• **Claim.** Security of scheme S_1 under definition D_1 implies security of scheme S_2 under definition D_2.

• **Eq. claim.** Insecurity of scheme S_2 under definition D_2 implies insecurity of scheme S_1 under definition D_1.

• **Eq. claim.** The existence of an efficient adversary A attacking scheme S_2 under definition D_2 with “not small” d_2-advantage implies the existence of an efficient adversary B attacking scheme S_1 under definition D_1 with “not small” d_1-advantage.

• To prove the claim:
 • (1) Construct B that uses A as a subroutine. D_1 and D_2 define what “games” the adversaries play, including what oracles are they given. B has to simulate the required inputs for A.
 • (2) Analyze d_1-advantage of B based on d_2-advantage of A.
 • (3) Argue B’s efficiency based on A’s efficiency.