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Abstract

Service morphing is a set of techniques used to continu-
ously meet an application’s Quality of Service (QoS) needs,
in the presence of run-time variations in service locations,
platform capabilities, or end-user needs. These techniques
provide high levels of flexibility in how, when, and where
necessary processing and communication actions are per-
formed. Lightweight middleware supports flexibility by
permitting end-users to subscribe to information channels
of interest to them whenever they desire, and then apply
exactly the processing to such information they require.
New compiler and binary code generation techniques dy-
namically generate, deploy, and specialize code in order to
match current user needs to available platform resources.
Finally, to deal with run-time changes in resource avail-
ability, kernel-level resource management mechanisms are
associated with user-level middleware. Such associations
range from loosely coupled, where kernel-level resource
management monitors and occasionally responds to user-
level events, to tightly coupled, where kernel-level mech-
anisms import, export, and use performance and control
attributes in conjunction with each resource-relevant user-
level event.

1 Introduction

Background. Imagine a tablet PC that smoothly reconfig-
ures itself into being one of many panels in a video wall
when its owner ‘snaps’ it into place along other such de-
vices. Or consider a server system that dynamically recon-
figures its support for clients when such clients’ runtime be-
haviors or resources change, as exemplified by low-end, re-
mote PC- or PDA-based clients that require servers to help

produce high quality images for their graphical displays.

While such self-modifying systems sound futuristic,
the need for systems’ dynamic self-modification is already
well-established, and existing systems already demonstrate
some of these capabilities. In the embedded domain, some
cellphones can save power by dynamically switching from
cell modem- to Bluetooth-based communications [26].
The continuing merger of PDAs and cellphones causes the
development of new techniques for the dynamic extension
of such devices’ capabilities, exemplified by the ability to
download plugins for phone-resident browsers and more
importantly, by the runtime deployment of image filters
to cellphones to enable real-time video conferencing in
the presence of varying bandwidth availabilities [33].
Remote inspection of mobile units (e.g., trucks) is now
giving way to their remote maintenance, using on-board
communication and computer equipment [16]. Finally,
server systems or the overlay networks that amplify
individual servers are becoming increasingly ‘conscious’
of client needs, currently addressing specific tasks like
remote graphics and visualization [9, 31], but with future
work already considering other assistance, such as the
functionality currently provided by application servers
that perform XML or HTTP processing for companies’
large-scale operational information systems [15].

Service morphing. The key problem addressed by our
work is how to continuously meet application and end-user
needs, including power budgets, end-to-end QoS guaran-
tees, and security constraints. Furthermore, to understand
how application-level functionality can exploit these ca-
pabilities, we are investigating scientific collaboration, re-
mote sensing, and operational information systems [15].
We are building on our own and others’ previous work on
adaptive systems [24, 25, 34] and on dynamic program or



system specialization [14], but our new research differs in
that we are also trying to develop techniques for the auto-
matic creation of adaptive software services and of adap-
tation techniques for such services, which we term ser-
vice morphing. Specifically, rather than requiring appli-
cations to be explicitly made adaptable, we are develop-
ing compiler- and system-level techniques that dynamically
generate and deploy code modules into distributed sys-
tems and applications. The services implemented by these
code modules are morphable in that across two instances of
time, the same service may be realized by entirely different
codes, typically also exhibiting entirely different properties
concerning its tradeoffs in performance versus resource us-
age. Such modules may also offer new functionality, a sim-
ple example being a server that begins to encrypt the data it
delivers to a certain end-user when intrusions are detected
for that client, a more complex example being the dynamic
remapping of an image processing pipeline from a client to
a server system or to an overlay network when the clients’
battery power runs low. Our goal is to provide methods for
dynamically modifying the software services that run on
distributed systems, throughout their lifetimes: when first
deployed, when carrying out some newly defined task, or
when subjected to runtime changes. The assumption is that
services cannot at all times deliver all possible functions
to all end users, in part because such functions may not
be known until runtime, and similarly, that services can-
not capture or deliver information in all forms possibly re-
quired by their potential uses.

2 System Description

The following sections describe the architecture of our
approach. Service morphing is based on the following prin-
ciples:�

services self-modify, where this entails the combined
use of middleware, compiler, and system technologies
to generate appropriate outcomes;�

self-modification may entail coordination across mul-
tiple levels of abstraction, such as the middleware and
network levels [5, 7];�

self-modification is assisted by underlying platforms,
including extension to existing operating system ker-
nels [17, 19].

Service morphing is supported by three interacting com-
ponents:

1. InfoFabric middleware platform. Flexibility in
communication and processing is provided by a
lightweight publish/subscribe middleware: end-users
subscribe to information channels of interest to them

whenever they desire, and they apply exactly the pro-
cessing they need to such information, using dynami-
cally generated ‘handler’ functions. The goal is to op-
erate with levels of flexibility similar to those of Java
environments, but with the performance levels needed
for the high end server systems used in applications
like operational information systems [15].

2. Configurable resource management. Changes in re-
source availability are dealt with by a lightweight re-
source management framework, called Q-Fabric. Q-
Fabric efficiently carries the performance, usage, and
requirements information needed for run-time adapta-
tion of processing and communication actions. Jointly
with middleware it also implements low cost repre-
sentations of such information, termed ‘attributes’.
The intent is for middleware to potentially have de-
tailed knowledge of the ways in which information
is transported and manipulated before delivering it to
end-users, and for the underlying Q-Fabric to coor-
dinate system- with middleware-level actions in such
endeavors.

3. Dynamic binary code generation. To attain high per-
formance and to meet embedded systems require-
ments, new compiler and code generation techniques
dynamically generate and install new handler code on
the InfoFabric’s and Q-Fabric’s platforms. Further,
such run-time code generation also specializes handler
code in order to match current user needs to available
platform resources.
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Figure 1. System overview.

Figure 1 illustrates the components of the service mor-
phing approach. The InfoFabric middleware ’binds’
applications with information channels of interest to
them. The Q-Fabric operating system service ’binds’ and
manages the underlying resources at the hosts involved
in InfoFabric-based communications. Service morphing,
e.g., data filtering and fusing, dynamic filter and handler
generation, or service adaptation, is performed on all



those components, i.e., in the middleware layer, in the
operating system services, in the applications, and in all
communication paths between those components.

Results and status. The InfoFabric middleware has been
used with multiple applications, including scientific appli-
cations [31], and elements of the large-scale operational
information systems used by companies like Delta Air
Lines [6]. To permit precise run-time quality manage-
ment, a kernel-level implementation of publish/subscribe
channels, termed KECho [19], links the operating system
kernels of Linux machines that use InfoFabric (or any
other) communications. We are able to dynamically deploy
handlers ‘into’ operating system kernels, e.g., to control
the monitoring and adaptation actions taken on behalf of
applications [12]. KECho has been used for the end-to-end
control of interactive video across multiple machines [17],
including managing their power consumption [18], and
for the online monitoring of distributed resources for
scientific applications [12]. Finally, the compiler tech-
niques used when dynamically specializing code, e.g., to
match changes in power availability, are currently under
development, in part based on our earlier research on
runtime code specialization [14] and on code generation of
embedded systems [11, 21, 32].

Our research is based on our previous work with
distributed, real-time, adaptive, and multimedia sys-
tems [24, 27, 30], with sensor-based embedded applica-
tions [23], and with high performance middleware [4, 9]
and applications [31]. We are also leveraging prior
large-scale funding from the National Science Foundation
and the Department of Energy that has created the basic
publish/subscribe middleware used in this work [4, 33] and
is currently creating the new network measurement tech-
niques [10, 22] and middleware mechanisms [7] needed
for making middleware ‘platform’-aware. Compiler tech-
niques are focused on embedded devices, including static
analysis methods like on-chip memory data allocation [28],
restructuring for code compaction [11], and efficient data
layouts for indirect addressing modes [21]. The InfoFabric
project goes beyond such work by using a paradigm of
deploying mobile code onto networked devices ‘just-in-
time’ and by proposing notions of dynamic (re)partitioning
(using slicing techniques) and its associated dynamic
optimizations to generate efficient code for distributed
execution platforms.

The following sections describe the components of our
approach in more detail.

3 InfoFabric

The first component of the service morphing approach
described in this paper is the InfoFabric middleware layer.
We use the term InfoFabric�

to indicate that a distributed source-sink system op-
erates as a whole, where multiple nodes jointly im-
plement complex services provided for multiple end-
users, and�

to deal with the high levels of uncertainty on wireless
distributed platforms, by casting a ‘fabric’ of informa-
tion streams across these systems.

Specifically, the ECho [4] publish/subscribe communi-
cation tool targets applications comprised of distributed
information sources, transformers, and information
sinks. Sources could be web servers, inputs by humans
operating electronic devices, or automated sensors that
capture information from the physical environment. The
information produced by such sources must generally be
delivered to multiple sinks, where this information must
be transformed, fused, and filtered, so that it arrives in
forms useful to end-users. An example is the delivery of
client-specific digital data to a large number of remote
end-users. These ‘services’ applied to information flows
must be performed within QoS constraints determined not
only by data source and data types, but also by current
end-user and situational needs. Such constraints must be
met continuously, despite changes in the locations and
capabilities of the sources, sinks, services, and transports
applied to information.

An InfoFabric service is comprised of a set of computa-
tions applied to information items. These services execute
‘underneath’ the application-level code that relies on them.
Typical services include data filtering, data conversion or
encryption, and ancillary computations like those needed
for quality of service management. In general, a single
service is actually comprised of multiple code modules
spread across multiple machines, so that both the transport
of information and the computations being performed on
them are inherently distributed. Since both the information
flows in an InfoFabric and the services applied to them
are well-specified and known at run-time, the operation of
the InfoFabric can be changed dynamically. Such changes
are made via run-time adaptations that take advantage
of meta-information about typed information flows,
information items, services, and code modules in the Info-
Fabric (i.e., using distributed directory [2] and format [4]
servers). Changes involve alterations to services’ internal
composition, location, and runtime behavior, including
dynamically generating, re-generating, and specializing



the actual code that implements services. For instance,
by employing runtime binary code generation based on
precise, compiler-level intermediate specifications of a
service’s code modules and their internal representations,
the service may be quickly (re-)partitioned to match the
remaining power budget on an underlying computational
node or to match the amounts of information flowing
across certain InfoFabric links to the link bandwidths that
are currently available [32]. In addition, we can associate
attributes with event submission and receipt that capture
or describe quality of service needs or monitoring data.
Such attributes may be used to coordinate adaptation
actions across multiple system levels (e.g., middleware
and network protocols [7]), or they may be used to enforce
desired end-to-end behavior [30].

Services and meta-information. Information providers
and consumers subscribe to shared logical communication
channels. Existing Java- or CORBA-based implementa-
tions of such publish/subscribe paradigms typically use
concentrators to collect and re-send data sent to a channel.
In contrast, InfoFabric uses direct source-to-sink links
between all providers and consumers of a channel. Fur-
thermore, the information on these channels is represented
by self-describing information items, where the types
of information items being transported are identified to
anyone receiving these items and must match the in/out
parameter types of the computations performed on these
items, thus creating a tight and well-defined linkage of
communication with computation. An InfoFabric service,
then, is defined as a meaningful set of computations
applied to information items.

Example: Operational Information Systems. Opera-
tional Information Systems (OIS) provide continuous sup-
port for a company’s daily operations on large-scale dis-
tributed hardware. An example is the OIS run by Delta Air
Lines, which provides the company with up-to-date infor-
mation about all of its operations, including flights, crews,
or passengers. It is driven by the real-time acquisition of
data from many disparate, remote sources, such as FAA
data feeds and airports. One of the principal tasks is to
integrate such data events, by applying to them relevant
‘business logic’. The resulting ‘business events’ have to be
made available to a potentially large number of remote sub-
scribers, such as airport flight displays. The model of real-
time event subscription, derivation, and publication it thus
implements distinguishes an OIS from Data Warehouses
and Decision Support Systems: This model is also a basis
on which the OIS builds its interactions with other system
components, like those participating in E-commerce inter-
actions like passenger reservations. This OIS combines
three different sets of functionality:

�

Continuous data capture – as with high performance
applications that capture data from remote instruments
like radars or satellites, an OIS must continuously cap-
ture all data relevant to an organization’s operations.�

Continuous state updates – as with digital library
servers that must both process newly received data and
then distribute it to clients that request it [13], an OIS
must both continuously process all operational infor-
mation that is being captured and then store/distribute
the resulting updates of operational state to all inter-
ested parties. In the case of Delta Air Lines, this in-
cludes low-end devices like airport flight displays, but
also large-scale databases in which operational events
are recorded for logging purposes. The machine do-
ing this work is termed an Event Derivation Engine
(EDE).�

Short response times – an OIS must also respond
to client requests. In our example, clients request
new ‘initial states’ when airport or gate displays are
brought back online after failures, or when agents ini-
tialize their displays, and certain clients may gener-
ate additional state updates, such as changes in flights,
crews, or passengers. To provide timely service to
passengers and optimize operational costs, it is im-
portant to respond to such requests with predictably
bounded delays.

As stated above, the central part of an OIS is its event
derivation engine (EDE). For example, Delta uses a clus-
ter of IBM S/390s that run the specialized TPF (Transac-
tion Processing Facility) operating system. Performance
requirements of an EDE for operational information sys-
tems like Delta’s include�

99.99% average availability;�

performance of up to 5400 transactions per second,
with�

1-3 seconds response time attained 95% of the time;�

at a cost of less than 2 cents per transaction.

Responsiveness requirements include the ability to
service requests from clients within bounded time delays
not exceeding 1-2 minutes. Sample requests include
downloads of new initial states for end users (e.g., airport
displays) after failures and updates to gate agents’ operat-
ing systems.

InfoFabric results. One specific technique is adaptive
event mirroring for improved performance and responsive-
ness. Events coming into an EDE are mirrored to addi-
tional server engines in order to attain low average delays



for EDE event derivation and publication, even when the
EDE experiences high loads in terms of the number of ‘ini-
tial state’ requests received from recovering clients or from
other EDE nodes. Adaptive mirroring means that one dy-
namically modifies the granularity at which mirroring is
performed, thereby also modifying the level of data con-
sistency maintained across different mirror nodes. Such
adaptations are made possible by exploiting the streaming
nature of the incoming data events and by using certain
application-level semantics, such as the knowledge that a
position update for a flight will be followed by future po-
sition updates, so that it need not be mirrored when loads
are high. The idea is to use runtime adaptation to reduce
or eliminate the EDE’s timing failures [8, 20]. The bene-
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Figure 2. Adaptive event mirroring.

fits of adaptive mirroring are explored in more detail in [6],
but representative results depicted in Figure 2 trade system
consistency vs. QoS by dynamically modifying a mirroring
function or its parameters. Useful adaptations strategies in-
clude�

coalescing multiple events vs. mirroring them inde-
pendently,�

setting the maximum number of events that can be
overwritten in a sequence,�

varying checkpointing frequency, and�

installing different mirroring functions.

Two mirroring functions are (a) one that coalesces
up to 10 events and then produces one mirror event,
thus overwriting up to 10 flight position events, where
checkpointing is performed for every 50 events; and (b)
one that overwrites up to 20 flight position events and
performs checkpointing every 100 events. We compare
the EDE execution that adaptively selects which one of

these functions to use, depending on the sizes of monitored
queues and buffers, with an EDE execution that performs
no such runtime adaptation. The performance metric
is the processing delay experienced by events from the
time they enter the OIS system until the time they are
sent to clients by the EDE at the central site. That is, we
are evaluating the OIS’ contribution to the perturbation
experienced by OIS clients receiving state updates. In
Figure 2, the darker bars show the increase in average
event update delays, which result from an increased rate of
incoming client requests. This increase can be avoided by
moving request servicing functionality onto mirror nodes.
Adaptive mirroring can further modify the mirroring
function, reduce its frequency, allow event coalescence, or
some filtering based on event type or event content. The
lighter bars in the same figure correspond to delays when
such adaptation of the mirroring function takes place. Such
runtime adaptation has substantial advantages, where total
processing latency of the published events is reduced by up
to 40%, and the performance levels offered to clients expe-
rience much less perturbation than in the non-adaptive case.

4 Q-Fabric

Q-Fabric is the kernel-level (currently for the Linux op-
erating system) infrastructure that ‘connects’ distributed re-
source monitoring and management agents. These agents
communicate and coordinate their actions using the KE-
Cho kernel-level event service via Q-channels [17]. The
architecture of Q-Fabric depicted in Figure 3 shows that
applications and kernel-level resource managers share the
same Q-channel (i.e., control path), which simplifies the
support of the integrated management of resources and ap-
plications. Note that a Q-channel as depicted in Figure 3 is
not a centralized unit, but is distributed among all partici-
pating hosts, i.e., all hosts communicate directly with each
other (e.g., via socket connections) and channel informa-
tion (e.g., lists of participating publishers and subscribers)
is replicated at each host.

Q-Fabric results. A second application domain driving
our research is online collaboration, focusing on large-data
interactions like remote visualization. Current scientific
codes, such as the Terascale Supernova Initiative1 funded
under the DOE SciDAC program, can already generate rel-
evant data at nearly a gigabit per second. Within the next 5
years, these sizes are expected to grow by at least a factor
of 10. In order to provide a remote collaborator with an ad-
equate and timely visualization, the data must be carefully
staged and transformed to manage bandwidth, latency, and
content representation.

1http://www.phy.ornl.gov/tsi/
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In our specific application, a server delivers molecular
dynamics data, similar to what is generated by large scien-
tific codes in Physics or Chemistry, to clients that can range
from high-end displays like ImmersaDesks to smaller dis-
plays like handhelds. The clients can subscribe to any of a
number of different derivations of that data, ranging from
a straight data feed, to down-sampled data (e.g., removing
velocity data), to a stream of images representing the full
visualization. Communication is based on InfoFabric’s
ECho event service; a server establishes an event channel
and interested clients can subscribe to this channel in order
to receive the data stream. Moreover, clients can customize
the data stream by using server-resident data filters.

In this scientific visualization example, resource infor-
mation collected remotely from all clients allows the server
to tune the operation of its data filter functions in order
to continuously customize the qualities of data streams to
the current capabilities of individual clients. The measure-
ments shown in Figure 4 use the monitoring information
provided by Q-Fabric to automate the degrees of data filter-
ing based on current resource availability. In other words,
the server is made ‘aware’ of the resources available at dif-
ferent clients via kernel-level runtime monitoring. These
results demonstrate two points:�

system-level support for service morphing: the im-
portance of information-rich service morphing, where
services are changed using the rich and precise re-
source information available from operating system
kernels, and�

combined compiler- and system-level techniques: at
runtime, data filtering may be tuned not only by set-

ting or re-setting pre-defined parameters, but also by
deploying into servers entirely new filters, thus mak-
ing servers truly ‘client-conscious’.

In this experiment, the server sends large events (3MBytes)
to clients, and the network link between the client and
server is artificially perturbed by running Iperf. As network
perturbation increases, available bandwidth decreases and
latency increases. The capacity of the link is 100Mbps.
When there is no perturbation, the server sends data to the
client at a rate of about 30Mbps. Hence the plot remains
almost horizontal until 70Mbps of perturbation. As per-
turbation increases beyond 70Mbps, latency drastically in-
creases for the situations where no filtering or static filters
– i.e, filters that can not be tuned – are used. However,
with dynamic filters, the server dynamically reduces data
size in proportion to observed reductions in available net-
work bandwidth, therefore minimizing the effect network
perturbation has on the latencies.
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Figure 4. Client-aware data streaming:
change in latency with varying network load.

Figure 5 shows the change in the event rate at a CPU
loaded client. This figure shows that in the dynamic filter
case, the client is able to receive and process events at
the same rate at which the server sent them. Therefore
the inter-event arrival delay remains almost constant. The
static filter case cannot adapt itself to the increased load
in the system and hence the queuing delays increase and
the intervals between event arrivals get larger, although the
server is sending these events at a constant rate. The case
without filters shows the worst performance.

In the next experiment, Q-Fabric is used to connect the
resource managers for a video conferencing application,
called vic. The resources being managed are:�

CPU: The CPU scheduler used in this example is the
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Linux real-time round-robin scheduler. The resource
manager adjusts an application’s priority class to react
to its varying computational needs. Applications are
assigned a default priority class (e.g., 50 in the follow-
ing experiments) and can be modified in the range of
1 and 99.�

Network: The Dynamic Window-Constraint Sched-
uler or DWCS [29] is a real-time scheduler based on
three attributes: a period

�
, a window-constraint or

loss rate ����� , and a run time � , where DWCS guaran-
tees an activity � time units of service within a period�

. However, this guarantee is relaxed by the loss rate,
which indicates that � service invocations in � con-
secutive periods (i.e., ��� � time units) can be missed.
These attributes translate easily to streaming multime-
dia applications that require the generation and trans-
mission of data (such as video or audio) with a certain
rate. However, such applications can often tolerate in-
frequent losses or misses of data generation or trans-
mission. If a packet is not scheduled within a period�

, it is said to have missed its deadline. If the num-
ber of missed deadlines exceeds � in a window of � ,
the stream is said to have suffered a violation. The ad-
justable parameters of a DWCS stream are the period
and the loss-rate. The following experiment uses a de-
fault period of 	�

��� (to achieve a frame rate of 20fps)
and a loss rate of ��������������
 .

In addition, the application itself can be adapted by
varying the chosen image quality. For the H.261 encoding
method, vic supports image qualities in the range of 1 (low
quality) to 95 (high quality). The chosen image quality has
a significant influence on the processing requirements of

the application and the image size transmitted.

This experiment compares the jitter of video replay in
vic for three situations:�

without adaptive measures,�

with distributed resource management, and�

with distributed resource management and application
adaptation.
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Figure 6 shows the jitter for video replay when no adap-
tive measures are taken. After approximately 4100 frames,
the sender side of the application is perturbed with a CPU-
intensive task (endless for-loop), causing a high jitter. Af-
ter 6800 frames, a perturbation at the client is started, again
with a CPU-intensive task, causing a jitter of up to 5 sec-
onds. In Figure 7 we repeat this experiment, however, the
Q-Fabric resource management adjusts both network and
CPU allocations to the video player at the client. It can be
seen that the average jitter is significantly lower during per-
turbation than in the case without adaptation. However, the
jitter still reaches up to 3 seconds for the sender-side pertur-
bation and up to 6 seconds for the client-side perturbation.
Finally, in Figure 8, we add application adaptation, i.e., the
server-side vic application adjusts the image quality of the
H.261 encoded images (between 1 and 30) if the frame rate
differs from the desired frame rate. Here, the average jitter
is negligible and remains below 1 second in the worst case.

5 (Re-)partitioning and (re-)deployment.

The services (i.e., computations) an InfoFabric applies
to its information flows are well-defined from the points
of view of end users, but their internal composition, lo-
cation, and runtime behavior are easily and dynamically
varied, automatically and often invisibly. Our work goes
beyond parameter- or mode-based adaptations of services,
by dynamically generating, re-generating, and specializ-
ing the actual code that implements services. Specifically,
in order to perform fine-grain service re-location and re-
partitioning, we maintain meta-information about each ser-

vice’s code modules, including their locations, their rela-
tionships to each other, and their internal structures, using
distributed directory [2] and format [4] servers. In addition,
with InfoFabric event submission or receipt, we can asso-
ciate attributes that capture or describe quality of service
needs and/or monitoring data. Such attributes may be used
to coordinate adaptation actions across multiple system lev-
els (e.g., middleware and network protocols [7]), or they
may be used to enforce desired end-to-end behavior [30].
In general, such meta-information can be sufficiently de-
tailed to not only enable the run-time re-deployment of a
service’s statically defined code modules, but also to ‘take
apart’ and ‘re-assemble’ code modules to better match an
information flow’s transport and operation to the current
capabilities of the underlying embedded system (see [32]
for a detailed description of results attained with a Java
implementation of ECho, termed JECho). The resulting
‘lightweight’ dynamic service re-partitioning methods will
enable InfoFabric applications to operate with degrees of
flexibility akin to those of Java-based systems. For in-
stance, by employing runtime binary code generation based
on precise, compiler-level intermediate specifications of a
service’s code modules and their internal representations,
the service may be quickly re-partitioned to match the
remaining power budget on an underlying computational
node or to match the amounts of information flowing across
certain InfoFabric links to the link bandwidths that are cur-
rently available.

6 Conclusions and Future Work

The computing infrastructures being developed for
distributed autonomic systems will have to have several
of the capabilities offered by our approach. Agility in
terms of rapid code deployment and re-deployment is
required to match program code to platforms. Adaptivity
is required to match how services are run and applied
to data to create time-critical information for end-users
with the quality they need. Methods for dealing with
rapid infrastructure changes, especially in critical systems,
not only have to recover from such changes but should
also adjust middleware-level actions and behavior to such
changes. Some of those methods require kernel-level
support to be able to operate at all or at the high levels of
granularity required by applications.

Our future work will continue to use multiple appli-
cations, including online collaborations involving large
data volumes, the rapid access to remote live (i.e., sen-
sor) data, and commercial applications like operational in-
formation systems. We will improve application perfor-
mance by developing distributed algorithms that change the
ways in which information is routed and processed across



a distributed embedded platform, resulting in overlay net-
works [1, 3]. Novel ‘in place’ and ‘remote’ compilation
techniques will implement dynamic service morphing, by
generating new code to be deployed at certain overlay net-
work nodes. Middleware and code generation will not
only enable a component of an InfoFabric service to be
dynamically re-deployed, but also to be ‘taken apart’, ‘re-
assembled’, and specialized to better match an information
flow’s transport and operation to the current capabilities of
the underlying system. The lightweight dynamic service
(re-)partitioning methods resulting from this research will
enable embedded and distributed systems software to op-
erate with degrees of flexibility akin to those of Java-based
systems.
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