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Abstract—Large-scale online services are commonly structured
as a network of software tiers, which communicate over the dat-
acenter network using RPCs. Ongoing trends towards software
decomposition have led to the prevalence of tiers receiving and
generating RPCs with runtimes of only a few microseconds. With
such small software runtimes, even the smallest latency overheads
in RPC handling have a significant relative performance impact.
In particular, we find that growing network bandwidth introduces
queuing effects within a server’s memory hierarchy, considerably
hurting the response latency of fine-grained RPCs. In this work
we introduce NEBULA, an architecture optimized to accelerate
the most challenging microsecond-scale RPCs, by leveraging two
novel mechanisms to drastically improve server throughput under
strict tail latency goals. First, NEBULA reduces detrimental
queuing at the memory controllers via hardware support for
efficient in-LLC network buffer management. Second, NEBULA’s
network interface steers incoming RPCs into the CPU cores’ L1
caches, improving RPC startup latency. Our evaluation shows
that NEBULA boosts the throughput of a state-of-the-art key-
value store by 1.25–2.19x compared to existing proposals, while
maintaining strict tail latency goals.

Index Terms—Client/server and multitier systems, Network
protocols, Queuing theory, Memory hierarchy

I. INTRODUCTION

Modern large-scale online services deployed in datacenters
are decomposed into multiple software tiers, which com-
municate over the datacenter network using Remote Proce-
dure Calls (RPCs) [1]–[3]. The growing software trends of
microservices and function-as-a-service have promoted this
decomposition, raising system-level implications. RPCs to
ubiquitous, performance-critical software tiers (e.g., data stores)
perform very little computation per RPC and often exhibit µs-
scale runtimes. Such software tiers have high communication-
to-computation ratios, designating networking as the key
performance determinant.

In response to these trends, datacenter networking tech-
nologies are evolving rapidly, delivering drastic bandwidth
and latency improvements. Modern datacenter topologies offer
ample path diversity and limit in-network queuing [4]–[6],
enabling µs-scale roundtrip latencies. To accommodate growing
demands for network bandwidth, commodity fabrics have been
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rapidly scaling their capacity, with 1.2Tbps InfiniBand and
1.6Tbps Ethernet on the roadmap [7], [8]. Although these
improvements will help sustain the demands created by extreme
software decomposition, they will also shift networking-
associated bottlenecks to the servers themselves. The confluence
of shrinking network latency and growing bandwidth with µs-
scale RPCs has initiated a “hunt for the killer microseconds” [9]
across all levels of the system stack, raising server design
implications because historically negligible overheads (e.g.,
15µs for TCP/IP [10]) have become bottlenecks.

In this work, we study two server-side sources of queuing that
significantly affect the tail latency of µs-scale RPCs. The first
is load imbalance, because the distribution of RPCs to a CPU’s
many cores directly affects tail latency. Load balancing for µs-
scale RPCs has thus recently attracted considerable attention,
with both software [11], [12] and hardware [13], [14] solutions
to improve upon the static load distribution support modern
NICs offer in the form of Receive Side Scaling (RSS) [15].

The second source of server-side queuing has received less
attention. As network bandwidth gradually approaches memory
bandwidth, memory accesses caused by incoming network
traffic interfere with the application’s accesses, creating queuing
effects in the memory subsystem that noticeably degrade the
tail latency of µs-scale RPCs. This bandwidth interference
effect is especially noticeable in the context of latency-
optimized networking technologies like DDIO, InfiniBand, and
next-generation fully integrated architectures like Scale-Out
NUMA [16]. We find that such interference can degrade a
server’s achievable throughput under strict tail latency goals
by more than 2×. It is evident that avoiding such interference
with specialized network traffic management in the memory
hierarchy is necessary to leverage advancements in software
architecture and networking hardware.

To tackle both sources of detrimental server-side queuing, we
propose the Network Buffer Lacerator (NEBULA) architecture,
optimized for fine-grained RPCs. While prior techniques
exist to ameliorate each queuing source individually, no
existing system tackles both. NEBULA extends a recently
proposed hardware design for load balancing [13] with a novel
NIC-driven buffer management mechanism, which alleviates
detrimental interference of incoming network traffic with
the application’s memory accesses. Our key insight is that



network buffer provisioning should not be a function of the
number of remote endpoints a server communicates with, but
of an individual server’s peak achievable RPC service rate.
Consequently, network buffers that typically have footprints
of many MBs, or even GBs, can be shrunk to 100s of KBs,
delivering significant savings in precious DRAM resources,
which drive the scale and cost of datacenters [17], [18].
More importantly, NEBULA leverages this observation to
keep such small network buffers SRAM-resident via intelligent
management, thus absorbing the adverse effects of bandwidth
interference due to network traffic.

NEBULA’s second new feature is NIC-to-core RPC steering.
We introduce NIC extensions to monitor each core’s queue of
RPCs and directly steer the next queued RPC’s payload into
the correct core’s L1 cache, just in time before the core picks
it up for processing. Our design avoids L1 cache pollution—a
key reason why network packet placement in DDIO-enabled
NICs [19] has been restricted to the LLC—and accelerates
RPC startup time, reducing overall response latency. Combined,
NEBULA’s two memory hierarchy management optimizations
boost a key-value store’s achieved throughput under tail latency
constraints by 1.25− 2.19× compared to prior proposals.

In summary, our work makes the following contributions:

• We show that architects are currently faced with a
dilemma: either building a system with memory bandwidth
interference between the NIC and CPU cores, or with load
imbalance between the cores. This dilemma is particularly
pronounced when combining the immense bandwidth of
future NICs with emerging µs-scale software layers.

• We address the aforementioned dilemma by proposing
a co-design of the network protocol and NIC hardware
that maximizes network buffer reuse in the server’s LLC.
We conduct a mathematical analysis that enables in-LLC
buffer management by showing that strict application-level
tail-latency goals can only be met by maintaining shallow
queues of incoming RPCs, and that such queues are easily
accommodated in the LLC.

• We advance the state-of-the-art in network packet place-
ment by the NIC in the memory hierarchy. For the first
time, we drive network packets all the way to L1 caches
while avoiding cache pollution effects, improving the
response latency of µs-scale RPCs.

• We present the first holistically optimized architecture for
µs-scale RPCs, with integrated support for load balancing
and network-aware memory hierarchy management.

The rest of the paper is structured as follows. §II highlights
the impact of server-side queuing effects on the tail latency of
µs-scale RPCs, arising from load imbalance and/or memory
bandwidth interference due to incoming network traffic. §III
quantifies these two effects with a queuing model. §IV and §V
introduce NEBULA’s design and implementation, respectively.
We describe our methodology in §VI and evaluate NEBULA
in §VII. We discuss NEBULA’s broader applicability and
prospects for datacenter adoption in §VIII, cover related work
in §IX and conclude in §X.

II. BACKGROUND AND CHALLENGES

A. Online Services and Latency-Sensitive RPCs

Online services are deployed in datacenters to deliver high-
quality responses to a plethora of concurrent users, with
response times small enough to deliver a highly interactive
experience. Responding to each query with such low latency
often requires datasets to be replicated across servers, and
software to be decomposed into multiple tiers which commu-
nicate over the network to synthesize a response. Inter-server
communication typically occurs in the form of RPCs: a user
query triggers a sequence of RPC fan-outs, forming a tree of
sub-queries that spans hundreds or thousands of servers [20].
That fan-out requires strict limits on the tail response latency
of each service tier [21], commonly referred to as a Service
Level Objective (SLO).

We focus on services generating µs-scale RPCs, because of
their unique challenges and growing presence. While already
widespread in the form of in-memory data stores, services with
this profile are becoming increasingly omnipresent because of
the trend toward microservice software architectures [1]–[3].
Fine-grained RPCs are particularly vulnerable to latency degra-
dation, as otherwise negligible overheads become comparable
to the RPC’s actual service time. As the frequency of µs-scale
RPCs in the datacenter increases, so does the importance of
handling them efficiently.

B. Architectures for Low-Latency Networking

As microservices imply a growth in communication-to-
computation ratio [1], the first necessary step to handle them
efficiently is the use of highly optimized network protocols and
operating system components. Recent datacenter networking
advancements to address this challenge include user-level
network stacks (e.g., DPDK [22]), hardware-assisted solutions
(e.g., dataplanes [23], [24], Microsoft Catapult [25]), and even
at-scale InfiniBand/RDMA deployments [26], whose hardware-
terminated protocol drastically shrinks the overhead of network
stack processing. The demand for lower latency motivates
even more radical proposals to approach the fundamental
lower bound of networking latency—propagation delay—via
on-server integration of network fabric controllers. Such designs
already exist in both academia (e.g., Scale-Out NUMA [16],
the FAME-1 RISC-V RocketChip SoC [27]) and industry (e.g.,
Intel Omni-Path [28], Gen-Z [29]). We expect similar latency-
optimized solutions to find their way into datacenters soon, in
response to the growing demands and latency-sensitive nature
of online services.

With protocol and architectural optimizations to minimize
the in-network component of each individual RPC, the next
step is to address server-side inefficiencies. In this work, we
identify two sources of queuing as primary obstacles for servers
handling µs-scale RPCs. The first is the contention that rapidly
growing network bandwidth can inflict on a server’s memory
channels. The second is load imbalance across a server’s many
cores. While there are existing techniques to address each
challenge, no current solution addresses both.



C. Memory Bandwidth Interference or Load Imbalance?

The future of commodity network fabrics is one of tremen-
dous bandwidth, with 1.2Tbps InfiniBand and 1.6Tbps Ethernet
already on the roadmap [7], [8]. Such growth directly affects
server design, as incoming network traffic becomes a non-trivial
fraction of a server’s available memory bandwidth. If the server
is naively architected, network traffic will destructively interfere
with the memory requests of the executing applications, causing
queuing effects that noticeably degrade the tail latency of µs-
scale RPCs. Therefore, it is imperative for future servers to
prevent such interference by handling network traffic within
their SRAM caches, which have the requisite bandwidth to
keep pace.

High-performance user-level network stacks complicate the
task of in-cache network traffic management. To provide the
latency benefits of zero-copy and synchronization-free message
reception, network receive buffers are provisioned on a per-
endpoint basis (i.e., with dedicated buffers per connection), so
that the server can receive a message from any communicating
endpoint, anytime. Connection-oriented provisioning creates
a fundamental scalability problem, wasting precious DRAM
resources and raising performance implications for RPC
libraries built on RDMA NICs [30]–[33]. Furthermore, multi-
client interleaving of incoming requests results in unpredictable
access patterns to network buffers, effectively eliminating the
probability of finding these buffers in the server’s LLC, thus
causing increased DRAM bandwidth usage. We find that this
second—often overlooked—effect can significantly hurt the
latency of µs-scale RPCs.

Aiming to reduce the memory capacity waste of connection-
oriented buffer provisioning, InfiniBand offers the Shared
Receive Queue (SRQ) option to enable inter-endpoint buffer
sharing [34]. SRQ’s reduced buffer footprint can also implicitly
ameliorate memory bandwidth interference due to increased
LLC buffer residency. Another approach to prevent network
buffers from overflowing into memory is to statically reduce the
number of buffers available for allocation by the network stack,
suggested in prior work such as ResQ [35]. Unfortunately,
SRQ is vulnerable to load imbalance between the CPU cores, as
it corresponds to a multi-queue system by design: clients must
specify the queue pair (QP) each request is sent to, implying
an a priori request-to-core mapping. The same multi-queue
limitation is inherent to Receive-Side Scaling (RSS) [15] sup-
port, often used for inter-core load distribution [12], [23], [24].
Synchronization-free scaling of the ResQ approach for multi-
core servers similarly results in a multi-queue configuration
vulnerable to load imbalance.

Prior work has demonstrated that the distribution of incom-
ing µs-scale RPCs to a server’s cores crucially impacts tail
latency. Due to the fundamentally better tail latency provided
by single-queue systems, many proposals have advocated for a
single-queue approach in network switches [14], operating
systems [11], [12] and NIC hardware [13]. For µs-scale
RPCs, the overheads of software-based load balancing, or any
synchronization at all, can be comparable to the RPC service
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Fig. 1. Memory hierarchy associated with handling incoming RPCs, modeled
by our queuing system.

time itself; the corresponding throughput loss motivates using
hardware mechanisms for load balancing. RPCValet [13], a
recently proposed NIC-driven mechanism for synchronization-
free, single-queue load balancing, improves throughput under
SLO by up to 1.4× over a multi-queue system. However,
RPCValet’s network buffer provisioning is connection-oriented
by design, and thus creates memory bandwidth interference.
We now proceed to conduct a theoretical study of the effects of
these two shortcomings, interference and imbalance, on RPC
throughput under SLO.

III. THEORETICAL STUDY: INTERFERENCE & IMBALANCE

To demonstrate the performance impacts of the previous
quandary, we construct a first-order queuing model that captures
the critical interactions between the network, cores, and
memory. We assume a multi-core CPU and a NIC that places
packets directly into the LLC, similar to DDIO [19]. Fig. 1
shows the modeled components of our queuing system and
the interactions that occur during RPC handling: 1 incoming
traffic from the NIC placing RPCs into the memory hierarchy,
2 assignment of RPCs to cores, 3 demand traffic generated

by the cores while servicing RPCs, and 4 writebacks of dirty
blocks from the LLC to memory.

Load-balancing implications pertain to step 2 . We consider
two hardware-assisted alternatives: multi-queue behavior like
RSS/SRQ and single-queue behavior like RPCValet. In the
former case, we optimistically assume uniform load distribution,
which is the best-case performance for RSS/SRQ. We only
consider the effect of the single- or multi-queue policy, without
penalizing any system for implementation-specific overhead.

Memory bandwidth interference concerns relate to steps 1 ,
3 and 4 . When network receive buffers exceed the LLC in

size, writing new packets requires fetching the buffers from
DRAM into the LLC first 1 . The cores’ memory requests also
compete for memory bandwidth 3 . Write accesses from 1
and 3 create dirty blocks in the LLC, consuming additional
memory bandwidth when they are evicted from the LLC 4 .

We select parameters for Fig. 1’s queuing system by
reproducing the current best-performing server architecture
for key-value serving: 60 CPU cores, 45MB of LLC, six
DDR4 memory channels, and a 300Gbps NIC [36]. These
parameters are also representative of modern servers such
as Intel’s Xeon Gold [37] and Qualcomm’s Centriq [38].
We model a Poisson RPC arrival process, and assume RPCs



modeled after MICA SETs [39], which perform a hash-index
lookup (64B read) followed by a 512B value write and have
an average service time S̄ = 630ns. Additional queuing model
details are available in Appendix A.

We evaluate the following four queuing system configura-
tions using discrete-event simulation:

1) RSS. A multi-queue system with uniform assignment of
incoming RPCs to cores and 136MB of receive buffers
(see §VI for sizing details). This configuration suffers
from load imbalance and memory bandwidth interference.

2) RPCValet. Single-queue load balancing of RPCs to cores
with equal receive buffer provisioning to RSS. Although
RPCValet solves load imbalance, it still suffers from
bandwidth interference.

3) SRQ. Like RSS, a multi-queue system with uniform
distribution of incoming RPCs to cores, but assumes ideal
buffer management, where all network buffers are reused
in the LLC, eliminating bandwidth interference.

4) NEBULA. Combines the best traits of RPCValet and SRQ:
single-queue load balancing and ideal buffer management.

Note that both SRQ and NEBULA are hypothetical configu-
rations we employ to demonstrate upper performance bounds
of an idealized zero-overhead buffer management mechanism.

Fig. 2 shows the 99th% latency of the RPCs and the total
memory bandwidth utilization of the modeled system, assuming
an SLO of 6.5µs (' 10 × S̄). The systems with connection-
oriented buffer bloat (RSS and RPCValet) saturate early at
a load of 0.61, because they exhaust the server’s memory
bandwidth by generating 127GB/s of traffic. Although RPC-
Valet attains sub-µs 99th% latency until saturation—an order
of magnitude lower than RSS at a load of 0.56—thanks to
improved load balancing, it only supports 61% of the maximum
possible load because of its memory bandwidth bottleneck.

SRQ scales beyond RSS and RPCValet, meeting the SLO
up to a load of 0.76. SRQ outperforms RPCValet despite load
imbalance because its network buffers are always reused in the
LLC, thus eliminating all traffic from step 1 and writebacks of
dirty network buffer blocks 4 . Effectively, network contention
for memory bandwidth is removed from 3 ’s path.

Despite SRQ’s improved performance, it still leaves 24%
of the server’s maximum throughput unprocured, due to its
inability to balance load across cores. SRQ’s lost throughput
would increase proportionally to RPC service time variance;
our model only considers the narrow distributions observed
in object stores. NEBULA combines the best of RPCValet
and SRQ, attaining near-optimal 99th% latency up to a load
of 0.97, only saturating when it becomes CPU bound. Even
at maximum load, NEBULA only consumes ∼ 50% of the
server’s maximum memory bandwidth.

In conclusion, our model shows that RPC-optimized architec-
tures must address both load balancing and memory bandwidth
interference. Although load balancing has been extensively ad-
dressed in prior work from both architectural [13] and operating
system [12], [14] perspectives, our models demonstrate that
memory bandwidth contention is also a primary performance
determinant. Next, we present the principles guiding our design
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Fig. 2. Discrete-event simulation results, showing the impact of load imbalance
and memory bandwidth interference on the tail latency of µs-scale RPCs.

to address memory bandwidth interference and attain the
performance of Fig. 2’s NEBULA configuration.

IV. NEBULA DESIGN

In this section, we describe the insights guiding our design
for latency-critical software tiers using RPCs, that addresses
the problem of memory bandwidth interference. We begin by
describing the salient characteristics of our network protocol
and server system baseline, proceed to set out the additions we
propose for the NEBULA architecture, and finally demonstrate
the underpinning mathematical insights.

A. Baseline Architecture and Network Stack

Our baseline network stack features a hardware-terminated,
user-level network protocol, with an on-chip integrated
NIC [16], [40]. We choose this baseline because of its suitability
for latency-critical software systems, and because systems
featuring these characteristics are emerging in production
datacenters (see §II-B). NEBULA’s prerequisites from the
underlying system are the following.
Prerequisite 1: RPC-oriented transport. Recent work ad-
vocates for RPC-oriented transports as a better fit than con-
ventional bytestream transports in datacenters, as they enable
improved flow control [41], latency-aware routing [6], and
inter-server load balancing [14]. NEBULA requires an RPC
transport because exposing the abstraction of an RPC in the
transport layer enables the NIC to make decisions pertinent to
the application-level unit that an RPC represents, rather than
the limited view of packets as mere chunks of bytes.
Prerequisite 2: NIC-driven load balancing. NEBULA relies
on a synchronization-free mechanism to load-balance RPCs
between a server’s many cores, for improved tail latency under
SLO compared to statically partitioned RPC queues. In the
presence of load imbalance, a server could begin violating the
application’s SLO due to increased application-layer queuing,
hitting an earlier bottleneck than bandwidth interference, as
shown by our analysis in §III. For the remainder of this paper,
we adopt RPCValet [13] as our baseline architecture, which
features an integrated NIC that delivers single-queue load
balancing without incurring any software overheads.



B. Key Design Features

In-LLC RPC buffer management. With RPC as the net-
work’s transport abstraction (Prerequisite 1), the NIC can
expose and manage a single network endpoint used by all
its N clients, instead of one endpoint per client, reducing the
set of buffers for incoming RPC requests from N to one. Our
analysis in §IV-C shows that for a stable latency-sensitive
system, the active buffer size required can be conveniently
accommodated in a modern server’s LLC—this lies at the
core of our contributions. NEBULA leverages this opportunity
to implement an in-LLC buffer management mechanism at
the NIC, eliminating the memory bandwidth implications
demonstrated in §III.

SLO-aware protocol. NEBULA targets latency-sensitive on-
line services with a strict tail-latency SLO; a response violating
the SLO has limited value. We leverage this qualitative
characteristic to relax hardware requirements. For example,
under conditions of heavy server-side queuing (deep queues),
newly arriving RPCs that would inevitably violate the SLO are
eagerly NACKed, informing the client early about increased
load conditions on the server. Bounding queue depths by taking
SLO constraints into account is synergistic with the goal of
maximizing the LLC residency of RPC buffers. NEBULA
includes the necessary protocol extensions to support judicious
NACKing to inform applications early of SLO violations. This
policy is also synergistic with existing tail-tolerant software
techniques, which eagerly retry [21] or reject [42] requests
predicted to be delayed. NEBULA’s fail-fast approach to SLO
violation complements these techniques, which can replace
predictions with timely feedback.

Efficient packet reassembly. A direct effect of moving from
a connection- to an RPC-oriented transport (Prerequisite 1)
is that packets belonging to various multi-packet RPCs are
intermingled and must be properly demultiplexed into destina-
tion buffers in the correct order. Given our basic assumption
of a hardware-terminated protocol, such demultiplexing and
reassembly needs to be handled by the NIC hardware. Our
baseline architecture featuring an on-chip integrated NIC
exacerbates the RPC reassembly challenge in two ways. First,
the on-chip resources that can be dedicated to the NIC’s
reassembly hardware are limited by tight power and area
constraints, as well as by the use of existing interfaces to
the server’s memory system. Second, because architectures
with integrated NICs often use small MTUs (e.g., 64B in
Scale-Out NUMA [16]), the frequency of RPC fragmentation
and reassembly is exceptionally high.

Although most RPCs in the datacenter are small, many
are still larger than 64B [41], [43]. Prior work circumvented
these reassembly challenges by allocating dedicated buffers
for messaging per node pair [13], leading to the buffer bloat
implications detailed in §II-C. As NEBULA drastically reduces
buffering requirements and shares buffers between endpoints,
we employ a protocol-hardware co-design to support efficient
packet reassembly, even at futuristic network bandwidths.

NIC-to-core RPC steering. When handling µs-scale RPCs,
small latency components, such as on-chip interactions involved
in the delivery of an RPC to a core, matter. Directly steering
an incoming RPC from the network to a core’s L1 cache,
rather than having the core read it from memory or the LLC,
can noticeably accelerate the RPC’s startup. However, such an
action has to be timely and accurate to avoid adverse effects.

A key challenge of NIC-to-core RPC steering is that the NIC
generally does not know a priori which core will handle a given
incoming RPC, and inaccurate steering would be detrimental
to performance. A second peril is potentially over-steering
RPCs, as directly storing several incoming RPCs into a core’s
L1 cache could thrash it. DDIO avoids these complications
by conservatively limiting network packet steering to a small
fraction of the LLC [19] and not further up the cache hierarchy,
leaving available opportunities for performance improvement.

Successful NIC-to-core RPC steering requires breaking RPC
handling into two distinct steps: arrival and dispatch. The goal
of the arrival step is payload placement in an LLC-resident
queue, to mitigate memory bandwidth interference. The goal of
the dispatch step is to transfer an RPC from the in-LLC queue
to a core’s L1 cache, right before that core starts processing
the RPC. The dispatch decision is also an integral part of
the load-balancing mechanism (Prerequisite 2); in the case of
steering, the focus shifts from which core to dispatch to, to
when. Therefore, we extend RPCValet’s basic load balancing
mechanism from simple RPC-to-core assignment to complete
payload steering. We defer implementation details to §V.

C. Bounded Server-Side Queuing

Our key insight motivating shallow SRAM-resident queues
for incoming RPCs is that SLO-violating RPCs typically spend
most of their on-server time waiting in a deep queue. Con-
versely, the on-server time of SLO-abiding RPCs is primarily
spent on-core rather than waiting in a queue. Therefore, it is
sufficient to allocate memory space for only enough RPCs
whose queuing latencies will not correspond to SLO violation.
Keeping these buffers SRAM-resident not only reduces the
memory footprint, but also boosts performance in two ways.
First, by lowering memory bandwidth demand, thus reducing
queuing in the memory subsystem for application accesses.
Second, by providing cores with faster access to the arrived
RPC, thus reducing RPC startup time.

Setting a hard constraint on tail latency implies that the
maximum amount of time an RPC can be queued at a server
must also be bounded. A server’s RPC response time is tr =
tq + ts, where tq and ts represent the average RPC queuing
and service time, respectively. Assuming an SLO of 10× ts as
is common in the literature [12], [13] constrains queuing time
to tq ≤ 9ts. Simply put, to respect the SLO, a hypothetical
server with a single processing unit must be operating at a
load point where the 99th% of the distribution of the number
of waiting RPCs is ≤ 9.

We conduct a queuing analysis to generalize this observation
and estimate the queuing capacity required for a server that is
operating under an SLO-abiding load. We model a k-core server



TABLE I
MEASURED LOAD AND QUEUE DEPTHS AT SLO, USING SYNTHETIC

SERVICE TIME DISTRIBUTIONS.

Distribution Max Load @ SLO 99th% Q. Depth @ SLO
Deterministic 0.999 54
Exponential 0.995 319

Bimodal 0.940 410

after an M/G/k queuing system, assuming Poisson arrivals
and a general service time distribution. We are interested in
the distribution N̂q that represents the number of queued RPCs
under a system load A = λ

µ , where λ is the arrival rate of new
requests, and µ is the per-core service rate (stability condition:
λ < k × µ). The mean of the distribution, E[N̂q] is given by
Eqn. 1 [44], where Ck(A) is the Erlang-C formula:

E[N̂q] = Ck(A)
A

k −A
(1)

Although E[N̂q]
A→k−−−→ ∞, solving the equation for high

system load results in E[N̂q] values closer to k. For example,
for a 64-core CPU at an extreme load of A = 63, E[Nq] = 54.
Ideally, we would be able to analytically solve for the 99th%
of the N̂q distribution. However, closed-form expressions for
the various percentiles of N̂q are not known. We therefore use
§III’s queuing simulator to collect statistics for N̂q using three
service time distributions from ZygOS [12]:
• Deterministic: P [X = S̄] = 1
• Exponential: P [X] = λe−λx (S̄ = 1

λ )
• Bimodal: P [X = Ŝ

2 ] = 0.9, P [X = 5.5× S̄] = 0.1

Table I shows the maximum load meeting an SLO of 10× S̄
and the 99th% of N̂q at that load. The results corroborate the
intuition that as the service time dispersion grows (e.g., for
bimodal), the peak load under SLO drops and the 99th% queue
depth increases. Additionally, the deterministic distribution’s
99th% is equal to E[N̂q], because there is no variability in
the rate at which cores drain requests from the queue. This
analysis shows that even at extremely high loads, the number
of RPCs waiting in the queue is small enough to easily fit
inside a server’s existing SRAM resources. Provisioning for
deeper queuing is effectively useless, because RPCs landing
in queues deeper than the upper bound demonstrated by our
analysis will violate the SLO anyway.

Provisioning a receive buffer of limited size on the server
requires the transport protocol to signal a “failure to deliver”
(NACK) if the request is dropped because of a full queue. It
is up to the client to react to a NACK reception; for example,
the request could be retried or sent to a different server, as
proposed by Kogias et al. [45]. Exposing delivery failures to the
client follows the end-to-end principle in systems design [46]:
the client application is best equipped to handle such violations
and should be informed immediately. Note that the client has
to perform proactive load monitoring for SLO violations even
if the transport protocol never rejects requests.

In summary, we show that meeting strict SLOs requires
shallow server-side RPC queues. Thus, system designers can
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Fig. 3. Overview of baseline and NEBULA architectures.

leverage this observation to provision small enough amounts
of buffering that comfortably fit inside the on-chip caches
of a modern server, eliminating the buffer memory footprint
problem, as well as the latency implications because of memory
bandwidth interference.

V. NEBULA IMPLEMENTATION

We now describe our NEBULA implementation, based on the
design features outlined in §IV. We first briefly introduce the
baseline architecture’s critical features, then detail NEBULA’s
protocol and NIC hardware extensions.

A. Baseline Architecture

We use Scale-Out NUMA (soNUMA) [16] as our baseline
architecture. soNUMA combines a lean user-level, hardware-
terminated protocol with on-chip NIC integration. The NIC
leverages integration into its local CPU’s coherence domain for
rapid interactions with the cores. Applications schedule soN-
UMA operations (e.g., send) using an RDMA-like memory-
mapped Queue Pair (QP) interface.

RPCValet [13] is a NIC extension for RPC load balanc-
ing and a key enabler for NEBULA’s RPC-to-core steering
mechanism. RPCValet balances incoming RPCs across the
cores of a multi-core server in a single-queue, synchronization-
free fashion. Fig. 3a provides a high-level demonstration of its
operation. RPCValet is based on soNUMA’s NIsplit architecture
[40], where the NIC comprises two discrete entities, a frontend
(FE) and a backend (BE). The former handles the control plane
(i.e., QP interactions) and is collocated per core; the latter
handles the network packets and data transfers between the
network and memory hierarchy and is located at the chip’s
edge.

When a new RPC arrives 1 the NIC BE writes its payload
in the LLC, creates an RPC arrival notification 2 —which
contains a pointer to the RPC’s payload—and stores it in
a dedicated queue. As soon as a core becomes available to
process a new RPC, its corresponding NIC FE notifies the
NIC BE 3 , which, in turn, dequeues the first entry from the
arrival notification queue and writes it in the core’s Completion
Queue (CQ) 4 . The core receives the RPC arrival notification
by polling its CQ and follows the pointer in the notification
message to read the RPC’s payload from the LLC. This greedy
load assignment policy corresponds to single-queue behavior.



while (true):
payload_ptr = wait_for_RPC(msg_domain)
//process the received RPC and build response...

free_buffer(buffer_ptr, buffer_size)

RPC_send(resp_buffer_ptr, buffer_size,
target_node, msg_domain)

Fig. 4. Pseudocode of an RPC-handling event loop.

Fig. 3b highlights in red NEBULA’s key extensions over
Fig. 3a’s baseline architecture. The first feature, marked as
A and detailed in §V-C and §V-D, is NEBULA’s in-LLC
network buffer management for reduced memory pressure. The
second feature, NIC-to-core RPC steering, extends the baseline
architecture’s sequence of RPC arrival notification actions with
payload dispatch, shown in steps 5 - 6 and detailed in §V-E.

B. RPC Protocol and Software Interface

We implement an RPC layer on top of soNUMA’s send
operation, maintaining RPCValet’s messaging interface [13]:
all nodes of the same service join the same messaging domain,
which includes the buffers and data structures defining where
incoming RPCs are placed in memory. Every node participating
in a messaging domain allocates a receive buffer in its memory
to hold the payloads of incoming RPCs. We change RPCValet’s
underlying connection-oriented buffer management to achieve
NEBULA’s key goal of handling all traffic within the server’s
caches. In NEBULA’s case, after the receive buffers are
allocated and initialized by software, they are managed by
the NIC. We first focus on the software interface and detail
hardware modifications later in this section.

Fig. 4 demonstrates the three functions the NEBULA RPC
interface exposes to applications within a sample RPC-handling
event loop. A server thread waits for incoming RPCs using the
wait_for_RPC function, which can be blocking or non-
blocking. The NIC sends RPC arrivals to this thread via
the thread’s CQ that is associated with the incoming RPC’s
messaging domain. After completing the RPC, the application
invokes the free_buffer function to let the NIC reclaim
the buffer. Finally, the application sends a response in the form
of a new RPC, specifying the messaging domain, target node,
and local memory location that contains the outgoing message.
RPC_send has a return value indicating whether the outgoing
RPC was accepted by the remote end or not, which only clients
use to check whether their requests are NACKed by the server.
In a well-designed system, the server does not use the return
value, as clients should always provision sufficient buffering
for responses to their own outstanding requests.

soNUMA acknowledges all messages at the transport layer.
NEBULA extends this mechanism with negative acknowledge-
ments (NACKs), which are responses to send operations if
the receiving end cannot accommodate the incoming RPC. In
response to a NACK reception, the application layer receives
an error code. The most appropriate reaction to an error code
is application-specific, and can range from simple retry of the
same send at a later time, to arbitrarily sophisticated policies.

(snid, tid) Recv buf
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Fig. 5. NIC RPC reassembly and buffer management.

C. NIC Extension: Buffer Management

NEBULA’s NIC manages a receive buffer per established
messaging domain. After the software sets up and registers
these buffers with the NIC, the NIC must dynamically allocate
them to incoming RPCs, and place incoming packets appro-
priately. The buffer manager’s role is to reserve enough space
in the receive buffers for each RPC, ensuring each core has
zero-copy access to the buffer until the application explicitly
permits the NIC to reclaim it after the RPC is serviced. As the
allocator must operate at line rate, simplicity is paramount. The
NIC therefore uses a chunk allocation algorithm that manages
each receive buffer as an array of consecutive slots in host
memory. In allocators of this style, performing a new allocation
is as simple as returning the next available slot(s).

The buffer manager uses a bitvector built into the NIC,
containing a bit for every cache-block-sized (64B) slot in the
receive buffer. Bits corresponding to allocated slots are set to 1
(shaded in Fig. 5). Upon a new RPC arrival, the NIC advances
the receive buffer’s head pointer by dRPC_size/64Be slots
and sets the corresponding bits in the bitvector. In Fig. 5 step
1 , the arrival of a new RPC with 128B < size ≤ 192B

would trigger the head pointer to advance three slots to new
head. As this RPC has a size greater than one cache block
and will thus arrive in more than one packet, it will also add
an entry to the reassembler, described in §V-D.

Applications free slots by sending a free_buffer mes-
sage specifying a buffer address and length to the NIC (see
§V-B), which resets the bitvector’s corresponding bits (step 2 ).
After each free_buffer message, the buffer manager checks
whether the tail pointer can advance, thus reclaiming receive
buffer space. In Fig. 5’s example, the tail cannot advance
because the slot(s) immediately in front of tail are still
allocated. If the head pointer reaches the tail pointer, the receive
buffer is full and the NIC starts NACKing any new RPCs.

As receive slots are freed out of order by the applications,
a naive implementation can suffer from internal fragmentation
and thus excess NACKs in the case of a rare long-latency
event (e.g., a core receives a hard IRQ while handling an RPC).
Therefore, we implement a simple scrubbing policy to allow
the buffer manager to scan through the bitvector and find the
next free range; this operation is triggered when the head meets
the tail pointer and is performed off the critical path of new
allocation and freeing.

To size the receive buffer (and thus the bitvector), we rely
on our analysis in §IV-C. We provision for 10×E[Nq] queued
RPCs, which conveniently covers the 99% depth of even the



bimodal distribution considered in Table I. Factoring the RPC
size as well, we size the receive buffer at 10 × E[Nq] ×
avg_RPC_size. As per §IV-C’s example, assuming a 64-core
server at load A = 63 and an average RPC size of 1KB1, our
provisioning results in a 540KB buffer. This choice results in
a 1KB bitvector, a modest SRAM cost for a large server chip.

D. NIC Extension: RPC Reassembly

Incoming RPCs exceeding the network MTU in size are
fragmented at the transport layer; thus, they must be reassem-
bled before being handed to the application. In a hardware-
terminated protocol, such reassembly has to be performed in
the NIC’s hardware. The specific challenges for designing
such reassembly hardware for NEBULA are the baseline
architecture’s small MTU (64B) and the NIC being an on-chip
component. The former implies high reassembly throughput
requirements; the latter implies tight area and power budgets.

In many emerging transport protocols for RPCs, all the
packets of the same message carry a unique identifier (tid)
assigned by the originating node [13], [14], [41]. Thus, an
incoming packet’s combination of tid and source node id
(snid) uniquely identifies the message the packet belongs to.
The reassembly operation can be described as performing an
exact match between the (snid, tid) pair found in each
incoming packet’s header, and an SRAM-resident “database”
of all RPCs that are currently being reassembled. Returning to
Fig. 5’s example, assume that the second packet of the RPC
which previously arrived in step 1 reaches the NIC in step 3 .
The packet’s header contains the pair (3,5), which is looked
up in the reassembler and receive buffer address Z is returned.
Being the second packet of this RPC (pkt_idx=1), the NIC
writes the payload to address Z+64.

The most common solution for exact matching at high
throughput is to use CAMs [48], which are power-hungry
due to the large number of wires that must be charged and
discharged each cycle. Contrary to our initial expectation,
deploying a CAM is a feasible solution. Just as NEBULA’s
design decision to bound the queue depth of incoming RPCs
shrinks receive buffer provisioning requirements, it also sets
an upper limit for the number of incoming RPCs that may be
under reassembly. Consequently, NEBULA sets an upper size
limit on the CAM required for RPC reassembly purposes. With
§V-C’s 64-core configuration as an example, we need a CAM
with 10×E[Nq] = 540 entries. To model the hardware cost of
NEBULA’s CAM, we use CACTI 6.5 [49] and configure it with
the following parameters: built-in ITRS-HP device projections,
a 22nm process, and dynamic power optimization with the
constraint of meeting a 2GHz cycle time (targeting a futuristic
1Tbps network endpoint—i.e., a packet arrival every ∼ 0.5ns).
With a reported dynamic power of 45.3mW, such a CAM is
reasonably accommodated on chip.

E. NIC-to-Core RPC Steering

RPCValet’s mechanism to assign RPCs to cores involves
metadata only: the NIC places a pointer to the buffer containing

190% of network packets within Facebook’s datacenters are <1KB [47].

TABLE II
PARAMETERS USED FOR CYCLE-ACCURATE SIMULATION.

Cores ARM Cortex-A57; 64-bit, 2GHz, OoO, TSO
3-wide dispatch/retirement, 128-entry ROB

L1 Caches 32KB 2-way L1d, 48KB 3-way L1i, 64B blocks
2 ports, 32 MSHRs, 3-cycle latency (tag+data)

LLC Shared block-interleaved NUCA, 16MB total
16-way, 1 bank/tile, 6-cycle latency

Coherence Directory-based Non-Inclusive MESI
Memory 45ns latency, 2×15.5GBps DDR4

Interconnect 2D mesh, 16B links, 3 cycles/hop

the next RPC’s payload in the CQ of the thread that will service
that RPC. NEBULA extends this mechanism to also trigger a
dispatch of the RPC’s payload to the target core’s L1 cache. If
this payload dispatch completes in a timely fashion, it reduces
the RPC’s execution time. The accuracy of such RPC payload
prefetching is not probabilistic, as it is based on prescience
rather than prediction: the hardware leverages the semantic
information of an RPC arrival and assignment to a core to
choreograph the cache hierarchy for faster RPC startup.

NEBULA’s NIC-to-core steering mechanism is implemented
as a sequence of additional steps after RPCValet’s normal op-
eration. First, we modify RPCValet’s RPC arrival notifications
(Fig. 3a, 2 ): in addition to the pointer to the RPC’s payload,
the notification also includes the payload’s size. As soon as
a new RPC is assigned to a core for processing (Fig. 3a, 4 ),
its NIC FE reads the payload buffer’s base address and size
from the notification message and forwards them to the core’s
L1 cache controller as a prefetch hint (Fig. 3b, 5 ). The cache
controller uses this information to prefetch the whole RPC
payload before the core starts processing that RPC (Fig. 3b,
6 ). We discuss alternative mechanisms to prefetch hints for

NIC-to-core RPC steering in §IX.
To guarantee timely RPC payload prefetches, we configure

RPCValet to allow two RPCs instead of one to be queued
at the NIC FE, thus giving the cache controller ample time
to prefetch the second RPC’s payload while the first one is
being processed by the core. Such slight deviation from true
single-queue RPC balancing corresponds to the JBSQ(2) policy
proposed by Kogias et. al [14], and has been shown to preserve
tail latency in an on-chip setting [13].

VI. METHODOLOGY

System organization. We simulate one ARMv8 server running
Ubuntu Linux in full-system, cycle-level detail, by enhancing
QEMU [50] with the timing models of the Flexus simulator [51].
Table II summarizes the simulation parameters. The server
implements the NIsplit soNUMA architecture [40] with LLC,
DRAM, and NIC parameters following the state-of-the-art
system tuned for in-memory key-value serving [36], which
provisions 118GB/s of DRAM bandwidth, a 300Gbps NIC, and
a 60MB LLC for 60 CPU cores. To make simulation practical,
we scale the system down to a 16-core CPU, maintaining
the same LLC size and DRAM bandwidth per core; thus,
we provision 31GB/s of DRAM bandwidth and a 16MB
LLC. Commensurately scaling the NIC bandwidth indicates
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Fig. 6. Tail latency and bandwidth for all evaluated systems, using a 50/50 GET/SET query mixture.

provisioning an 80Gbps NIC. However, we found that under the
most bandwidth-intensive workloads, NEBULA could saturate
the full 80Gbps while still having ~15% idle CPU cycles;
therefore, we increased NIC bandwidth to 120Gbps to permit
NEBULA to reach the CPU cores’ saturation point.

Application software. We use the MICA in-memory key-value
store [39] with the following modifications: (i) we ported its
networking layer to soNUMA, (ii) for compatibility reasons
with our simulator, we ported the x86-optimized MICA to
ARMv8. We deploy a 16-thread MICA instance with a 819MB
dataset, comprising 1.6M 16B/512B key/value pairs. We use
the default MICA hash bucket count (2M) and circular log size
(4GB). Larger datasets would further reduce the LLC hit ratio,
exacerbating the memory bandwidth interference problem that
NEBULA alleviates.

We build a load generator into our simulator, which generates
client requests at configurable rates, using a Poisson arrival
process, uniform data access popularity, and the following
GET/SET query mixtures: 0/100, 50/50, 95/5. Unless explicitly
mentioned, results are based on the 50/50 query mix.

Evaluated configurations. We evaluate five different designs
to dissect NEBULA’s benefits:
• RPCValet: We use RPCValet [13] as a baseline architecture,

which features NIC-driven single-queue load balancing,
optimized for tail latency. RPCValet provisions its packet
buffers in a static connection-oriented fashion, resulting in
buffer bloat with high connection counts. Assuming a cluster
size of 1024 servers, a maximum per-message size of 512B,
and 256 outstanding messages per node pair, RPCValet’s
buffers consume 136MB, significantly exceeding the server’s
LLC size. This provisioning represents any connection-based
system that allocates buffer space per endpoint, such as
RDMA-optimized [31] and UDP-based RPC systems [33].

• RSS: A representative of the Receive Side Scaling (RSS) [15]
mechanism available in modern NICs. Our implementation
optimistically spreads requests to cores uniformly. Like
RPCValet, RSS suffers from buffer bloat, and also suffers
from load imbalance being a multi-queue system.

• NEBULAbase: This configuration retains RPCValet’s load-
balancing capability and adds NEBULA’s protocol and
hardware extensions for space-efficient buffer management.
Following our analysis in §IV-C, NEBULAbase allocates
81KB of buffering for incoming RPCs, corresponding to
10× E[Nq] = 160 slots of 512B each.

• SRQemu: A proxy for InfiniBand’s Shared Receive Queue
(SRQ) mechanism, enabling buffer sharing among end-
points/cores to tackle the buffer bloat problem. We opti-
mistically assume the same hardware-based buffer manager
as NEBULAbase without any software overheads normally
involved when the threads post free buffers to the SRQ.
Unlike NEBULAbase, existing SRQ implementations do
not feature hardware support for load balancing. Hence,
SRQemu represents an RSS system without buffer bloat,
or, equivalently, a NEBULAbase system without hardware
support for single-queue load balancing.

• NEBULA: The full set of our proposed features, namely
NEBULAbase plus NIC-to-core RPC steering.

Evaluation metrics. We evaluate NEBULA’s benefits in terms
of throughput under SLO. Our SLO is a 99th% latency
target of 10× the average RPC service time [12]. All of our
measurements are server-side: each RPC’s latency measurement
begins as soon it is received by the NIC, and ends the moment
its buffers are freed by a core after completing the request.
As NEBULA can NACK incoming RPCs under high load, we
conservatively count NACKs as ∞ latency measurements.

VII. EVALUATION

A. Impact of Load Imbalance and Bandwidth Interference

We start by evaluating §VI’s first four designs to quantify the
impacts of load imbalance and memory bandwidth interference.
Fig. 6 shows 99th% latency and memory bandwidth as a
function of load. Fig. 6b groups the series for RSS/RPCValet
and SRQemu/NEBULAbase together, as they are effectively
identical. RSS performs the worst, as it suffers from both
load imbalance and bandwidth contention. Although RPCValet
delivers 2.6× lower 99th% latency than RSS at 10MRPS



TABLE III
SENSITIVITY ANALYSIS FOR QUERY MIXTURE.

GET/SET
Mix

RPCValet
MRPS

RPCValet
BW@SLO

NEBULA
MRPS

NEBULA
BW@SLO

0/100 11.4 24.5 GB/s 26.7 22.6 GB/s
50/50 11.4 25.3 GB/s 22.2 21.1 GB/s
95/5 11.4 24.8 GB/s 22.2 20.9 GB/s

due to superior load balancing, both systems saturate beyond
11.4MRPS.

Fig. 6b sheds light on the source of the performance gap
between SRQemu and the two systems suffering from buffer
bloat. RSS and RPCValet utilize about 25.3GB/s of memory
bandwidth at 11.4MRPS, greater than 80% of the server’s
maximum of 31GB/s. In contrast, SRQemu consumes less than
75% of that bandwidth at 20MRPS and therefore delivers 1.75×
higher load than RSS/RPCValet, corroborating our claim that
memory bandwidth contention can negatively impact latency.
SRQemu’s performance, combined with the small difference
between RPCValet and RSS, may seem to suggest that load
balancing is unimportant. However, we demonstrate next that
as soon as the bandwidth bottleneck is removed, load balancing
has a major performance impact.

NEBULAbase is the only system of the four that avoids both
destructive bandwidth contention and load imbalance, attaining
a throughput under SLO of 22.2MRPS with a sub-2µs 99th%
latency. We measured the mean zero-load service time of MICA
RPCs using 512B payloads to be ∼630ns, which corresponds
to a throughput bound of 25.3MRPS. Thus, NEBULAbase is
within 12% of the theoretical maximum. Before saturation,
NEBULAbase’s minimal 81KB of buffers are adequate and
we observe no NACK generation, which concurs with our
theoretical analysis suggesting that 10× E [Nq] receive buffer
slots suffice for a server operating under strict SLO. Beyond
∼22MRPS, the system quickly becomes unstable, server-side
queues rapidly grow, and the number of NACKs escalates.
We consider this to be a non-issue, because operating a server
beyond its saturation point is not a realistic deployment scenario.
Overall, NEBULAbase outperforms SRQemu by 1.2× in terms
of throughput under SLO and by 2.2× in 99th% latency at a
load of 16MRPS, due to improved load balancing.

B. Sensitivity to Workload GET/SET Ratio and Item Size

We now study the sensitivity of NEBULAbase and RPCValet
to different workload behaviors by varying the GET/SET query
mix. Table III reports the maximum throughput under SLO
and the memory bandwidth consumption at peak throughput
for each query mix we experimented with. We find that both
systems are largely insensitive to query mixture, as RPCValet
reaches the same saturation point for all three workloads,
remaining bottlenecked by memory bandwidth contention in
all cases. As the fraction of GETs increases, the NIC-generated
bandwidth drops because GET payloads only carry a key,
as compared to SETs that carry a 512B value. Despite less
NIC-generated bandwidth, the cores’ aggregate bandwidth
commensurately rises, because they must copy 512B values
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Fig. 7. Performance of RPCValet and NEBULA varying the MICA value size,
using a 50/50 GET/SET query mix.

out of the data store into the message sent in response to the
GET. Ultimately, memory bandwidth usage per query remains
roughly constant.

In contrast, NEBULAbase experiences a 19% throughput
increase for the 0/100 mix compared to 50/50, because the
mean service time drops by 70ns. This improvement happens
because of different data copy directions. For a SET, the core
loads the incoming value from the NIC’s small on-chip cache
or the LLC (where the payload buffer resides after the NIC
writes it), and then must write it to the DRAM-resident MICA
log. As the payload buffer is already on-chip, the time that the
core’s LSQ is blocked on the payload’s data is a single remote
cache read. In contrast, GETs first must fetch the value from
the MICA log, and write it to the response buffer; thus, GETs
block the core for a longer period of time.

Next, we evaluate the impact of varying MICA’s item size.
Fig. 7 shows the maximum throughput under SLO, and memory
bandwidth of RPCValet and NEBULAbase with 64B, 256B
and 512B items. Items smaller than 64B (cache line size)
result in the same memory bandwidth utilization as 64B
items. As item size shrinks, RPCValet’s throughput under SLO
commensurately increases, reaching 16MRPS with 256B items
and 26.7MRPS with 64B items: smaller items naturally result
in less memory bandwidth generated from both the NIC and the
CPU cores, alleviating memory bandwidth contention. For item
sizes larger than 64B, RPCValet becomes bandwidth-bound,
capping throughput under SLO at ∼ 21MRPS.

NEBULAbase’s performance also improves with smaller
items. Cores are less burdened with copying data to/from
the MICA log, reducing the mean RPC service time by 9%
and 19% with 256B and 64B items, respectively. The shorter
service time results in a saturation point of 33.3MRPS with
64B items. This is 1.16× higher than RPCValet even when
bandwidth contention is not a factor, because NEBULAbase
eliminates the costly step of write-allocating payloads into the
LLC before an RPC can be dispatched to a core. Finally, we
emphasize that NEBULAbase attains equal throughput under
SLO as RPCValet, handling items 4× larger (256B vs. 64B).

C. NIC-to-Core Steering

Finally, we evaluate NEBULA’s NIC-to-core steering mecha-
nism. Fig. 8 compares NEBULAbase (no prefetching), NEBULA
(NIC-to-core steering enabled) and NEBULASWPref , which is
the same hardware configuration as NEBULAbase, but contains



a modification to the RPC handling loop (Fig. 4) to prefetch any
future RPCs found waiting in the CQ. As the software prefetch
overhead is on the critical path, we optimize the prefetch logic
to scan a maximum of 8 slots (which fit in a single cache
block) in the CQ to find an RPC, and set a prefetch degree of
one. We measure the overhead of this code as 60ns.

Below 16MRPS, all configurations perform identically,
because each core only has one RPC outstanding, and the
software overhead to scan the CQ is small enough to complete
before the next RPC arrival. Above 16MRPS, the software
overhead begins to manifest itself, causing a 31% increase in
99th% latency compared to NEBULAbase at 22MRPS. As 60ns
represents ∼ 10% of MICA’s service time, we conclude that
prefetching at such high loads requires hardware support to
eliminate the overhead of determining prefetch addresses in
software.

Our expectation is that NEBULA should trim ∼ 50 cycles
(25ns) from each RPC’s runtime, hiding the latency of fetching
the remotely cached RPC payload that is needed to access
MICA’s hash index. This improvement should only show at
the tail, because in the average case, the cores only have one
RPC in their CQ without a next RPC to prefetch. Between 16
and 22MRPS, NEBULA improves the 99th% latency by 64ns,
i.e., a 10% reduction in RPC service time. We attribute the
roughly 2× difference with our expectation to the increased
cache subsystem latencies in the loaded system. Therefore, the
benefit of removing the longer wait for the RPC’s payload
from the critical path via timely prefetching increases. As a
result, NEBULA outperforms NEBULAbase by 3MRPS. At
high load, the fraction of RPCs dispatched to a core with CQ
depth >= 1 grows to 75%, making NEBULA’s 10% service
time reduction the common case.

We also repeated the same experiment with 64B pay-
loads, which have reduced on-core service times of 510ns.
NEBULASWPref ’s overhead grows to > 10% of the service
time, and therefore NEBULA delivers 3× lower 99th% latency
at 22.2MRPS. NEBULA delivers the same 3MRPS throughput
benefit for both 64B and 512B payloads.

Employing all of its features, NEBULA improves throughput
under SLO over current multi-queue (SRQ) and single-queue
(RPCValet) systems by 1.25× and 2.19× respectively. With
both 512B and 64B RPCs, NEBULA saturates at maximum
CPU throughput, and does not leave significant performance
improvement headroom.

VIII. DISCUSSION

Deployments benefitting from NEBULA. Datacenter services
are increasingly adopting a microservices architecture, where
the overall functionality is broken down into modular com-
ponents and a single user request reaches across hundreds or
thousands of servers [20]. As the number of layers comprising
these services grows, so does the importance of minimizing the
latency of each inter-layer RPC-based interaction—a typical
case of the “tail at scale” effect [21]. The more pervasive
such decomposition is across datacenter-deployed services,
the broader NEBULA’s applicability. We evaluate a Key-Value
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Store (KVS) as a representative of µs-scale software, because it
is an extensively optimized application that is used by virtually
every service and is well-known to exhibit µs-scale service
times [12], [13], [33].

In general, for an application to benefit from NEBULA, it
must have at least one of the following characteristics in addi-
tion to strict tail-latency constraints: (i) intensive network traffic,
which, when combined with application memory bandwidth
usage, approaches the system’s total memory bandwidth; or
(ii) µs-scale on-core service times. For the former, NEBULA
removes bandwidth interference effects inflicted by system
scale, by limiting the number of RPCs queued on the server
and ensuring in-cache network packet residency. For the latter,
NEBULA converts 80–100ns per-packet DRAM accesses into
L1 cache hits, which our evaluation shows boosts throughput
under SLO by more than 10% for sub-µs RPCs on a 16-core
server. As examples, we identify two other applications that
exhibit these characteristics and also form important building
blocks of datacenter services.

State machine replication (SMR) provides fault-tolerance
by electing a leader server to replicate incoming RPCs across
N followers, which are often themselves KVS. SMR leaders
meet both criteria for benefitting from NEBULA. With service
times of ~1µs [33], they benefit from NEBULA’s NIC-to-core
steering. Furthermore, because they replicate incoming RPCs
in a 1 : N fashion, their network packet buffers may spill into
DRAM, creating memory bandwidth interference, and would
therefore benefit from NEBULA’s in-cache buffer management.

Network function virtualization (NFV) workloads execute
user-defined packet processing operations inside a software
switch (e.g., OpenVSwitch). NFV operations exhibit 300ns–5µs
service times and LLC-resident datasets [35], [52]; therefore,
NFV would benefit from NEBULA’s NIC-to-core steering.

Finally, NEBULA can benefit co-located application deploy-
ments. When a latency-critical application is co-located with
one that is LLC- and/or memory bandwidth-intensive, NEBULA
will constrain the LLC space taken up by the latency-critical
application’s packet buffers, improving its LLC hit ratio on
network packets, while indirectly also benefitting the bandwidth-
intensive workload by limiting LLC interference.



Integration with datacenter networks. NEBULA requires
the following features from the underlying network stack: (i)
native protocol support for an RPC-oriented transport, (ii)
hardware-terminated transport, and (iii) a lossless link layer.
The two latter requirements are being addressed by recent works
targeting datacenter-scale RDMA deployments [26], [53], while
native support for RPC-oriented transports is an active research
direction [14], [41]. A NEBULA-compliant protocol requires
the addition of NACK messages which are sent by the receiver
upon encountering deep server-side queues, and passed back
to the RPC layer when they return to the sender. We argue that
similar messages already exist in high-performance networking
solutions (e.g., an RDMA NIC generates a local CQ entry after
a remote memory write is performed).

IX. RELATED WORK

Leaky DMA. ResQ [35] encounters the “leaky DMA” problem,
which is similar to the bandwidth interference problem we
study. ResQ’s authors observe that when deploying co-located
NFV workloads using DPDK, the LLC space required by
DDIO exceeds its default limit, and memory traffic multiplies.
ResQ ameliorates memory traffic by statically limiting DPDK’s
buffer allocation to 10% of the LLC. In contrast, our work
establishes a mathematical bound on the number of required
buffers, based on queuing theory. While we share the intuition
that limiting outstanding buffers can reduce excessive memory
traffic, NEBULA targets hardware-terminated transports and
demonstrates that mere KBs of buffering space are sufficient
to handle µs-scale RPCs. NEBULA also maintains inter-core
load balancing, a factor beyond ResQ’s scope.

The leaky DMA problem is also observed in the context of
the Shenango runtime scheduler for latency-sensitive datacenter
workloads [54]. Shenango foregoes zero-copy I/O to hand
buffers back to the NIC as soon as possible, increasing LLC
reuse by DDIO. In contrast, NEBULA maintains zero-copy
I/O, because we find that all useful packet buffers can be
accommodated in the LLC when operating under a tight SLO.
RPCs over connected transports. HERD [55], FaSST [31]
and FaRM [30] all propose optimizations in order to alleviate
the scalability issues of InfiniBand’s connected transports.
FaSST uses solely unconnected datagram transports to reduce
the number of Queue Pairs that must be cached in the NIC [31],
while FaRM accepts the inherent performance loss of some
connection sharing [30]. Storm [32] shows that at rack scale
(i.e., up to 64 nodes), the newest generation of ConnectX-5
NICs have significantly improved in scalability, and hence
designs a transaction API prioritizing RDMA operations which
require connected transport. Our work targets datacenter-scale
deployments and applies to any software with µs-scale RPCs.

eRPC [33] improves buffer scalability by using multi-packet
receive queue descriptors introduced in Mellanox ConnectX-4
NICs. These descriptors keep NIC-resident state constant with
the number of connected nodes. However, eRPC’s server-side
buffering state still scales with the number of connections, as it
allocates memory for each pair of connected threads ([33]:§3.1).
We show that although server memory is plentiful, µs-scale

RPCs require buffers to be kept to LLC-resident sizes in order
to avoid memory bandwidth interference and meet tight SLOs.

Compute hardware/NIC co-design. The importance of KVS
in datacenters has resulted in multiple proposals for KVS-
optimized hardware [36], [56]. SABRes [57] leverages coherent
on-chip NIC integration to introduce a NIC extension for
atomic remote object access, alleviating software overheads
in KVS using one-sided RDMA reads for low latency. Li et
al. [36] study MICA’s performance characteristics and propose
a bespoke CPU for KVS whose parameters we adopt for our
baseline. Their work also observes the primacy of in-LLC
buffer management, and empirically sizes the LLC based on
simulation to minimize miss rate. They do not observe the same
DRAM bandwidth contention as we do, because the amount of
network state in their system would not scale with the number
of communicating servers due to its use of UDP [39]. Achieving
similar throughput with an order of magnitude lower latency, as
we attempt to do, requires hardware-terminated network stacks
and brings back the challenge of scaling dedicated per-endpoint
state. NEBULA therefore begins with a hardware-terminated
protocol, and demonstrates that packet buffering state should
be sized based on SLO rather than system scale.

Daglis et al. [40] studied the on-chip latency implications
of the VIA/RDMA network programming model [58], and
proposed NIC decomposition and passing messages between
NIC components to avoid multi-hop coherence interactions.
We have similar insights regarding the on-chip data path of
RPC payloads under µs-scale SLOs, and propose a solution
that uses the NIC’s role in RPC dispatch to accurately prefetch
payloads without cache coherence modifications.

Latency-optimized systems software. The need for low
latency has led systems designers to aggressively limit queuing
in the transport and RPC protocol stacks themselves [45],
[59]. Kogias et al. [45] also observe that limiting server-side
queuing is critical for µs-scale RPCs, and use TCP flow control
to limit the number of requests per connection based on the
application’s SLO. NEBULA performs buffer management for
hardware- rather than software-terminated protocols.

CacheDirector [60] improves RPC latency by modifying
DDIO to steer the header of each network packet into the
LLC tile closest to the core that will process the packet. We
go further by steering the whole packet all the way into the
core’s L1 cache. In the past, placing network data in L1 caches
has been avoided due to pollution concerns, which NEBULA
addresses by steering only a single RPC at a time.

Thomas et al. [61] observe that at 100Gbps+, packet inter-
arrival times drop below DRAM latency, and that applications
performing memory accesses will inevitably backpressure the
NIC and lead to dropped packets. They propose CacheBuilder,
a slab allocator using existing cache partitioning technology to
guarantee the application’s dataset is LLC- rather than memory-
resident. CacheBuilder therefore only benefits applications
with LLC-resident datasets, whereas NEBULA considers SLO-
constrained applications with memory-resident datasets.

NIC-to-core data steering. NEBULA employs a prefetch hint



mechanism to steer the payload of an incoming RPC to its target
core. Payload prefetches differ from regular cache accesses that
are triggered by front-side demand accesses, because they are
initiated from the back-side of the cache. Our work chooses to
use prefetch hints because payload prefetches are transformed
into regular front-side initiated operations, keeping both the
cache controllers and coherence protocol unmodified. Intel’s
DCA mechanism also leverages prefetch hints to load data
into the LLC [62]. Other mechanisms such as direct injection
(e.g., DDIO’s write-allocate/update policy [19]) and Curious
Caching [63] have been proposed to support back-side initiated
operations. NEBULA could be trivially adapted to use these
mechanisms if supported by the cache controller.

X. CONCLUSION

In hyperscale datacenters, the combination of growing
network bandwidth and µs-scale software layers is shifting
performance bottlenecks to server endpoints. In particular, this
work shows that the vast bandwidth of future NICs can interfere
with application traffic at the server’s memory controllers, due
to network buffer bloat resulting from non-scalable connection-
oriented buffer provisioning. However, for software with
tight latency constraints, queuing theory in fact indicates
that only limited server-side queuing is useful, and therefore
network buffer provisioning can be shrunk to sizes trivially
accommodated by the server’s LLC. Following this insight, we
propose NEBULA, a co-design of the network protocol and
server hardware that actively keeps all network buffers LLC-
resident, mitigating memory bandwidth interference. NEBULA
thus alleviates the bottleneck of deployment scale for latency-
critical software layers, hastening the path to adoption of
latency-optimized hardware-terminated network stacks.

NEBULA demonstrates that nascent RPC-oriented transport
protocols serve as powerful enablers for future NIC architec-
tures to actively cooperate with network-intensive applications
in achieving their performance goals. NEBULA uses the NIC’s
integral role in load balancing to minimize tail latency by
actively triggering prefetches in the cache hierarchy before
RPCs begin processing, without requiring changes to the
caches or coherence protocol. Our evaluation shows that this
capability delivers performance benefits of 1.13× for a Key-
Value Store application, as packets are directly placed into the
L1 cache rather than the LLC. Overall, NEBULA improves the
throughput under SLO of µs-scale RPCs by up to 2.19×.
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APPENDIX A

This appendix details the queuing model used in §III (Fig. 1).
We model bandwidth consumption by assuming that accesses
reaching memory are (a) NIC writes of incoming RPCs into

receive buffers, deemed to be misses (described next), and (b)
all key/value accesses to the datastore (no cache locality). To
model the extra bandwidth of dirty writebacks (Fig. 1, 4 ), we
double an access’ memory bandwidth utilization iff the access
is both a write and determined to be a miss.

Assuming abundant interleaving among requests from clients,
we model the LLC miss ratio for the network buffers as:

MRbuf = 1−min
(
LLC capacity

Recv. buf. size
, 1

)
(2)

Thus, the DRAM traffic generated by the NIC writing in-
coming RPC payloads (Fig. 1, 1 ) is BWNIC × MRbuf ,
where BWNIC is the incoming network bandwidth. Eqn 2
optimistically assumes that the NIC can use the entire LLC,
whereas Intel servers place a default (but configurable) limit
at 10% of the LLC size [19].

We use a service time S = tfixed+(Nacc ×AMAT ), where
tfixed is the CPU processing time for the RPC, Nacc is the
number of serialized memory accesses per RPC and AMAT
is the average memory access time, which under zero load is
45ns, but is affected by queuing conditions. We measured the
zero-load service time to be 630ns in our experimental setup
(see §VI) and set Nacc = 2 because MICA first synchronously
accesses its hash index, and then moves multiple cache blocks
in/out of the data store in parallel due to the MLP of an out-of-
order core. Thus, tfixed = 540ns and each request’s resulting
service time is solely affected by AMAT , which changes as
a function of system load.
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