
The Execution of Event-Action Rules on Programmable Network Processors

Ada Gavrilovska, Sanjay Kumar, Karsten Schwan
Center for Experimental Research in Computer Systems (CERCS)

Georgia Institute of Technology
Atlanta, Georgia, 30332

�ada, ksanjay, schwan�@cc.gatech.edu

Abstract

This paper evaluates the ability of programmable net-
work processors (NPs) to perform application-specific pro-
cessing that is structured as sets of interdependent event-
action rules sharing joint state. Our intent is twofold:
(1) to assess the ability of NPs to deal with the complex
application-specific code and state maintained by event-
action rules like those used in business processes also
termed (termed business rules), and (2) to create system
solutions that permit developers to dynamically map such
application-level service code to appropriate sites in target
distributed platforms comprised of hosts, network proces-
sors, and embedded server systems.

A specific outcome of our work presented in this paper
is the creation of a simple, efficient dynamically reconfig-
urable rule engine for a network processor, able to execute
rules at the Gigabit speeds required by the network links
attached to it. Business rules like those found in the Oper-
ational Information Systems used by companies like Delta
Air Lines are used to demonstrate rule engine capabilities
and overheads. A second outcome of our work is its demon-
stration of the flexibility and ease of reconfiguration associ-
ated with a network processor-resident rule engine, where
rules can be added and removed whenever appropriate (i.e.,
hotswapping) without compromising the processor’s ability
toLarge-Scale Network Simulation: How Big? How Fast?

maintain high performance for its ongoing processing
tasks.

1. Introduction

Modern commercial distributed applications require the
ability (1) to dynamically place service instances at nodes
in the distributed infrastructure, at both data sources and in-
termediate nodes on the application-level data path, so as
to increase the shared resource utilization, and (2) to dy-
namically configure these services to match the current ap-
plication requirements (i.e., QoS, fault-tolerance), current
end-user interests (e.g., in specific data subsets), or cur-
rent operating conditions (e.g., CPU loads/workloads and

networking resources). Changes in such runtime condi-
tions and requirements are difficult to predict, therefore
applications require the ability to dynamically react, cus-
tomize their processing actions, and improve operation.
Due to the computation-centric notions of modern ma-
chines, application-level implementations of these services
are problematic for applications requiring high data trans-
fer rates, for reasons that include the inability of modern
architectures to efficiently execute computations with com-
munication. Conversely, network-level implementations of
services are limited due to the network’s inability to inter-
pret application-level data or execute application-level op-
erations on such data.

This research explores the extent to which pro-
grammable network processors, an emergent class of net-
work devices, can be used in conjunction with standard
host nodes, to form enhanced computational platforms. The
intent is to deliver improved performance and more effi-
cient and flexible service implementations to commercial
and scientific distributed applications. We introduce the use
of hosts with attached network processors, host-ANP plat-
forms, enable the dynamic configuration of the data path
through the host-ANP nodes, and the dynamic creation, de-
ployment, and reconfiguration of the application-level pro-
cessing applied along this path.

One of the core components of modern commercial ap-
plications like web services, operational information sys-
tems, and event notification systems [5, 14] is their ability
to perform efficient actions on data events exchanged across
multiple internal subsystems and/or external ‘client’ sys-
tems or data sources. For instance, the online check-in ser-
vice supported by operational information systems like the
one used by Delta Air Lines [5] processes incoming events
(e.g., passenger check-in) to evaluate different check-in op-
tions based on specific flights or airports (e.g., international
vs. domestic flights), the passenger class (e.g., preferred
passengers), baggage information, time to departure, etc.
The outcomes of option evaluations differ depending on
current state and the combinations of application-level pa-
rameters being applied.

1

The event-based action execution implied by rule pro-
cessing like passenger check-in is a key determinant of the
end-to-end performance of modern business applications.
Performance depends on both the ability to efficiently se-
lect and execute individual rules and to access and manip-
ulate the state associated with such executions, where state
consists of the contents of the business events (local state of
a rule) being manipulated, flow-level state, and global state
shared across sets of interacting rules. Event-action pro-
cessing also results in events being consumed, forwarded to
subsequently applied rules, or in new events being created.
In the airline ‘check-in’ example, an event requesting online
check-in on international flights is ‘consumed’ and no other
application-level processing is applied to it (except for gen-
erating a client notification that check-in is not allowed). In
contrast, if check-in is allowed, the requesting event is for-
warded to the OIS’s subsystem (another rule engine) that
implements the actual check-in procedures.

The actions executed and conditions checked in proce-
dures like ‘passenger check-in’ capture the basic business
logic of a company’s operation, reflecting company rules
and regulations as well as higher level policies (e.g., never
allow online check-in for international flights). Actions are
implemented by so called rule engines and are commonly
referred to as business rules. While past work in Artifi-
cial Intelligence has done extensive research on the use of
rules and rule engines to implement complex cognitive or
reasoning processes, the event-action structures used in ap-
plications like publish/subscribe [14] and/or in the business
rule engines used by companies are more concerned with
making it easy to add and/or remove rules or rule sets, in
order to permit organizations to rapidly adapt their rules to
new customer requirements, business environments, or reg-
ulatory changes. In publish/subscribe, rule engines apply
SQL-like actions on incoming events [14], or they execute
actions formally described by first order predicate logic.
More complex functionality is offered in software products
like ILOG and Blaze [7, 2], which address usability needs
with convenient user interfaces, embedded procedures for
rule optimization, and similar functionality.

The rule engines addressed by our work are focused on
Operational Information Systems (OISs), where scalabil-
ity is a dominant concern, both with respect to sustained
data rates and number of clients. As with the rule en-
gines used by companies like Delta Air Lines or Worldspan,
they are focused on high performance (i.e., high data rates)
and low, predictable delays in rule processing. These en-
gines are typically comprised of rules coded in a stan-
dard language like C++, consuming and/or producing well-
structured events, like those in TPF [6], and inspecting and
updating state represented by binary, in-core data structures.
Despite their relative ‘simplicity’, however, these coded rule
engines share, with software products like ILOG, the need

to support dynamic rule changes and updates, thereby mak-
ing it difficult to accelerate rule engine execution with cus-
tom ASICs or FPGAs.

This paper investigates the extent to which pro-
grammable network processors (NPs) can be used to attain
efficient and flexible implementations of dynamically con-
figurable rule (i.e., event-action) engines. NPs have hard-
ware optimized for high-performance data transfers, at rates
exceeding Gbps, and their programmability makes them at-
tractive vehicles for deploying new functionality ‘into’ the
network infrastructure. We leverage the fact that previous
work has already shown that network-centric functionality
can be efficiently implemented with the excess of cycles
(‘headroom’) available on the packets’ fast path between
the NP’s incoming and outgoing ports [13, 9]. Examples
include instrusion detection, firewalls, service differentia-
tion, software routing, etc. [13, 10, 9, 1]. Our own pre-
vious work [4] has created the ANP (Attached Network
Processor)-resident abstraction of stream handlers to effi-
ciently carry out a variety of application-specific processing
tasks on NPs by judiciously ‘splitting’ application function-
ality across the combined host-NP pairs, thereby improv-
ing application performance compared to host-resident so-
lutions. User application performance can be further im-
proved by judiciously ‘splitting’ application functionality
across the combined host-NP pairs. Improvements are de-
rived both from the fact that the ANP-resident processing
removes load from the host’ CPU and more importantly,
I/O infrastructure, and because ANPs are well-optimized
to carry out tasks like traffic replication, data forwarding,
protocol processing, and ‘lightweight’ operations on packet
contents.

The paper extends our previous work by designing a flex-
ible, gigabit-capable, NP-resident rule engine. Rule han-
dlers implement application-level actions on all, or a subset
of the application’s data. The rule engine itself supports dy-
namic rule installation and removal (i.e., hotswapping), and
it offers efficient functions for dynamic rule selection in re-
sponse to the receipt of business events. State is maintained
in data structures residing ‘close to’ the rule handlers that
use it, leveraging the network processor’s internal, hierar-
chical memory architecture. Our design is based on Intel’s
IXP2400 network processor [8], and it can sustain cumu-
lative traffic rates close to 3Gpbs. Our intent is to evaluate
this NP’s ability to execute condition-based rules and an-
alyze the performance tradeoffs with respect to event con-
sumption, rule complexity, and state accesses required for
rule execution. We also demonstrate the flexibility and per-
formance of dynamically updating the event-action rule sets
and rule flows resident on the NP, using hot swapping of mi-
crocode on the IXP’s microengines.

Experimental results demonstrate the viability of effi-
cient NP-resident event-action processing on the IXP. We

2

show that the NP has sufficient headroom for running rules
of different complexity and even for chaining multiple rules
applied to an incoming event. The rule execution times de-
pend not only on the complexity of the rules themselves, but
also on the location and amounts of state being accessed.
Finally, dynamic rule deployment (i.e., hot swapping) can
be performed with low overheads and so that ongoing rule
flows are not perturbed.

The remainder of this paper first presents the desing
of an NP-based rules engine. Next, we describe the NP
firmware architecture and discuss certain design tradeoffs
for dynamically configurabale rule engine implementation.
This is followed by a report of performance measurements,
in which we estimate the IXP2400’s headroom available for
the various processing tasks implied by business rule exe-
cution, and evaluate the cost of state accesses required by
rules. Conclusions and future work appear at the end.

2. Rules and Rules Handlers

Business rules are the set of conditional checks per-
formed for each of the myriad of data events exchanged in
modern commercial systems, in order to determine the ac-
tions that must be applied to the event and the application
subsystems involved in that process. Multiple rules can be
chained to form ruleflows. In the Delta OIS, an example of
a ruleflow is the following series of decisions performed on
a single data event requesting passengers � ’s check-in on
flight � :

1. ‘Is � open for check-in?’, and

2. ‘Is � allowed to check-in on � ?’.
In addition, as a result of business rules, events can be ‘con-
sumed’, - inelligible to further advance in the company’s
infrastructure, or they can trigger state updates solely. The
decision making process, i.e. the application of a particu-
lar business rule, requires access to the event’s content and
type information (local state), as well as flow- and system-
level (global) state. These parameters are matched against
sets of conditions, stored in decision tables. For specific
event types, sample entries in the decision tables consist of
pairs of target value and corresponding action, where basic
actions include consume, modify, and modify and forward.
We note that the set of all valid conditions in a specific ap-
plication can be quite large, extending to gigabytes of data
jointly with the state constructed from repeated rule appli-
cation. We do not suggest to maintain such large data sets
on NPs. Instead, we rely on application developers to iden-
tify the state-constrained rule subsets suitable for mapping
to NPs, where each such subsystem requires access to only a
small subset of these conditions, relevant for the parameters
and actions that are being evaluated. Suitable subsets in-
clude rules that perform application-level data routing, i.e.,
that determine the subsystems to which data events should

be routed, actions that pre-screen events to determine their
validity or well-structuredness (e.g., to avoid certain fail-
ure modes [5]), and actions that simplify events in order to
reduce their processing overheads (e.g., eliminating event
fields not needed by certain subsystems).

In order to analyze the extent to which a network pro-
cessor’s built-in parallelism and multi-level memory hier-
archy can be exploited to efficiently perform event-action
processing, a simple rule engine is used to evaluate the
NP’s basic capabilities for rule processing, with future work
concerning the detailed design and implementation of de-
cision tables and/or efficient matching algorithms. The
rule engine’s design is based on the SPLITS software ar-
chitecture, developed by our group for the first generation
IXP1200 network processors [3]. SPLITS (Software archi-
tecture for Programmable LIghtweighT Stream handling)
enables applications to dynamically create, deploy, and con-
figure application-level computational units, termed stream
handlers, at well-defined activation points along the stream
data path on host-ANP pairs. On each NP, dedicated Re-
ceive (Rx) and Transmit (Tx) contexts receive and trans-
mit data events and implement basic protocol-related func-
tionality. The application-level data path ‘through’ each
SPLITS node can be configured to span multiple ANP
and/or host contexts. Simple application-level rules are rep-
resented by single rule handlers, which are then composed
into rule flows. Each rule flow consists of multiple process-
ing contexts ‘along’ the data path ‘through’ the NP-based
rule engine. (see Figure 1). These contexts coincide with
the ANP hardware-supported contexts (i.e., microengines
and threads), and as a result, each ruleflow is implemented
as a multi-stage execution pipeline.

Event processing proceeds as follows. After an event is
processed by a rule handler, it can (1) cause state updates,
(2) be consumed, (3) an event (the one used by the rule or
a newly produced one) can be forwarded to other applica-
tion components, and/or (4) it can trigger the next rule in the
ruleflow, executed at the next pipeline stage. Data events are
passed from one pipeline stage to the next directly (i.e., by
passing on a data buffer handle directly to another context)
or through controlled access to shared ring-buffers, the lat-
ter being used when the different processing blocks of the
pipeline are programmed separately. Classification is per-
formed based on application-level information contained in
each data event (e.g., Delta or FAA event type), so as to dis-
patch it to the appropriate rule handler, or to forward it to
the host or other application subsystems.

Rule handlers are implemented by application program-
mers, whereas we provide the ability to dynamically embed
and configure rule handlers in the data processing pipeline
on NPs, to access shared global and local handler state,
as well as memory regions for storing decision tables, and
to create and manipulate ruleflows in application-specific

3

rx/tx

classifier handler1

consume

rx/tx

from n/w

from host
to host

to n/w

handler2 handler3

global
state

decision
table

local
state

local
state

local
state

Figure 1. Rule Engine. Rule handlers have access to lo-
cal state, shared global state, and to decision tables. Events
are ‘consumed’ or forwarded to the attached host or the net-
work.

manner.
A benefit of an NP implementation of a rule engine

is that in addition to carrying out decision making, ac-
tions associated with each rule and implemented as NP-
resident stream handlers can perform certain simple pro-
cessing steps. An example is event re-formatting for sim-
plification prior to forwarding it to a different subsystem.
For instance, if the rule handler decides that the flight event
is to be shared with an external caterer system, because a
gate change occured for instance, the event would have to
be reformated only to include those fields which the com-
pany permits its external clients to access. We have previ-
ously shown that such format translations such NP-resident
application-level processing can improve the performance
of end user applications [4]. Improvements are due to of-
floading the host’s CPU and I/O infrastructure and due to
certain hardware accelerators present in the NP (e.g, hard-
ware support for queuing, CRC calculation, asynchronous
memory read/write operations).

3. Baseline Architecure

Our work evaluates the ability of performing the
condition-based execution of business rules on standard net-
work processors, exemplified by the Intel IXP2400 pro-
grammable NP. We have implemented a baseline network
interface on an IXP2400-based PCI card as part of a larger
effort that is exploring the idea of attached network proces-
sors that enhance the capabilities of the hosts to which they
are attached. The IXP2400 chip [8] used in that research in-
cludes 8 8-way multithreaded microengines for data move-
ment and processing, local SRAM and DRAM controllers
and an integral PCI interface with three DMA channels. The
Radisys ENP2611 board [12] on which the IXP2400 re-
sides includes a 600MHz IXP2400, 256MB DRAM, 8MB
SRAM, a POS-PHY Level 3 FPGA which connects to 3
Gigabit interfaces and a PCI interface. An XScale core

runs Linux and is primarily used for initialization, manage-
ment and debugging. Our design uses host-side drivers with
NP firmware to implement the host-ANP interface. The
IXP2400 is attached to hosts running standard Linux ker-
nels over a PCI interface. Data is delivered to and from the
host-resident application components through the ANP’s
network interfaces.

The rule engine’s processing pipeline from Figure 1 can
be fully contained on the ANP, or it can be ‘split’ across
host-ANP boundaries. The results presented in this pa-
per deal with ANP-resident rule handlers. The analysis of
‘split’ rule engines will be addressed by our future work.
The software architecture developed in our work differs
from other network interfaces. First, many optimizations
found in other network interfaces are based on the assump-
tion that the network driver will be working on the header
part of the packet. Our goal is to enable access and pro-
cessing on entire application-level messages. Second, in or-
der to enable the dynamic reconfiguration of the ANP run-
time, we provide methods to efficiently and dynamically in-
sert application-specific processing code into the network
driver. The remainder of this section discusses the main
features of our architecture.
Host-ANP Communication. We model the Host-ANP inter-
face after the host-IXP1200 PCI-based interface presented
in [11]. The IXP2400 and host communicate through two
shared circular buffers, one in each direction. For each di-
rection, three threads from a single IXP microengine are
involved in the coordination and synchronization of the
DMA-based data transfers. Messages are kept contiguous
despite the circular buffers, and the firmware also includes
optimizations that result in improved PCI utilization.
ANP-MAC Communication. The firmware uses two micro-
engines (one each for transmit and receive) for the high
speed data transfers between DRAM and the underlying
physical interface. Two threads per port, all on one micro-
engine, are used to receive packets from the on-chip media
switch fabric (MSF), which are assembled into messages.
Similarly, two threads per port, from one microengine, are
used to transmit messages from DRAM to the MAC de-
vice. A list of buffers is preallocated to reduce buffer allo-
cation overheads. Once assembled, a message is enqueued
for further processing by other processing blocks. Similarly,
transmit threads dequeue messages from the corresponding
transmit queue, fragment them and send to MSF, which de-
livers the fragments on the wire.
Resources. Our baseline design uses only 3 microengines
for basic data transfer actions. This leaves 5 micro-
engines free for business-rule processing and for the exe-
cution of rule handlers. The shared ring buffers used to
pass data between the ruleflow stages are implemented in
scratch memory. Dedicating the low-latency scratch mem-
ory for this task is necessary in order to meet the high

4

performance needs of OIS processing and to exploit the
hardware-supported queue management functionality resi-
dent on the IXP. The firmware also leaves substantial mem-
ory in SRAM (7 MB) and DRAM (200 MB) for storing
application-level state, as well as local memory private to
each microengine. Size limitations motivate the joint use of
the combined memory resources. We provision state infor-
mation to be stored in local memory and/or SRAM and de-
cision tables to be stored in SRAM or DRAM. In Section 4,
we evaluate the tradeoffs of accessing each of these mem-
ories. Our future work will include the development of a
state/memory management utility, in order to dynamically
match rule performance requirements to available storage
resources. We will also analyze the efficient partition, shar-
ing, and access to decision tables. Currently, our design
assumes a static, hash-table based implementation of deci-
sion tables. Our future work will incorporate results about
the dynamic addition and deletion of rules.

Dynamic Reconfiguration. Our architecture currently sup-
ports the dynamic reconfiguration of rule handlers as well as
ruleflows. This is enabled through the exchange of control
messages between the host and the ANP-resident contexts
via shared mailboxes. On the IXP, it involves a designated
control thread to perform mailbox polling. Control mes-
sages can be used to select and activate a new rule handler
from a set of pre-existing ones, as well as to pass new pa-
rameters to currently active rules. Parameters can be used to
enable application-level modifications in the rule process-
ing, and to configure ruleflows, i.e. map the processing de-
cision reached at one stage in the rules engine to the hard-
ware context, i.e. microengine, currently executing the next
rule in the chain.

To enable the dynamic deployment of new rules or of
new implementations of existing ones, our architecture sup-
ports dynamic hot-swapping of pipeline contexts with neg-
ligible downtime. The implementation of hot-swapping on
the IXP NPs requires that we reserve one of the available
microengines and maintain it idle. The new rule handler is
loaded into this microengine and is activated after the appro-
priate ruleflow reconfigurations are made (i.e, to ensure that
the new context is now part of the ruleflow through the en-
gine). The newly deployed handler can replace a currently
active one, which also requires that local state information
(if any) is correctly passed from the old handler before its
execution is stopped. As a result, total actual downtime for
handler processing is simply the sum of the times involved
in stopping one microengine and starting another. Measure-
ments on IXP1200s showed that this can be done in a few
(28-30) microseconds, rendering this downtime practically
unnoticeable. Note that hot-swapping reduces the available
resources for business rule processing on the IXP, but that it
enables us to increase the options for dynamic reconfigura-
bility, required in many commercial applications.

packet size (B) 128 256 576 1024 1500
Throughput (Gbps) 2.92 2.64 2.81 2.83 2.84

Latency (usec) 3.58 4.16 5.16 7.00 8.33

Table 1. Throughput and latency calculation for various
packet sizes with the baseline network driver.

4. Evaluation

The experiments reported in this section use the In-
tel Workbench Simulator SDK3.1, claimed to be cycle-
accurate within 2%, and a cluster of 8 dual-processor nodes
interconnected via a Ciscoxxx switch, each with a 2400-
based Radysis ENP2611 board attached via the PCI bus.
The data streams used in these experiments include streams
generated from the Workbench’ Traffic Simulator, as well
as binary representations of an original ��MB XML data
stream acquired from a large corporation. All data sinks and
sources in the experimental setup execute the same protocol
used for efficient message fragmentation and reassembly as
the one used on the ANP.

The first set of experiments compares the sustained
throughput levels and incurred latencies for varying data
sizes for the baseline architecture. The throughput measure-
ments reported are for the cumulative incoming rates for all
3 Gigabit interfaces. Results in Table 1. show that the net-
work driver is capable of sustaining the near 3 Gbps level
of throughput for various packet sizes. The throughput is
worst when the packet size is around 256 bytes because of
the manner in which IXP2400 transmits packets.

Next, for a single message size (576 bytes), we evalu-
ate the effect of chaining rule handler stages into ruleflows.
The vertical bars in Figure 2 show the additional latencies
incurred as a result of adding rule handler stages to the
ANP pipeline. Measured throughput is represented with the
dark horizontal line. In each of the four handlers evalu-
ated we vary the memory location where we store the state
and decision tables accessed by the handler code. The re-
sults demonstrate that with our architecture throughput lev-
els can be maintained even for chained rule handlers access-
ing slower memories, and that the increase in processing
time as a result of the rule processing can result in accept-
able delays.

The results in Figure 3 further describe the relationship
between amount on memory accessed by the rule handler,
its location in the IXP’s memory hierarch, and the sustain-
able throughput levels. The size of the memory accessed by
the handler is denoted on the x axis, while The numbers as-
sociated with the graph tickers denote the actual number of

5

−/− Local/SRAM Local/DRAM SRAM/DRAM
0

1

2

3

4

5

6

7

8

Rule handler memory accesses State/DecisionTable

La
te

nc
y

(u
se

c)

Throughput
1 rule stage
2 rule stages

T
hr

ou
gh

pu
t (

G
bp

s)

1

2

3

baseline
latency

baseline
throughput

Figure 2. Throughput and latency for ruleflows ac-
cessing different IXP memories. 8 threads execute the
same rule handler in each stage.

0 400 800 1200 1600 2000 2400 2800 3200
0

0.5

1

1.5

2

2.5

3

Amount of memory accessed per rule handler thread (B)

T
hr

ou
gh

pu
t (

G
bp

s)

SRAM
DRAM

3
12

24

36

48

2

4

8

16

ruleflow A

ruleflow B

.

.

Figure 3. Throughput as a function of size of state accessed.
Total memory accessed at each stage is 8 times the amount
shown on x-axis.

memory accesses performed. The results are gathered for a
worst case scenario, where at each stage, each of the eight
threads executing the rule handler access the same memory
locations for every data item, which is very unrealistic. No
events are consumed at either of the stages. The results indi-
cate that while state-constrained handlers can be efficiently
supported by storing state in SRAM, extra care needs to be
taken to ensure that the number of required DRAM accesses
is kept to a minimum.

This is further demonstrated by measurements made for
two actual ruleflows from the Delta’s OIS, applied to a
flight event data stream derived from this application (points
A and B in Figure 3). The business rule processing per-
formed here determines whether a change in the departure
gate occurred for the specific flight, in which case an update
event needs to be produced for the flight caterers. The rule
handler in A accesses DRAM-resident state for all Delta
flights in order to determine the gate change. In the rule-
flow presented in B, it is first determined if a departure air-
port matches any of airports for which flight information is
stored in SRAM, and DRAM accesses are performed only
if necessary. In doing so, in spite of the increased amount of
SRAM state accessed, the average number of costly DRAM
accesses is reduced by more than 60%. This translates in in-
creased throughput levels close to 20%.

The last set of experiments evaluates the ability of the NP
rules engine to execute different actions for different event
types. We compare the performance of a general handler,
which is invoked for all events in the data stream, to the
performance of a collection of specialized handlers, each
corresponding to specific event types. The general handler
uses state information not only for accessing decission ta-
bles, i.e., target value-action pairs, but also for interpreting
the event type, determining offsets to relevant event fields,

and encoding the required operations. These additional op-
erations and field offsets are hardcoded in the case of the
specialized handlers. For the experiments, we use the Delta
data stream as input, with the flight number identifying the
event type, so as to simulate larger number of distinct event
types. For the Delta event handlers used in these exper-
iments, the rule engine could store up to 130 simple tar-
get value-action rules, where action is consume or forward.

First we observed that for small number of accesses into
the event data structure, both configurations result in com-
parable throughput levels. As the number of data accesses
increases, the specific handlers increase in size, and the
general handler in its state requirements. In the first case,
the number of rules which can be sustained is linearly de-
creased, which in the second case, the measured throughput
levels start degrading, and in the test performed decreased
to 47%. These results indicate that (1) we can implement
efficient and scalable NP-base rule engines, which can sus-
tain a large number of relatively simple rules efficiently, and
(2) that the built-in parallelism on the NP permits us to exe-
cute efficiently more complex rules, which require repeated
accesses to the event data structure.

In summary, the results demonstrate the feasibility of
executing application-level event-action rules on high-data
rate networking devices, and the ability to exploit the
programmability of such devices to dynamically and effi-
ciently, with pracitically negligible overheads (the overhead
of 28-30 microseconds is ammortized over multiple data
events), customize the operations of the rules engine and
tune it to match the current operating conditions or applica-
tion requirements.

6

5. Conclusions and Future Work

Event-action processing is a commonly used paradigm
in business applications, ranging from relatively simple ac-
tions in publish/subscribe systems to the complex rules ex-
ecuted in complex business codes. This paper explores
the ability of network processors (NPs) to participate in
event-action applications. The software architecture used
assumes that network processors are attached to host ma-
chines (ANPs), thereby enabling developers to ‘split’ rules
and rule state across the combined host-ANP nodes. More-
over, since ANP resources are limited, such splitting can
be done at runtime (i.e., hot-swapping) such that only the
most important rules and their state working set reside on
the ANP.

The basic contribution of this paper is the design and
exploration, in terms of performance, of a simple ANP-
resident rule engine. Performance not only depends on rule
complexity but also on the amount and location of state ac-
cessed by ANP-resident rules. Experimental measurements,
attained on the Intel’s IXP2400 network processor and on a
cycle-accurate simulator for the gigabit-based boards, detail
the dependence of rule performance on the memory hierar-
chy and represent the overheads of rule hot-swapping.

Future work will establish that: (1) our IXP-resident rule
engine is sufficiently rich to encode a wide variety of actual
business rules, (2) the ability to split rule processing across
hosts and ANPs is key to the use of rule engines in realis-
tic business applications, (3) there are other applications for
ANP-resident rule engines beyond the business codes ex-
plored in our work, and (4) that the approach presented here
can be made accessible to non-expert end users by integrat-
ing the SPLITS software architecture with the middleware
used by OIS applications.

References

[1] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Kone, and
A. Thomas. A Hardware Platform for Network Intrusion De-
tection and Prevention. In Proceedings of The 3rd Workshop
on Network Processors and Applications (NP3), Madrid,
Spain, 2004.

[2] Fair Isaac. The Business Case for Blaze Advisor. White Pa-
per, 2002.

[3] A. Gavrilovska. SPLITS Stream Handlers: Deploying
Application-level Services to Attached Network Processors.
PhD thesis, Georgia Institute of Technology, 2004.

[4] A. Gavrilovska, K. Schwan, O. Nordstrom, and H. Seifu.
Network Processors as Building Blocks in Overlay Net-
works. In Proc. of Hot Interconnects 11, Stanford, CA, Aug.
2003.

[5] A. Gavrilovska, K. Schwan, and V. Oleson. Practical Ap-
proach for Zero Downtime in an Operational Information
System. In Proc. of ICDCS’02, Vienna, Austria, July 2002.

[6] IBM Corporation. IBM Transaction Processing Facility.
http://www.s390.ibm.com/products/tpf.

[7] ILOG. ILOG Business Rules. http://www.ilog.com/-
products/businessrules/.

[8] Intel IXP Network Processors.
http://developer.intel.com/design/network/producs/npfamily/.

[9] C. Liao, M. Martinosi, and D. W. Clark. Performance Mon-
itoring in a Myrinet-Connected Shrimp Cluster. In ACM
Sigmetrics Symposium on Parallel and Distributed Tools
(SPDT), Aug. 1998.

[10] Y.-D. Lin, Y.-N. Lin, S.-C. Yang, and Y.-S. Lin. DiffServ
over Network Processors: Implementation and Evaluation.
In Proc. of Hot Interconnects 10, Stanford, CA, Aug. 2002.

[11] K. Mackenzie, W. Shi, A. McDonald, and I. Ganev. An Intel
IXP1200-based Network Interface. In Proceedings of the
Workshop on Novel Uses of System Area Networks at HPCA
(SAN-2 2003), Anaheim, CA, Feb. 2003.

[12] Radisys ENP-2611 Data Sheet.
http://www.radisys.com/files/ENP-2611 07-1236-
02 0803.pdf.

[13] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Build-
ing a Robust Software-Based Router Using Network Pro-
cessors. In Proc. of 18th SOSP’01, Chateau Lake Louise,
Banff, Canada, Oct. 2001.

[14] Y. Zhao and R. Storm. Exploiting Event Stream Interpreta-
tion in Publish-Subscribe Systems. In Proc. of ACM Sympo-
sium on Principles of Distributed Computing, Newport, RI,
Aug. 2001.

7

