper-
iments on the migration component of the Foglets system.



The first experiment is to measure the basic cost of switching
from one parent to another. We then conduct experiments
to show the efficacy of the migration operations of Foglets
under two conditions: (a) dynamic workload driven reac-
tive migration, and (b) proactive migration when latency
constraints are not met.

6.1 Platform
Our experimental platform is a set of four Penguin Relion

1752 nodes interconnected by 10 Gbps Ethernet. Each Pen-
guin node contains a 2-socket, 6-core, 2.66GHz Intel X5650
hyper-threaded processor, and 48GB RAM. We emulate 16
fog nodes on top of these four very powerful hardware plat-
forms. We run Ubuntu 12.04 on all the nodes as the base
OS. The containers we launch on these platforms will use the
kernel services of the base OS. We also emulate the Discov-
ery Server and Docker Registry Server on these machines.
We use an auxiliary node that serves as the workload gen-
erator for our emulated fog infrastructure. This auxiliary
node sends messages to the fog nodes emulating the sensor
inputs (position information and video) from automobiles
plying in the city of Atlanta.

Docker Image Time (s)
Debian 8.6
Ubuntu 1.07
Foglets base 1.1
Foglets application w/base 18.36
Foglets application already deployed 0.42

Table 4: Startup times for different configurations
of Docker images

6.2 Bringing up Foglets System
The Foglets system implementation uses container tech-

nology. In this section, we measure the times for “booting
up” Foglets. The Foglets base Docker image (containing the
runtime for the API calls, the communication libraries, and
the Worker process to run the application) is built on top of
the Ubuntu official docker image. The Foglets base image
will then be used by the developers to host their applica-
tion component (including the communication handlers) to
be deployed at each level of the logical network hierarchy.
We measured the times to spin up each layer of this software
stack needed at a fog node. As a baseline value, we use the
time taken to download and execute two images from the
official Docker container, namely, Ubuntu and Debian.

The numbers shown in Table 4 is the average of 100 runs.
Here are the base costs for “booting up” Foglets:

1. Pulling the full Debian image from the repository and
starting its execution costs 8.6 seconds on an aver-
age. With the Debian image already in the system,
the docker run-time only needs to download the addi-
tional layers to form the Ubuntu image with an average
cost to download and start of 1.07 seconds.

2. The Foglets system base image is developed on top of
the Ubuntu image, it contains all the required libraries
and the runtime system for implementing the Foglets
primitives. If the Ubuntu image is already present in
the host system, pulling the image and booting up the
system takes on an average 1.1 seconds.

3. The reference application we use in our evaluation is
vehicular traffic simulation on Atlanta roadways. The
application consists of cars sending their positional
information and video to their associated fog nodes.
The application uses OpenCV for processing the video
feeds. Consequently, the library needed for the appli-
cation is large and serves as a good reference applica-
tion for our experimental studies to show the efficacy
of our system for dealing with large application images
to be launched on fog nodes.

The application with all the libraries and the Foglets
handlers is 2.1 GB. Due to its size, downloading and
starting the image, even with the Foglets base image
present, takes up to 18.36 seconds.

Downloading the application image needs to happen
only once when the application is started, or during
the bootup of the Foglets system.

4. If the application image is already downloaded then
launching it in the container takes only 0.42 seconds.

5. To bootup Foglets, we first distribute the binaries of
the Worker process and EntryPoint daemon to all the
fog nodes. Then the system bootup can proceed in
parallel to initiate the Worker process in all the leaf
nodes and the EntryPoint daemon on the other nodes.
On an average, starting the EntryPoint has a latency of
4.17 ms and starting the Worker process has a latency
of 40 ms.

6. The Worker process binary size is 45 MB and the En-
tryPoint binary size is 43.4 MB. We measured a raw
throughput of 50 MB/s between the nodes of our ex-
perimental platform. Thus, it would take approxi-
mately 1 second to send the binaries to their corre-
sponding nodes. Our measured times for bootup is in
agreement with the raw throughput measurement. It
takes only 1.04 seconds for the Worker processes to
be distributed and started in the leaf nodes, and 30
seconds for the EntryPoint daemon deployment and
container download (which is a summation of all the
numbers in Table 4), both of which can be done in
parallel.

6.3 Microbenchmarks
This subsection quantifies the cost of the main operations

in the Foglet system, by simulating the movement of cars as
leaf nodes.

6.3.1 Workload
As we mentioned in the previous subsection, we use vehic-

ular simulation as the driver application for our experimen-
tal study. We simulate the movement of the cars using the
traffic simulator SUMO [4], which enables us to model realis-
tic traffic patterns of vehicles on an Atlanta OpenStreetMap
graph [12]. Our simulation is a snapshot of the traffic in a
rectangular grid of the city of Atlanta (7.7 km x 5.7 km) for
10 minutes using the road network graph, and 600 vehicles
for each simulation run (on an average). For each simu-
lation run, we observed 110,166 events, meaning that each
vehicle sends 184 events on an average, including both loca-
tions and images to be processed. At any instant of time in
the simulation, there are on an average 101 vehicles in the
area covered by the simulation. Using a grid structure, we



divide the area covered by the simulation into 16 geographic
sections and assign a fog node to cover the sensor inputs for
each section. As we mentioned earlier, we emulate the 16 fog
nodes on the 4 Penguin machines. In order to emulate the
movement of the cars into the execution of the Foglets sys-
tem, the distance of the car to the location of the fog node
is included into the latency calculation as shown in equation
(4)

latency = measured latency + ε · distance, (4)

where epsilon is chosen such that if a car moves out of the
grid section that it is currently in, it is most likely violating
the QoS requirement (expressed as a latency constraint).

6.3.2 Discovery, Deployment, and Join Operations
Figure 3 shows a comparison between the cost of the

discovery-join and discovery-deployment. We limit the num-
ber of candidates to four each time we try to either deploy or
join the system; if unsuccessful, the child tries with the next
best node in the list or increases the geographical area to be
queried. As a reference, the round-trip network latency is
around 4 ms for performing a null RPC (a send up followed
by a send down, shown in Figure 4).

As can be seen in Figure 3, there is considerable variance
in the discovery and deployment measurement, where the
lower 25% of the deployment operation takes less than 636
ms and the higher 25% of the deployment operation has a
latency of more than 1,097 ms. The lowest observed delay
is close to the minimum possible of 42 ms, the time required
to start a container as shown in Table 4. This huge vari-
ance is due to the state machine used for implementing the
discovery protocol, in which it waits for responses from all
the candidates. If the system is not loaded, then a faster
response can be obtained from the nodes involved. The long
tail that could happen in the deployment algorithm is upper-
bounded by the timeout mentioned in Section 4.4.

The Discovery-Join operation (wherein the application is
already running in the container) is much faster. The me-
dian for this is 72 ms, with the 75% percentile at 240 ms,
which mainly depends on how fast the EntryPoint daemons
can respond to the new child in the first phase of the al-
gorithm. The measurements include situations in which a
JOIN request is returned with a rejection.
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Figure 3: Comparison of Discovery-Join and
Discovery-Deployment Operations. Error bars rep-
resent the 25% and 75% percentiles

6.3.3 Migration Operation
Figure 4 shows the average cost in milliseconds for select-

ing and changing to a new parent for a child in proactive
migration. The measurement is taken when there is no ap-
plication state to be packaged and sent to the new parent
(i.e., the on migration start handler is a null handler), and
the application is already deployed in the new parent. As we
can be seen from Figure 4, this operation takes roughly three
times compared to a round-trip message. The time required
for reactive migration is the same as the discovery protocol
measurements shown in Figure 3, since it is initiated by the
child node.
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Figure 4: Proactive Migration Operation. As a
point of comparison we show the network round-
trip time. Error bars represent the 25% and 75%
percentiles

6.4 Dynamic workload driven migration
In this experiment, we demonstrate qualitatively and quan-

titatively the ability of Foglets to do workload driven mi-
gration. The experiment uses two fog nodes geographically
close to each other. A leaf node could in principle choose
either of them as the parent. We allow a new car to enter
the geographical area every 0.5 seconds and just stay put
(i.e., it is stationary). The first car to appear would join one
of the two fog nodes (fog node 1 in Figure 5). Since now
fog node 1 has a container already launched with the appli-
cation, the subsequent cars entering the same geographical
area will prefer to join the same fog node. This is seen in
Figure 5. The capacity limit for fog node 1 is reached when
39 cars have joined it. Subsequent join requests will be re-
jected resulting in the next car joining fog node 2. At this
point, we stop introducing new cars into the experiment.

Fog nodes 1 and 2 exchange ping times and capacity in-
formation to each other. Due to the resource pressure, fog
node 1 starts transferring its children to fog node 2. Since
the cars are stationary, the transfer is gradual but in the
steady state it can be seen that both fog nodes have roughly
an equal number of children.

6.5 Proactive migration
In this experiment, we want to show both qualitatively

and quantitatively how Foglets does QoS-sensitive proactive
migration. The scenario is a traffic jam. A number of cars
are reporting to one fog node initially. But as the traf-
fic jam clears, the cars move in different directions towards
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Figure 5: Workload Driven Migration. Over time
fog node 2 accepts more children to offload the work
from fog node 1.

their respective destinations. We simulate this situation by
first spawning a number of cars close to fog node 1 and let
them stay put (i.e., they are stationary). This can be seen
in the measured results shown in Figure 6 for the first sev-
eral tens of seconds. Then we make the cars move away
in three different directions starting around 70 seconds into
the simulation. Due to the increasing distance from fog node
1, the children start experiencing increasing latencies trig-
gering proactive migration of the children to the fog nodes
corresponding to the areas that the cars are moving into. As
can be seen in Figure 6, Foglets is able to quickly migrate
the nodes, reacting to an increase in the latency experienced
by the children. It can be seen that the number of cars stays
constant in the graph which is an indication that no mes-
sages are missed by the fog nodes and all the leaf nodes are
successfully transferred from fog node 1 to other geo-local
fog nodes close to the moving cars.
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Figure 6: QoS-driven Proactive Migration. Over
time the children are migrated to the fog nodes that
are geo-local to the children moving in different di-
rections.

7. CONCLUSION
Situation awareness applications are emerging as impor-

tant drivers of the IoT infrastructure. Provisioning com-
putational resources close to the sensor sources in the IoT
infrastructure is crucial to meet the latency constraints of
such applications. Fog computing is a good utility comput-
ing model to cater to the edge computing needs of situa-
tion awareness applications. In this paper, we have pro-
posed a programming infrastructure for the computational

continuum extending from the sensors to the cloud called
Foglets. It provides APIs for app development as a dataflow
graph whose nodes can be placed in the different levels of
the computational hierarchy commensurate with their la-
tency properties. Foglets provides primitives for communi-
cation between the application components, and also em-
bodies algorithms for the discovery and incremental deploy-
ment of resources commensurate with the application needs.
It also provides mechanisms for QoS-sensitive and workload-
sensitive migration of application components due to sensor
mobility and application dynamism. Foglets is implemented
using container technology and we present performance re-
sults to showcase its effectiveness for situation awareness
applications. Our immediate future plans include using the
Foglets programming model to develop a large-scale surveil-
lance application on top of the camera network installed on
the Georgia Tech campus, and conduct in situ studies of the
scalability of the proposed migration mechanisms.
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