

Page 1 of 3

Computer Science Ph.D. Qualifier Examination

Spring 2011

Programming Languages and Compilers

Total : 100 points

Instructions

1. You must answer each of the questions Q1, Q2, Q3 and Q4. In addition, choose any two out of
the questions Q5, Q6 and Q7. Thus you will answer six questions in total.

2. Answers must be crisp, to the point and contain details of sufficient magnitude. Clear
algorithms and pseudo-code must accompany answers wherever necessary to bring out the
generality of the answer.

3. State assumptions as necessary
4. Questions that are open ended require discussion and answers should factor that in. Answers

must bring out critical issues clearly in such cases.
5. Feel free to draw figures, flow graphs, etc. to bring out details in your answers.
6. This is a closed internet, closed book, closed notes examination. Georgia Tech honor code will

be enforced.

 Q1 : Path based data-flow analysis 19 points (must answer)

 Infeasible paths in control flow graphs (CFGs) can cause heavy imprecision in dataflow analysis.
Traditional data-flow analysis considers all paths in a CFG as feasible. That is it assumes that at runtime
any one of those paths could be taken – whereas it is possible there exists a path in control flow graph
which will never be taken; we call such paths as infeasible paths and that can cause imprecision in
analysis.

(a) Show through example CFGs how reaching definition analysis and liveness analysis
can become imprecise due to the assumption that all paths in CFG are feasible.

(b) Devise new techniques for improving the precision of reaching definition and
liveness by formulating the problem as a path based data-flow problem.

(c) Comment on the fix-point reached and the precision vs. complexity of the
technique. Show how the dataflow facts found improve using the technique over
traditional methods.

Q2 : Partial deadness 19 points (must answer)

 A value is partially dead at a program point if there exists at least one path on which there is no use of
that value before its redefinition. The goal of partial deadness is to first detect such values and then
move their computation to remove the partial deadness.

Page 2 of 3

(a) Develop a CFG example to show the cases of partial deadness – note that the definition
is strict in terms of deadness – that is values that are totally dead are not to be included.

(b) Show how partial deadness can be removed by moving the computation. Consider
placement issues. Also, comment on the safety issues of determining the partial
deadness in terms of actual vs. found.

 (c) Develop a data-flow analysis framework to detect partial deadness considering safety and
precision issues in the presence of pointers.

 (d) Develop a code motion framework which removes partial deadness (as a best effort)
without introducing any redundancy. Hint : Use the concept of available expressions – you are moving
the complete quad : t1 = x + y to remove deadness with respect to the use of t1

Q3. Parallelizing a loop. Consider the following loop (assume no aliasing of arrays). 19 points (must
answer

for i=1 to n do

 A[i] = A[i] / W[i]; /* (s1) */

 for j=i to n do

 X[i,j] = Y[i,j]*Y[i,j]; /* (s2) */

 Z[j] = Z[j] + X[i,j]; /* (s3) */

(a) Draw the program dependence graph (PDG) that relates the three statements, s1, s2, and s3.
(b) From the PDG, explain what opportunities for parallelism exist and give pseudocode for a

parallel version of the loop. For your parallel pseudocode, assume a shared memory parallel
programming model with a “parfor” (parallel-for) loop construct as well as basic synchronization
primitives, such as locks or barriers.

(c) Give a high-level description of a compiler algorithm that can carry out this parallelization. That
is, explain what program analysis and compiler transformations are necessary to successfully
parallelize the loop.

Q4. Iteration spaces. Consider the following initialization loop. 19 points (must answer)

 for i=0 to 5 do

 for j=i to 7 do

 Z[i+1,j+1] = 0;

(a) Express the iteration space of this loop in the standard linear inequality form, A⋅x + b ≥ 0, where
x is the column vector (i, j)T representing the iteration variables.

(b) Express the array reference, Z[i+1,j+1], in the affine form, F⋅x + f.

Page 3 of 3

(c) Suppose the array is stored in column-major order. Rewrite the loop to improve its spatial
locality.

Using your answers to parts (a) and (b), explain how a compiler can analyze the loop nest to produce
your answer to (c).

Choose any two out of the following three questions (Q5, Q6, Q7)

Q5. Dependence Analysis 12 points

(a) Show through examples how GCD test and Banerjee Inequalities are necessary but not sufficient
conditions , ie, how they produce may dependence information and show code examples where
in fact it is a case of independence ie, may dependence predicted by them is a false
dependence.

(b) Show through examples how array dependence analysis system can be tightened by adding
additional constraints to make it more accurate. You should use GCD and Banerjee Test as the
underlying solvers for solving a system of dependence equations. That is illustrate that with
additional information and analyses, more accurate (precise) answers can be sought. Show
additional analyses that should be triggered in setting up the dependence system and weigh in
on their usefulness.

Q6. Memory models 12 points

 In heterogeneous architectures, defining the memory space usage is one of the critical design decisions.
For example, Intel’s Larrabee programming model employs hybrid memory spaces. The memory
space is broken into three sub-spaces: shared (shared by both CPUs and GPUs), a private space for CPUs
and another private memory space for GPUs. Recently, NVIDA released that CUDA 4.0 that has a unified
memory space for CPUs and GPUs. Discuss the pros and cons of unified memory spaces and Intel
Larrabee’s hybrid model. Discuss what type of compiler analysis and optimization may be necessary to
decide which variables of a loop go into which memory space (shared, private for CPU and private for
GPU); the loop is being accelerated on GPU.

Q7. Register allocation and instruction scheduling 12 points

Phase ordering (which phase occurs before which one) of register allocation and instruction scheduling
is an open issue in compiler research. Show an example where register allocation preceding instruction
scheduling is helpful to generate better code; show another example where reverse is true. Propose an
integrated scheme in which spilling and instruction scheduling decisions could be taken simultaneously.
You may consider Briggs’s type graph coloring register allocator and critical path based instruction
scheduler.

