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Abstract

An Operational Information System (OIS) supports a
real-time view of an organization’s information critical to
its logistical business operations. A central component of
an OIS is an engine that integrates data events captured
from distributed, remote sources in order to derive mean-
ingful real-time views of current operations. This Event
Derivation Engine (EDE) continuously updates these views
and also publishes them to a potentially large number of re-
mote subscribers. The paper first describes a sample OIS
and EDE in the context of an airline’s operations. It then
defines the performance and availability requirements to be
met by this system, specifically focusing on the EDE compo-
nent. One particular requirement for the EDE is that sub-
scribers to its output events should not experience down-
time due to EDE failures, crashes or increased processing
loads. Toward this end, we develop and evaluate a practical
technique for masking failures and for hiding the costs of
recovery from EDE subscribers. This technique utilizes re-
dundant EDEs that coordinate view replicas with a relaxed
synchronous fault tolerance protocol. A combination of pre-
and post-buffering of replicas is used to attain a solution
that offers low response times (i.e., ‘zero’ downtime) while
also preventing system failures in the presence of determin-
istic faults like ‘ill-formed’ messages. Parallelism realized
via a cluster machine and application-specific techniques
for reducing synchronization across replicas are used to
scale a ‘zero’ downtime EDE to support the large number
of subscribers it must service.

1 Introduction

Increasing a server system’s performance, reliability, and
fault-tolerance by means of replication is common prac-
tice [2, 5, 6, 7, 9, 10, 22]. Performance improvements are at-

tained by use of parallelism and concurrency [19]. By using
additional techniques for fault detection, masking and re-
covery, replication can deal with hardware failures, and with
software failures caused by non-determinism or by certain
behavior at isolated node(s). However, deterministic soft-
ware errors that cause all replicas to fail concurrently cannot
be prevented, and their occurrence can result in catastrophic
system failures [7, 18]. For instance, in the application con-
sidered in this paper, an ‘ill-formed’ data event processed
by the replicated server engine will crash every one of the
server’s replicas.

This paper describes a scalable server architecture which
both meets user-level performance requirements, particu-
larly focusing on reducing delays experienced by end users,
and also hides failures (actual or performance), even in the
presence of ‘ill-formed’ input messages. The architecture is
evaluated in an emerging application domain for high per-
formance, high availability computing, termed Operational
Information Systems (OIS).

Operational Information Systems. An OIS is a large-
scale, distributed system that provides continuous support
for a company’s or organization’s daily operations. One ex-
ample of such a system is the OIS run by Delta Air Lines,
which provides the company with up-to-date information
about all of its operations, including flights, crews, passen-
ger, and baggage [16].

Delta’s OIS is driven by the real-time acquisition of data
from many disparate, remote sources, such as FAA data
feeds, airports serviced by Delta, etc. One of the principal
tasks of the OIS is to integrate such data events, by applying
to them relevant ‘business logic’. Another important task is
to make the ‘business events’ produced by such logic avail-
able to a potentially large number of remote subscribers,
such as airport flight displays and gate agents. The model
of real-time event subscription, derivation, and publication
it thus implements distinguishes an OIS from Data Ware-
houses and Decision Support Systems. This model is also



the basis on which the OIS builds its interactions with other
system components, like those participating in E-commerce
interactions as with passenger reservations.

Event derivation engines (EDEs) and their performance
requirements. An event derivation engine (EDE) is the
central processing component of an OIS. Its role is to ac-
cept incoming data streams, correlate them, and apply busi-
ness logic. The EDE therefore, must capture, process, and
provide information continuously, with bounded delays and
with little or no downtime experienced by both its event
sources and subscribers. It must also service clients’ ex-
plicit requests. Yet, the EDE is susceptible to hardware
upgrades and failures, failures and incompatibilities in the
software it runs, shared library conflicts, failures due to the
receipt of ‘ill-formed’ data messages, and others.

Traditionally, large enterprise computing has constructed
EDEs with clusters of mainframes that run proprietary in-
formation systems software. For example, Delta uses a clus-
ter of IBM S/390s that run the specialized TPF (Transac-
tion Processing Facility) operating system [21]. TPF con-
tinues to support applications that automate the majority of
the airline’s operational services. Given Delta’s experiences
with TPF over the last 30 years, any new EDE introduced
to Delta must match its performance while also offering
new functionality. Performance requirements include (1)
99.99% average availability; (2) performance of up to 5400
transactions per second, with (3) 1-3 seconds response time
attained 95% of the time; (4) at a cost of less than 2 cents
per transaction. Additional responsiveness requirements in-
clude the ability to service requests from clients within time
delays not exceeding 1-2 minutes. Sample requests include
downloads of new initial states for end users (e.g., airport
displays) after failures and updates to gate agents’ operat-
ing systems.

Responsiveness and availability via replication. This pa-
per presents a two-tiered software/hardware architecture for
an EDE. The architecture aims to attain high levels of avail-
ability and reliability, while also offering a high degree of
responsiveness (i.e., bounded response times) to explicit
client requests. The effects of failures are mitigated by use
of replicated software and hardware components, as well
as replicated data. High availability is attained by runtime
detection and elimination of certain deterministic software
errors that cause all replicas to fail, thereby reducing the
downtimes experienced in systems where all replicas have
to be rebooted (up to 45 minutes in the current system) to
1-2 minutes. Redundancy attained through replication is
also the way bounded request response times are attained,
effectively achieving ‘zero’ perceived downtimes for typi-
cal end users. Finally, by using standard cluster computing
hardware and COTS operating systems, the architecture is
easily expanded to provide new functionality, such as sup-
port for passenger paging upon flight arrivals, gate changes,

etc.

A two-tiered replication architecture. The first tier of the
two-tiered replicated EDE (REDE) is a replicated engine
that applies business logic to incoming events, and pub-
lishes update events to the OIS’ clients. The main purpose
of this tier is to effectively detect and mask from clients an
EDE node’s failure and recovery. The first tier of the REDE
is enhanced by a second tier of ‘mirror sites’ to which data
is mirrored from the REDE. Its purpose is (1) to handle the
requests for new initial states (explained in more detail in
Section 3) made by clients and REDE nodes during recov-
ery, so as to improve the REDE’s responsiveness to such
requests, and (2) to also reduce the negative performance
implications of recovery actions for REDE nodes. An ad-
ditional technique used to improve the performance of the
second-tier set of nodes (i.e., mirror nodes) is to adaptively
mirror the events incoming into the REDE onto those nodes.
This adaptive mirroring technique is explored in more de-
tail in [13] and will not be further described in this paper.
Both tiers use hardware that is arranged as a cluster of ma-
chines, with cluster nodes tightly coupled via a switch, but
independently powered, and using replicated software and
data, so that the failure of one node does not cause failures
of other cluster nodes. Finally, event replication and mir-
roring within the REDE may be costly, especially if REDE
nodes are required to operate synchronously. We reduce the
potentially high overheads of strong synchronization across
REDE nodes by relaxing the consistency requirements of
nodes’ internal states, using domain knowledge and exploit-
ing the streaming nature of the event data processed and
generated by the REDE.

Replication with pre- and post-buffers. The key to our im-
plementation of reliable and responsive REDE nodes is the
use of pre- or post-buffers at each node, a concept that is
enabled by the streaming nature of OIS applications. At any
one time, one of the REDE nodes acts as a primary node,
while the others maintain either pre-buffers of received, but
still unprocessed data events, or post-buffers of already suc-
cessfully processed data. The role of post-buffers is to im-
plement fast replay of already processed data in the event
of a primary’s hardware failure or a non-deterministic soft-
ware failure. Pre-buffers guard against deterministic soft-
ware failures that cause all of the REDE nodes’ executions
of business logic to fail. A pre-buffer permits, for instance,
the extraction of ‘ill-formed’ messages from the incoming
event stream, if such messages cause node failures.

Consistency across REDE nodes is weakened in the
time-domain only, essentially permitting a node’s pre- or
post-buffer to be ‘behind’ or ‘ahead’ of other nodes’ buffers,
as long as sufficient state exists to recover from failures.
More importantly, in the event of a primary’s failure,
failover to a pre- or post-buffer node hides the delay ex-
perienced during recovery from the REDE’s clients. For



limited levels of replication, this effectively results in ‘zero’
perceived downtime by clients. To attain this goal, however,
we make the assumption that clients participate in this pro-
cess, by detecting and eliminating duplicate update events
sent to them based on unique event timestamps.

2 Operational Information Systems

Figure 1 shows how operational information is captured
in a wide area setting. This information is comprised of up-
date events describing airplanes’ locations and crew avail-
ability, for instance, and its continuous capture results in
streams of update events received by the OIS server (i.e.,
the EDE). The data events being captured from, processed
at, and distributed to large numbers of company sites con-
cern the current state of company assets (e.g., airplanes or
crews) and that of their customers’ needs (e.g., passenger or
luggage volumes and destinations). The ability to track and
manipulate such information in a timely fashion is critical
to the company’s operations and profits. In the case of Delta
Air Lines, events originate at system capture points, such as
gate readers or radar data collected by the FAA. Legacy sys-
tems like the aforementioned TPF are an additional source
of capture points, where software agents are strategically in-
jected to capture TPF transactions in real-time. The outputs
generated by the center’s EDE server are used by a myr-
iad of clients, ranging from simple airport flight displays to
complex web-based reservation systems.

The EDE must also maintain for its many clients mean-
ingful ‘initial states’ that they can acquire to recover from
failures. A typical example is an airport flight display
that upon recovery from a power failure, cannot interpret
new flight events published by the EDE until it has been
sent an initial state that is then incrementally updated by
these events. The role of the EDE, then, is twofold: (1) it
serves as an event processing engine, and (2) it maintains
initial states on behalf of clients that request such states
as needed. Currently, at Delta, the EDE processes up to���

million source messages per day, derives at least that
many business events to an initial deployment of

���������	�
remote subscribers, whose number is expected to grow to
over

�����
�����	�
in the foreseeable future. An explosion of

initial state queries places high levels of additional load on
the system. These initial states can be on the order of sev-
eral MB; for flight information display applications these
states are � MB of XML-represented data.

The goals of the EDE are (1) to minimize the time be-
tween the receipt of an event and the publication of the re-
sulting business event and (2) to provide a high availability
model to its clients that does not add additional latency be-
yond a client’s perception of a real-time event. To meet (1)
and (2), a challenge beyond dealing with large, bursty client
requests is to address failures experienced by the EDE. The
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Figure 1. Original Delta architecture.

effects of such failures can be severe due to the large re-
covery times experienced by the EDE, the latter caused by
the size of the state maintained in the EDE. However, even
if the state is re-loaded quickly, total recovery time of the
EDE much exceeds this re-load time. First, upon recovery,
the EDE must deal with a potentially large backlog of in-
coming events and the corresponding outgoing events. Sec-
ond, there may be outstanding initial state requests. In fact,
measurements performed on Delta’s EDE indicate recovery
times that often exceed 45 minutes. This is not an accept-
able situation, particularly since failures in this system are
not infrequent. Instead, recovery time should be masked
and clients should not perceive any system downtime. This
is the problem addressed by the replicated server architec-
ture described in the next section.

3 Replication Architecture Design and Im-
plementation

Basic architecture. The prototype design of our two-tiered
replication architecture is presented in Figure 2. Event
streams originate from a number of data sources, and
are replicated to a set of first-tier nodes which constitute
the REDE. Each REDE node maintains its own applica-
tion state and executes ‘business logic’ rules on incoming
events. A relaxed synchrony replication protocol is used
to maintain clients’ perceptions of shared state consistent
across REDEs.

Upon receipt of an event, the primary REDE node times-
tamps and mirrors the event to a set of second-tier mirror
nodes, based upon a number of application-specific rules
that determine the mirroring frequency and granularity, and



using a degree of event filtering that complies with the
consistency requirements of the application [13]. While
this paper focuses on the attainment of high availability
and ‘zero’ downtime via EDE replication and event mir-
roring, a second purpose of event mirroring is to distribute
the loads generated by initial state requests issued upon
clients’ failure, thus decreasing the average update delay
experienced by clients, even under unexpected bursts of re-
quest load (see the experimental results presented in Sec-
tion 4). Thus, the two-tiered design results in an architec-
ture where, under varying operating conditions, update de-
lays can be maintained within bounds that result in what
clients perceive as ‘zero’ downtime. Our implementation,
both at the REDE replicas and the mirror sites, separates
the application-specific event processing functionality (ex-
pressed through a set of ‘business logic’ rules) from the ex-
ecution of the control mechanisms necessary for consistent
replication and fault detection and recovery [13].
Replicated Event Derivation Engine. The REDE (see Fig-
ure 2) consists of three different derivation engines, weakly
consistent in the time domain [1], of which only one at a
time acts as a primary event publisher. Each of the replicas
receives the same event stream, locally performs the nec-
essary timestamping of the events, and passes the events
to the local business logic. At each node, the most cur-
rent event timestamp reflects the node’s current view of the
application’s state. Application semantics, required for the
application-specific mirroring, are captured though a set of
semantic rules that describe the actions associated with dif-
ferent event types, or even their content. The mirror sites
maintain their view of application state based on the times-
tamps of events mirrored onto them.

The pre-buffer node postpones the ‘business logic’ pro-
cessing of newly arrived data, at least until it has been suc-
cessfully processed by the primary node. The post-buffer
node executes the business logic at a rate that maintains a
predefined number of most recently processed events in its
buffer. Newly derived business events are published solely
by the primary REDE node. The primary node also controls
the way in which mirroring is performed.
Relaxed Synchrony Protocol. Synchronization is required
to guarantee that EDE subscribers do not experience di-
minished consistency. This is implemented through the ex-
change of heartbeat/control events. These events contain
the timestamp ������� of the last successfully processed data
event by the primary node. The post-buffer node always
maintains in its buffer all processed events with timestamps
greater than the most recent ����� � . The pre-buffer node can
remove from its buffer, and process, all events with times-
tamps preceding ����� � . Timeouts are associated with these
control events; their expiration implies failure occurrence.
Detection. Within the duration of a single timeout, the
pre- and post-buffer nodes can detect a primary site fail-
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Figure 2. Two-tiered Replication Architecture.
REDE nodes’ states are after heartbeat event
h7 has been exchanged. Primary node al-
ready published update event u9 and has just
processed d10 and updated its state to S10.
Post-buffer node has advanced ahead to data
event d11, but maintains in buffer updates fol-
lowing timestamp h7. Pre-buffer node cannot
advance beyond S7, and holds in pre-buffer
subsequent data events.

ure (timing or performance [15, 17]). The failover mech-
anism is as follows. First, the node maintaining the post-
buffer sends a heartbeat control event. Second, it resubmits
all events in its post-buffer. Third, it assumes the primary
site’s functions. Existence of ‘ill-formed’ messages in the
data stream will also cause the post-buffer node to fail. In
these cases, the pre-buffer node executes an error detection
and removal mechanism, extracts these messages, and then
becomes the primary site. Our prototype implementation
trivializes this process, by explicitly inserting marked ‘ill-
formed’ messages in the event stream, whose detection is
done by simple comparison. In the event of hardware fail-
ure of the primary node, replay of the post-buffer node is
required. This implies that the EDE subscribers need to be
capable of detecting and removing duplicate updates. In the
event of ‘ill-formed’ messages, after they are extracted from
the pre-buffer, the remaining messages are first processed
and then the derived updates are published to clients. This
results in increased update delays, but there are additional
factors contributing to such delays. Such factors include
timeout values used with heartbeat messages, queuing de-
lays experienced due to buffering, the average processing
time of events, and the mechanism used to detect and re-
move erroneous messages. Independent of these, the REDE
continues to stream newly derived data events to its sub-
scribers, thereby hiding the failure of the primary node.
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Figure 3. Overhead of implementation

Recovery. Upon failure of the REDE’s primary node, the
failover mechanism activates the pre- or post-buffer node,
and the primary node’s recovery process is masked from
the system’s clients. During the recovery of the REDE’s
failed nodes, we avoid retrieving the initial state from the
currently active primary node, since such additional load
would result in increased update latencies. Instead, we rely
either on the pre-buffer, or on the mirror sites if only one
REDE node is currently active. The only interaction be-
tween the recovering node and the current primary node is
with respect to global timestamp synchronization. The re-
covering node starts buffering incoming messages, which
will later be applied to the received state.

A more detailed explanation of the implementation of
our prototype system and its synchronization mechanisms
appears in [14].

4 Evaluation

Experiments are performed with the replicated server
(REDE and mirror sites) running on up to eight nodes of a
cluster of 300MHz Pentium III dual-processor servers run-
ning Solaris 5.5.1. The ECho event communication infras-
tructure [11] is used to efficiently move data events across
nodes. The ‘flight positions’ data stream used in these ex-
periments originates from a demo replay of original FAA
streams, and it contains flight position entries for � � differ-
ent flights. The evaluation metric is the total execution time
of the simulation. To simulate client requests that add load
to the server’s sites, we use httperf version 0.8, a standard
tool for generating HTTP traffic and measuring server per-
formance. Httperf clients run on 550MHz Pentium III Xeon
nodes connected to the server cluster via 100Mbps Ethernet.
Event replication overheads are acceptable. A set of mi-
crobenchmarks measures the basic replication overheads in
the two-tiered REDE architecture, as a function of varying
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data sizes. We compare the total processing time for a fixed
event sequence in the replicated implementation, with an
implementation that contains a single EDE without addi-
tional mirrors. No failures nor additional load due to in-
coming client requests are assumed for this experiment. The
heartbeat rate is set at one per

� �
processed messages, and

the timeout value at
�
sec. The mirroring overhead alone is

captured through the dotted line in Figure 3, which repre-
sents the case when a one-node EDE is used in combination
with a single mirror site. The increase due to heartbeat traf-
fic when a replicated EDE is used, is an additional 5% of
the total execution time, which results in a total increase in
the execution time of approximately 20%.
Pre- and post-buffers effectively mask the down-time expe-
rienced by clients. Next, we evaluate the REDE’s behavior
in the event of failures, demonstrating the increase in update
delay as a result of our failover mechanism and the poten-
tial duplication of published events. We simulate failures
by instrumenting the original event stream with events that
indicate a primary site failure, or that are explicitly marked
as ‘ill-formed’ messages. The measurements in Figure 4
are gathered with a single mirror-replicated REDE setup,
and represent the increase in update latency as a result of a
single failure. The delay encountered is computed by mea-
suring the time difference of when the event would have
been processed, had it not indicated a failure, and when the
following event is sent. We use a data size of � ��� B, for
which the average processing time is ��� � ms. Measurements
are taken for three different timeout values:

� �
, � ��� , and�����	�

ms, and the corresponding heartbeat rates are every
�
,� � , and � � events, respectively. The tests were repeated for

‘hardware’ failures, for which the post-buffer replay is suf-
ficient (lighter bars in Figure 4), and for ‘ill-formed’ mes-
sage failures, for which the pre-buffer replica becomes the
primary node (darker bars).
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Experimental results indicate that on average, the in-
crease in the event update latency experienced by the REDE
is less than � % larger than the timeout value, if the post-
buffer node can assume primary node status. If the post-
buffer node also fails and if the ‘ill-formed’ message must
be extracted from the pre-buffer, then the event update la-
tency increases by

�	�
%. The measured increases in the

update delays show that with the REDE design, perceived
downtime is reduced to values that fall within the response
time requirements of our application. In effect, therefore,
the failure of a node within the REDE is masked from
clients, resulting in what they will perceive as ‘zero’ down-
time.

The recovery mechanism for a REDE node is evaluated
for two situations: (1) when a pre-buffer node is available,
and (2) when a mirror site services the state request. In both
cases, a heartbeat rate of 1 control message for each

� �
pro-

cessed events is used, with an event size of � �	� B. The re-
sults presented in Figure 5 show that the failed node recov-
ers within

� � � minutes in both situations. We further ob-
serve that when a mirror node needs to be polled for initial
state, then the recovery process is on average only 10-15%
longer, compared to the case of a pre-buffer being available,
mostly due to the fact that mirror nodes typically lag behind
the primary node with respect to their pre-buffers.

Mirroring is critical for efficient client request processing.
The next experiment demonstrates the performance impli-
cations of using the primary node to service client requests
(i.e., requests for initial states), in place of using a mirror
node for this task. We measure and compare the processing
delays experienced by data events if a recovering node must
poll a mirror site for the initial states vs. when it polls the
primary node. The results in Figure 6 show the processing
delays for every

���	���
th event in a stream of

���
�����	�
events
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Figure 6. Comparison of processing delays
when a mirror node provides the initial states
vs. the primary REDE node.

for both cases. We observe that the processing times can in-
crease by a factor greater than

���
. Such an order of magni-

tude increase will probably result in perceivable downtime
by the clients. This experiment supports our motivation not
to rely on the primary node for initial state during recovery,
but to poll the pre-buffer or the mirror nodes instead.

Mirror node replication addresses variations in client re-
quest loads. We further support the REDE’s two-tiered de-
sign by analyzing the impact of increases in clients’ request
load on the update delays experienced by ‘regular’ events.
The darker bars in Figure 7 show the increases in average
event update delays, which result from an increased rate of
incoming client requests. This increase can be avoided by
moving request servicing functionality onto mirror nodes.
Second, with our adaptive mirroring support, we can mod-
ify the mirroring function, reduce its frequency, allow event
coalescence, or some filtering based on the events type or
even content. Such modifications enable the system to bet-
ter adapt to unusual operating conditions. Reducing the
overall consistency between the mirrors, and the REDE
nodes, allows the REDE primary node to continue publish-
ing state updates in a timely manner, even under increased
request loads issued to the mirror sites. The lighter bars
in Figure 7 correspond to delays when such adaptation of
the mirroring function takes place. We observe that the la-
tency increases are reduced by more then 35%. As a result
of this, ‘regular’ clients are more likely to experience delays
that fall within the regular service levels, and perceive ‘zero’
downtime, even during system overload under unusual op-
erating conditions.

Discussion of results. The experimental analyses of our
approach indicate that the two-tiered REDE architecture
masks node failures from clients with relatively low over-
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heads, at the cost of increased update latencies on the order
of

�
second. To clients like gate displays or gate agents,

such overheads will appear as ‘zero’ system downtime.
Furthermore, in the case of client failure, the REDE sup-
ports client recovery within a few minutes after the node is
brought back up. We further justify the two-tiered REDE
design by demonstrating drastic increases in the update de-
lays experienced by clients if the primary node must be used
for initial state recovery, instead of a mirror site. Finally, we
show that with dynamic adaptation of the mirroring func-
tion, the mirrors still provide the requested initial states,
however the system’s response time is maintained at more
constant levels. Hence, the second tier contributes towards
our goal of perceived zero downtime and masked failures.

5 Related Work

Using replication as a technique to increase system reli-
ability and fault-tolerance has been widely accepted among
both researchers and in industry (e.g., [2, 5, 6, 7, 9, 10, 22]).
As with our solution, most approaches rely on (1) a check-
pointing mechanism through which they track each other’s
progress, and (2) a log of events that must be either un-
done or redone when a failure occurs [3, 12]. The exchange
of heartbeat traffic, either explicit or embedded in other
messages, and timeouts associated with it, is a standard
mechanism for detecting that a failure has occurred. Lim-
ited buffering of uncheckpointed state, state updates, and/or
messages is used to maintain the system in a consistent state
in the presence of failures [4, 5, 6, 7] or erroneous assump-
tions in optimistic synchronization solutions [20]. Well-
known systems like Horus [22] and Transis [10] have al-

ready demonstrated the utility of replicating the processing
performed on input events, including the use of group syn-
chronization to maintain certain levels of consistency across
such active replicas. We build on the approach demon-
strated by these systems, by replicating both data and pro-
cessing, but we differ in our use of application-level knowl-
edge to further relax the requirements of synchrony across
replicated processes. A further difference is our principal
goal to achieve what appears to be zero downtime to the
EDE event subscribers. An outcome of our work is the two-
tiered nature of the REDE described in this paper.

There are many techniques for reducing the levels of
consistency to be maintained across replicas, including the
system-level provision of mechanisms through which this
can be dynamically specified and/or controlled by the ap-
plication [9, 15]. We provide an API through which the
programmer can express consistency requirements in terms
of the types and values of the data exchanged in the applica-
tion. Furthermore, our replication mechanism is optimized
by using a relaxed synchrony approach, which is enabled
by the streaming nature of our application domain. Other
systems propose similar optimizations ([9, 15, 23]), but the
generalized nature of their solutions does not allow them to
fully benefit from this fact.

BASE, an extension of the Byzantine fault-tolerance sys-
tem, BFT [7, 18], is a technique which handles determin-
istic software failures by replicating the affected service.
They rely on non-deterministic behavior across multiple,
potentially different system implementations, similarly to
N-versioning [8], to increase the probability that not all im-
plementations will fail. They strictly maintain pre-buffers,
and they do not permit individual replicas to advance be-
yond the primary. In comparison, our approach combines
the use of pre- and post- buffers, which allows us to pre-
vent system-wide failures caused by deterministic software
faults, while still benefiting from lightweight, optimistic
synchronization under other circumstances.

Finally, the use of micro-protocols [15] for construct-
ing highly configurable fault-tolerant distributed services is
well-known. Our research would benefit from such work
to construct modular and perhaps, dynamically composable
higher-level protocols that could more flexibly leverage ap-
plication semantics when dynamically adapting event mir-
roring and the levels of consistency and synchrony main-
tained across replicated EDEs.

6 Conclusion and Future Work

This paper deals with reliable Operational Information
Systems, where reliability is expressed in terms of service
degradation experienced by clients as a result of failures
or overloaded operating conditions. Specifically, the OIS’
clients rely on its capability to continually publish data and



in addition, to process their explicit requests, both with
bounded delays. To meet these service requirements, we
develop and evaluate a two-tiered replication architecture.
The first tier is a replicated event derivation engine, whose
nodes rely on a relaxed synchronization protocol and on
message pre- and post-buffering, to provide clients with a
consistent view of system state in the event of a failure. Pre-
and post-buffers provide a solution that (1) hides a node’s
failure and its recovery process, with minimal increases in
the processing delays experienced by clients, and (2) pre-
vents system-wide crashes in the face of deterministic soft-
ware faults such as ‘ill-formed’ messages. The purpose of
the second tier is (1) to maintain low update delays when
also having to service explicit requests from clients for in-
formation, and (2) to deal with changes in operating condi-
tions, such as sudden bursts of requests. This is achieved
by dynamically varying consistency among nodes, thereby
offering to clients a ‘zero’ downtime view of the system.

Our ongoing research addresses the reliable diffusion of
events with bounded delays in wide-area systems. Spe-
cific work includes the consideration of application-level
multicast for event distribution, and the efficient encoding
of events containing XML data with Just In Time XML
adapters, thereby reducing overall event latency. Finally, we
are extending our focus on reliability to collectively evalu-
ate total system reliability, including the applications, mid-
dleware, systems, and network infrastructure. Specifically,
by applying content routing techniques to the OIS archi-
tecture, control of the flow of events can be based on ap-
plication semantics. This will allow for adaptable overlay
networks that can restrict the flow of information when net-
work reliability is reduced.
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