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ABSTRACT 
In visual analytics, sensemaking is facilitated through 

interactive visual exploration of data. Throughout this dynamic 
process, users combine their domain knowledge with the dataset 
to create insight. Therefore, visual analytic tools exist that aid 
sensemaking by providing various interaction techniques that 
focus on allowing users to change the visual representation 
through adjusting parameters of the underlying statistical model. 
However, we postulate that the process of sensemaking is not 
focused on a series of parameter adjustments, but instead, a series 
of perceived connections and patterns within the data.  Thus, how 
can models for visual analytic tools be designed, so that users can 
express their reasoning on observations (the data), instead of 
directly on the model or tunable parameters? Observation level 
(and thus “observation”) in this paper refers to the data points 
within a visualization. In this paper, we explore two possible 
observation-level interactions, namely exploratory and expressive, 
within the context of three statistical methods, Probabilistic 
Principal Component Analysis (PPCA), Multidimensional Scaling 
(MDS), and Generative Topographic Mapping (GTM). We 
discuss the importance of these two types of observation level 
interactions, in terms of how they occur within the sensemaking 
process. Further, we present use cases for GTM, MDS, and 
PPCA, illustrating how observation level interaction can be 
incorporated into visual analytic tools. 
 
KEYWORDS: observation-level interaction, visual analytics, 
statistical models. 
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1 INTRODUCTION 
Visual analytics is “the science of analytical reasoning 

facilitated by interactive visual interfaces” [1]. The goal of visual 
analytics (VA) is to extract information, perform exploratory 
analyses, and validate hypotheses through an interactive 
exploration process known as sensemaking [2]. In this 
sensemaking loop, users proceed through a complex combination 
of proposing and evaluating hypotheses and schemas about their 
data, with the ultimate goal of gaining insight (i.e. “making sense 
of” the data). A wide variety of statistical models have been 

specifically designed for visualizations of this purpose. Thus, 
many visual analytic systems are fundamentally based on 
interaction with statistical models and algorithms, using 
visualization as the medium for the communication (i.e. where the 
interaction occurs). This communication is performed via direct 
interaction with the parameters of the model. For example, 
Interactive Principal Component Analysis, iPCA [3], allows the 
user to change the weight for each dimension in calculating the 
direction of projection using multiple sliders (one slider per 
dimension). Also, in an interactive visualization using MDS [4], 
the user can weight the dissimilarities in the calculation of the 
stress function through similar visual controls.  

In both instances, the model is made aware of the user input 
through a formal and direct modification of a parameter (i.e. 
parameter level interaction). The drawback of this type of 
interaction is that users are expected to be experts in the 
underlying model that generates the visualization. Moreover, as 
datasets continue to increase in size and dimensionality, directly 
adjusting dimensions or parameters creates an issue of scalability. 
Both interactive MDS [4] and object-centered MDS [5] also allow 
interactions such as “anchoring” points to provide the algorithm 
with user specified starting positions, either to test the sensitivity 
of the current visualization or to obtain an alternate spatial layout 
based on the anchored observations. In both cases, the visual 
analytic system does not leverage the observation level interaction 
to obtain information about the parameters of the model. 

In this paper, we reevaluate interaction with such models, 
moving away from parameter level interactions, and propose to 
focus on interacting with data (i.e. observation level interaction). 
In contrast to parameter level interactions, users are familiar and 
comfortable interacting directly with the data in a spatial 
visualization, freely organizing and relocating observations as an 
integral part of their sensemaking process [6]. Thus, it is 
necessary for us to design models that are more tightly integrated 
with interaction at the observation level, rather than through visual 
controls of parameters. 

Our framework shields users from the technicalities of the 
model and allows them to interact freely with the data in the 
visual space. The typical steps in a discovery process based on 
such a framework will be as follows: 1) the visual analytic system 
provides a visualization based on initial values of model 
parameters, 2) users interact with observations to inject 
understanding and semantic reasoning of the data, 3) under a 
certain predefined mapping of the user's observation-level 
interaction to analytic reasoning, the parameters of the model are 
tuned or re-weighted to reflect the user's understanding of the 
data, and finally 4) the system regenerates an updated 
visualization based on the new parameter values of the model. 
The process continues iteratively, as does sensemaking, for the 
duration of the analytic process.  

We show examples that such a framework can be applied to 
dimension reduction algorithms for visual analysis of high-
dimensional data. Our framework of incorporating user interaction 
can be applied to either deterministic or probabilistic methods. We 
demonstrate this on: PPCA (a probabilistic projection-based 
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model), MDS (a deterministic stress minimization model), and 
GTM (a probabilistic manifold learning model). However, the 
fundamental framework can be applied to numerous other models. 
Finally, we discuss the tradeoffs between these models for 
observation-level interaction. 

2 RELATED WORK 
The three methods in this paper were chosen either because of 

their wide usage or flexibility in modelling non-linear data. A 
large and growing body of literature has shown their successful 
applications in visualization. For example, PCA has gained a lot 
of success in the area of image classification, with applications 
such as face recognition [7-10]. MDS has been used in graph 
layout for network visualization [11-13] due to its rich distance 
information. GTM is good at visualizing unstructured data like 
newsgroup text collections, web navigation datasets [14], and 
datasets which have complicated structure, for instance, protein 
sequences [15] and the standard Swiss-Roll dataset [16].   

Research has gone into creating systems that allow for 
interaction with these algorithms. iPCA [3] allows direct 
interaction with the parameters of PCA, through the use of visual 
controls. In adjusting these parameters, users can observe the 
corresponding change in the visualization. Buja et al. demonstrate 
an interactive version of MDS in which users can define static 
locations of a number of observations, and the algorithm positions 
the remaining observations into the layout [4]. We would consider 
this an example of an observation-level interaction, as users can 
“test” the location of specific observations, and see how the layout 
(and thus the algorithm) responds. However, the interaction is 
directly on pairwise dissimilarities, instead of updating of global 
dimension weights based on the user’s positioning of the 
observations. 

Similarly, Broekens et al. describe an interactive MDS 
algorithm using “object-centric interaction”, where users can 
explore alternative positions of observations by moving them 
within the spatialization [5]. This is similar to our concept of 
observation-level interaction, in that the interaction is occurring in 
the spatialization. However, the movement of an observation is to 
discover the proportional error contribution, and not to adjust the 
parameters of MDS. Another example of interacting directly in 
the spatialization is “Dust & Magnet”, an interactive visualization 
allowing users to understand large, multivariate datasets [17]. It is 
based on the metaphor of magnets, which can attract observations 
that share the attributes of the magnet. Thus, in placing multiple 
magnets into specific locations in the space, users can gain insight 
into the structure of the data through seeing how observations 
respond to the attractors. Therefore, the interaction is performed 
on attractors (i.e., parameters), not on the observations. 

From this work, we learn that statistical methods are widely 
used in visual analytics, and approaches to making these methods 
interactive have been proposed. However, interactivity in these 
cases mainly refers to direct manipulation of model parameters. 
With observation-level interaction, we focus on interacting with 
the observations within the spatial metaphor, and handle the 
corresponding parameter updates through our methods. 

3 OBSERVATION-LEVEL INTERACTION 
In general, observation-level interaction refers to interactions, 

occurring within a spatialization, that enable users to interact 
directly with data points (i.e., observations). A spatialization in 
this context refers to a two-dimensional layout calculated from 
high-dimensional data where the metaphor of relative spatial 
proximity represents similarity between documents. That is, data 
points placed closer together are more similar. Observation-level 

interactions are therefore tightly coupled with the underlying 
mathematical models creating the layout, thus allowing the 
models to update parameters based on the interaction occurring. 
While numerous forms of interaction may exhibit these 
characteristics (e.g., moving clusters of documents, marking 
regions of interest within the spatialization, etc.), in this paper we 
will focus on one – movement of observations. From previous 
studies, we found that movement of observations (in those cases 
documents) closer together is one way for the user to externalize 
the analytical reasoning that those documents are somehow 
similar [6]. In this study, the spatial rearrangement of documents 
was an integral part of each intelligence analysts’ sensemaking 
process. Further, this study points out that users perform 
observation-level interaction in two ways, exploratory or 
expressive, based on the particular analytical reasoning associated 
with the interaction, and also how the system responds.  

During an exploratory interaction, users utilize the algorithm to 
explore the data and the space. For example, through dragging one 
observation within the layout, users gain insight into the structure 
of the data by observing how other data reacts given the 
algorithm. While an observation is dragged through the layout, the 
algorithm adjusts the layout of the remaining data according to 
how the algorithm computes similarity. Thus, when the 
observation is dragged towards a cluster of data, similar data 
points attract, while dissimilar ones repel. Additional information 
such as a list of similar and dissimilar parameters can also be 
displayed. Through this process, users learn about a single 
observation, and how it relates to the other observations in the 
dataset.  

An expressive interaction is different, in that it allows users to 
“tell” the model that the criteria (i.e. the parameters, weights) used 
for calculating the similarity need to be adjusted globally. For 
example, as a user reads two documents, she denotes they are 
similar by dragging them close together. If this were exploratory, 
the two documents would repel again. However, in an expressive 
form of this interaction, it is the responsibility of the underlying 
mathematical model to calculate and determine why these 
documents are similar, and update the model generating the 
spatial layout accordingly. Using the methods below, we illustrate 
how both expressive and exploratory forms of observation-level 
interaction are enabled through modifications made to three 
common statistical methods (PPCA, MDS, and GTM).  

4 METHODS INTEGRATING OBSERVATION-LEVEL INTERACTION 
A probabilistic model assumes a sampling distribution for the 

observed data and an uncertainty over the model parameters (e.g. 
PPCA and GTM discussed in Section 4.1 and 4.3 respectively). A 
deterministic method makes no such assumptions about the data 
or the parameters (e.g. Weighted MDS, discussed in Section 4.2). 
House et al. describe in detail the underpinnings of the 
probabilistic framework, termed as “Bayesian Visual Analytics” 
(BaVA) [18]. The BaVA process begins with an initial display of 
the data. In turn the user may assess the display and decide if it 
matches her mental model of the data. If it does not, the user may 
convey her cognitive feedback f(c) by adjusting the locations of 
two observations to convey her mental model about the two 
observations. The user might also explore an alternative spatial 
location of an observation and see how the other observation 
responds to such an interaction. In short, iterations of user 
interaction and subsequent regeneration of the visualization are 
modelled as sequential updating of maximum a posteriori 
estimates of parameters. The deterministic version of the 
framework, termed as “Visual to Parametric Interaction” (V2PI), 
also starts with an initial display and upon obtaining a user 
feedback sequentially updates the parameters, but the updated 



values of the parameters are such that they minimize some 
measure of discrepancy between the expected configuration of the 
data under the user’s reasoning and the original data [19].  

For each of the models discussed in this paper, we present an 
overview of the model, describe the modifications made to allow 
observation-level interaction, and show a use case demonstrating 
how an end-user can interact with each model. Given that each of 
these models is designed for different types of data (varying in 
structure, size, and nature of the data), the example use cases 
below each use different datasets to match the intended use of the 
models with the use case. The use cases are performed in 
prototype visualizations to show a proof of concept, and we are 
actively working to incorporate these models into more fully 
featured tools.  

4.1 PPCA 

4.1.1 Overview 
Principal Component Analysis (PCA) [20-22] is a common, 

deterministic method used to summarize data in a reduced 
dimensional form. The summary is a projection of a high-
dimensional dataset in the directions with the largest variance. 
When only two directions are chosen, PCA may produce a spatial 
representation or map of the data that is easy to visualize. One 
problem with PCA is that important structures (e.g., clusters) in 
data may not correlate with variance. Thus, PCA spatializations 
may mask information in the data that analysts may find useful.    

Probabilistic PCA [23] is, simply, a probabilistic form of PCA. 
This means that PPCA is not a deterministic algorithm, but a 
statistical modeling approach (specifically, a factor modeling 
approach) that estimates low-dimensional representations of high-
dimensional data. Let d= [d1,É,d n] represents a p×n high-
dimensional data matrix, where n represents the number of 
observations, p represents the number of columns, and di (for i∈ 
{1,É,n}) represents a p×1 vector for observation i. Also, let 
r= [r1,É,r n] represent a low-dimensional analogy of d, such that r 
is q×n and q<p.  For our purposes, we set q=2.  PPCA models d as 
a function of r,  

 
2 2, , , ( , )i i i pd W r No Wr Iµ ! µ != +  

  
where, No(.,.) represents the Multivariate Normal Distribution; µ 
represents a p×1 mean-vector of d; W is a p×q transformation 
matrix known as the factor loadings of d; I p is a p×p identity 
matrix; and σ2 represents the variance of each dimension in d.  By 
convention, PPCA models each ri with a Multivariate Normal 
distribution centered at zero and with unit variance: ri~No(02, I2).  
In turn, the conditional posterior distribution for ri is No(η,Σr), 
where 
 

( )2 1
2( ) iW W I W d! " µ#$ $= + #  

( ) 12 2
2r WW I! !

""#$ = +                                (1) 

 
A spatialization of data d that relies on PPCA plots the posterior 

expectation η. Similar to PCA, the coordinates η rely on the 
variability observed in d. To see this, let Σd represent the marginal 
variance of di, (Σd=V[di |W,µ,σ2]). Since Σ d=W´W+I 2σ

2, we can 
rewrite η as η=Σ d

-1W(di -µ) which shows that the relationship 
between Σ d and η is well defined.   

The final step in PPCA is to estimate the model parameters, 
{W, µ, σ2, Σd}. We take a Bayesian approach. We specify either 

reference or flat priors for each unknown (as suggested by [23] 
and use Maximum A Posteriori (MAP) estimators to assess (and 
plot) η. For example, when we assign π(Σd) ∝1, the posterior 
distribution for Σd  is an Inverse Wishart (IW) distribution,  
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Where Sd represents the empirical variance of d. The MAP 
estimate of Σd is Sd.   

4.1.2 User Guided PPCA 
To enable analysts to guide PPCA via the data visualization, we 

take advantage of the relationship between Σd and η. Namely, 
changes in Σd will effect η, and changes in η will effect Σd, when 
we invert Equation (1).   

After obtaining an initial PPCA display, the user adjusts the 
locations of two observations; i.e., adjusts two columns in η. If 
the two observations are moved close to one another, the analyst 
is conveying that in her mental map, the observations are more 
similar than what they appear in the display; and, if the 
observations are dragged apart, the analyst is conveying that the 
observations differ more than what they appear.    

The challenge in BaVA is to parameterize the cognitive 
feedback and update the visualization [18]. First, we determine 
the dimensions of the data d for which the adjusted observations 
are similar and different. Second, we transform the adjustments to 
η into a hypothetical p×p variance matrix. We denote this matrix 
by f(p), as it is a quantified version of f(c). In f(p), the dimensions for 
which the adjusted observations are similar have small variances 
and the dimensions for which adjusted observations differ have 
large variances. Third, we consider the hypothetical variance f(p) to 
be a realization of a Wishart distribution that has an expectation 
equal to Σd. Finally, we apply Bayesian sequential updating [24, 
25] to adjust Equation (2) by the parametric feedback f(p),  
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where, υ is solved from a specification κ(κ ∈ [0,1]) made by the 
analyst that states how much weight to place on the feedback 
relative to the data. Namely, the updated MAP estimate for Σd is a 
weighted average of the empirical variance Sd and feedback f(p) 
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thus υ= nκ/(1-κ). Now, the PPCA projection of the data d that is 
based on MAP(Σd) will portray both information in the data and 
expert feedback. 

4.1.3 Example 
A sensitive issue for taxpayers, parents, children, educators, and 

policy makers is whether an increase in money devoted to 
education will increase education quality. Money provides a 
means to buy modern textbooks, employ experienced teachers, 
and provide a variety of classes and/or extra curricular activities. 
Although, do the students who benefit from these high-priced 
resources actually improve academically? 

In 1999, Dr. Deborah Guber compiled a dataset for pedagogical 
purposes to address this question [26]. Based on the following 
variables, the dataset summarizes the academic success, 
educational expenses, and other related variables in 1997 for each 
U.S. state: the average exam score on the Standard Aptitude Test 



 
(a) Initial                            (b) SAT Scores 

 
              (c) EXP                                  (d) PER      

 
Figure 1. After injecting expert feedback into Figure 1a), we 
obtain Figures b)-c). For frame of reference, we marked the 
two points moved to inject feedback by `x' in Figure b). The 
configuration of points in each graph are identical, but the 
observations are labeled differently. In Figure b), symbols `●’ 
and `○’ mark the upper and lower 50% quantiles for SAT 
scores respectively; in Figure c), symbols `●’ and `○’ mark the 
upper and lower 50% quantiles for EXP scores respectively; 
and in Figure d), symbols `●’ and `○’ mark the upper and lower 
50% quantiles for the percentage of students taking the SAT 
(PER) respectively. Notice the clusters in each graph 
correspond with SAT and PER, but not EXP. 

 

(SAT); the average expenditure per pupil (EXP); the average 
number of faculty per pupil (FAC); the average salary for teachers 
(SAL); and the percentage of students taking the SAT (PER). To 
increase the complexity of the dataset slightly, we added two 
variables from the National Center for Education 
Statistics(www.http:nces.ed.gov): the number of high school 
graduates (HSG) and the average household income (INC). We 
hypothesize that states that spend more on education will cluster 
with states with high SAT averages.   

To assess the hypothesis and explore the data, we implement 
the BaVA process using PPCA. Figure 1a), displays our initial 
view of the data. Notice that the visualization does not present any 
structure in the data.  Analysts in the field of education, notice that 
two states with different expectations for SAT scores are 
displayed close to one another. Thus, we select the appropriate 
observations and drag them apart as an expressive interaction to 
obtain an updated view that is displayed in Figure 1b). There are 
two clusters in 1b). These clusters correspond with SAT scores 
above and below the national median.  

Based on our hypothesis, we suspect that the clustering 
structure in SAT relates to EXP. However, when we re-plot 1b) 
and label the upper and lower EXP 50% quantiles in Figure 1c), 
EXP does not explain the clusters. Thus, we used a bi-plot to 
identify which variables explain the structure we see in Figure 
1b). When we mark the observations above and below the 
empirical PER median in Figure 1d), we see that PER and SAT 
clearly relate to the formation of clusters in the dataset. Thus, 
further analyses of SAT and EXP must control for PER.   

4.2 MDS 
We extend our framework to another deterministic method, 

which forms the basis for a large number of visualization 
techniques: Multi-Dimensional Scaling (MDS).  

4.2.1 Overview 
All complex data visualizations are based on high-dimensional 

datasets, which contain features corresponding to dimensions, and 
the relative importance of such features through a set of weights 
(wi). Classically weighted multidimensional scaling deals with 
mapping a high dimensional dataset d= [d1,É,d n] into a low 
dimensional (in our case two-dimensional) space r, by preserving 
pairwise distances between observations in the low dimensional 
representation. Let w represent the p-vector of feature weights:  
w={w1,É, wp}. Given a set of feature weights, the low dimensional 
spatial coordinates are found by solving:  
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such that ∑k wk=1. dist() represents any distance function for 
measuring individual features in the high dimensional space. 
Because it is not possible to estimate weights and the set r 
simultaneously, we provide a uniform weighting of the space 
wi=1/p for our first iteration. 

4.2.2 User Guided MDS 
Once a visualization is generated, the user may either agree 

with the display and learn from certain aspects of the 
visualization, or disagree, based on their domain expertise. Hence, 
the user may wish to interact and rearrange a few of the 
observations in the visualization. Given a spatial interaction in the 
form of adjusting the relative position of a set of points, we 
compute a set of feature weights, which are consistent with both, 
the users adjustment and the underlying mathematical model. 
These are computed by inverting the optimization, by fixing the 
locations of the adjusted points and finding an optimal set of 
weights, which are consistent with the visualization. Explicitly, 
we solve for w such that  

 

 
Figure 2. Visualization of the 1990 census dataset using 
classical MDS. 
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where ∑k wk=1 , and M the set of adjusted observations (ri, rj). It 
should be noted that computing the new weights is extremely fast, 
and is then followed by a full MDS step. Thus, the entire 
generation of a new view can be performed in real time, 
depending on the size of the dataset and the specific hardware 
used. 

4.2.3 Example 
Consider for example a visualization produced by a standard 

MDS technique. In this example we focus on the 1990 census 
dataset [27] under a Classical Metric Scaling (CMS) [28], using a 
Hamming distance (due to the categorical nature of the dataset) 
for measuring features in the high dimensional space. Figure 2 
illustrates results obtained under a Classical Metric Scaling 
(CMS).  

Given this visualization, a user may distinguish 3-5 main 
clusters, and inquire what they mean. We see two major ways a 
user can interact with the visualization, in order to explore the 
space, and learn about the underlying dataset. The first of these is 
by highlighting a subset of the data, based on some question the 
user seeks to answer, and then rearranging the visualization based 
on inconsistencies with their mental model (expressive 
interactions). 

The second approach is to hone in on visual structure, and move 
points in the visual space in order to learn what the structure 
relates to in terms of the feature space (exploratory interactions). 
Both of these interactions are nearly identical, however the 
motivation for the interactions will differ. We will illustrate both 
types of visual reasoning through an example based on the 1990 
census dataset. 

The user may wish to interact expressively and identify points 
in the space that pertain to high and low income groups. The user 
highlights individuals with incomes below 15K and over 60K, as 
shown by and  in leftmost panel of Figure 3, respectively. 
Because of the close proximity of the highlighted groups in the 
main clusters, the user drags (denoted by ⊗) a few representative 
low and high-income individuals into sets of groups in each of the 
3 main sub-clusters. The system reports back a set of weights, 
which explain how much a particular feature explains the 
arrangement of points suggested by the user. High weights relate 
to important features, while low weights suggest their 
corresponding features do not relate to the user's visual 

rearrangement. For our example, we learn not only that income 
level (29%), but also by their means of transportation to work 
(20%), whether or not they worked the full year (25%), and their 
level of education (10%) are related to the user's repositioning of 
points. Given this information, the system updates the 
visualization, as shown in center panel of Figure 3. We notice that 
in the resulting visualization, the income groups are clearly 
separated. The resulting visualization displays a much richer 
spatialization than simply showing clusters relating to the income 
groups. For example, we highlight individuals that actually 
worked in the right most panel of Figure 3, and notice these 
individuals are shown in distinct sub-clusters. 2 of the 4 clusters in 
which individuals work pertain to low-income groups, and the 
other 2 pertain to high-income groups (as illustrated by the  and 

 symbols).  
Figure 4 shows how the user might perform an exploratory 

interaction in order to learn what explains the clustering structure 
between the working/low income groups. To suggest the clusters 
could be moved further away from each other than they appear in 
the current visualization, the system reports back the weights, 
which explains the differences in the groups. For this example, the 
user learns that one of these clusters contains individuals that have 
a reliable mode of transportation to work (93% explained). The 
visualization could be updated based on this information, or the 
user could simply document this fact and proceed by explaining 
other areas of the spatialization. As always, there are an endless 
number of possibilities for learning about a high dimensional 

   
Figure 3. A sequence of visualizations derived through observation-level interaction with a modified MDS method. (Left) The user moves a 
set of points into new locations, communicating his intuition that there may be additional structure within each cluster. (Middle) The updated 
visualization showing new clusters. (Right) Highlighting showing the separation of income groups in the updated visualization. 
 

 
Figure 4. A user performing an exploratory interaction to learn 

    what distinguishes two clusters. 



dataset via visual expression/exploration. Another example of an 
exploratory interaction with MDS is demonstrated by Buja et al. 
in which users can constrain observations to specific spatial 
locations [4]. 

4.3 GTM 

4.3.1 Overview 
Introduced by Bishop et al, [29] Generative Topographic 

Mapping (GTM) is a nonlinear latent variable modeling approach 
for high-dimensional data clustering and visualization. It is 
considered to be a probabilistic alternative for both the Self-
Organizing Map (SOM) algorithm [30] and Nonlinear PCA. 
Similar to PPCA, GTM estimates a latent variable r= [r1,É,r n] 
(q×n matrix) that is a low-dimensional representation of high-
dimensional data d= [d1,É,d n] (p×n matrix such that p>q). 
However, unlike PPCA, the q-dimensional coordinates r in GTM 
map nonlinearly to a complex manifold m= [m1,É,mn] that is 
embedded in the high-dimensional space.  This manifold, ideally, 
characterizes important structure in data d and represents 
geometrically the expected value for d in the Gaussian model,   

    1( ( ), )i i pd N W r I ! "#:                                (3) 

 
To estimate a coordinate mi, GTM takes a weighted average of J 
radial basis functions {Φ1(),…,ΦJ()} (Φj() represents a radially 
symmetric Gaussian kernel) given ri and parameters there in,  
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where W is a p×J transformation matrix; Φ(ri) is a J×1 vector 
such that Φ(ri)=[Φ1(ri),Φ2(ri)…,ΦJ(ri)]ʹ′; and µj is a q×1vector that 
centers the basis functions. The center coordinates µ=[µ1,…,µJ] 
cover the q-dimensional latent space uniformly. Model parameters 
are estimated using the EM algorithm [31]. 

One advantage of GTM is that, by construction, it lacks 
sensitivity to outliers.  For tractability, the coordinates of each ri 
are limited a priori to a finite set g of K possibilities, ri 
∈g={g1,…,gK} that covers the q-dimensional latent space 
uniformly.  To decide which value for ri generates di, GTM 
estimates the posterior probability, i.e., responsibility, that ri=gk. 
Given a prior probability that ri=gk is 1/K for all k ∈{1,…,K}, let 
Rik represent the posterior responsibility that latent variable ri 
generates di, when ri=gk, 
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In turn, GTM plots the posterior mode, expectation, or any 
quantile of ri given specifications g and estimates for {Ri1,ÉRiK}.    
4.3.2 User Guided GTM 

GTM is a complex modeling approach that relies on many 
tunable parameters that are hard to interpret. User Guided GTM 
(ugGTM) will allow analysts to both take advantage of the 
benefits of GTM and guide the complicated GTM 
parameterization. Specifically, analysts may label, i.e., tag 
clusters, tag regions of the visualization space, and query 
differences in documents.  

Here, we illustrate ugGTM within the context of an example. 
We have a collection of 54 abstracts from proposals funded by the 
National Institute for Health (NIH). After standard preprocessing, 
we apply a ranking system that we will call an Importance Index 
(ImpI), which is based on the Gini coefficient. ImpI considers 
both the frequency and uniqueness of words that are shared across 
documents and assigns a metric between 0 and 1.  Entities that 
occur equally frequently in all the documents have ImpI=0 and 
entities that occur in only one document has ImpI=1.  We selected 
the 1000 entities with the highest ImpI. One advantage of ImpI is 
that we can measure document similarity using Euclidean distance 
between proposals. Pairs of documents with small Euclidean 
distances have comparable terms with similar frequency; and pairs 
of documents with large Euclidean distances have few, if any, 
words in common. 

We apply GTM for J=16 and K=400 to obtain an initial display 
of the proposals, shown in Figure 5. Notice four clusters appear in 
Figure 5 that we labeled A, B, C, and D.   

Tagging the Clusters and the Space. To understand the 
meaning of the clusters, we determine the words that both overlap 
the least within each cluster and have the highest ImpI’s.  
Specifically, we apply k-means [32] to the low-dimensional data 
coordinates to determine cluster memberships.  For each cluster 
we sum the ImpI vectors across the documents and rank the 
entities based on the ImpI sum. Entities ranked highest are those 
that 1) have importance in the corpus (as determined by the ImpI) 
and 2) have occurred most frequently.  Given top rankings from 
each cluster, we delete those shared by all four clusters. Table 1 
lists the unique key words that describe each cluster. Group A 
represents proposals that include brain related cancer studies and 
their clinical applications. Group B represents proposals related to 
human neural systems. Group C represents proposals that address 
genomic and transcriptomic research problems.  Group D 
represents proposals about infectious diseases, such as 
tuberculosis, and immunity.  

 
Table 1. Cluster tags (top 10 keywords) for NIH abstract groups. 
 

Group A 
tumors, brains, stem, treatments, patients, 
generations, drugs, ordering, controlling, 
therapeutics 

Group B 
stem, neuronal, brains, proteins, deliveries, 
regulations, neural, patients, differentiation, 
expression, treatments 

Group C 
stem, genetically, regulations, drugs, 
structurally, proteins, genomics, epigenetics, 
RNAs, complexities 

Group D 
Infections, treatments, tuberculosis, 
expression, patients, drugs, strains, 
resistance, vaccination, immunity 

Shared by All 
Groups 

cells, functionalization, diseases, 
developments, genes, cancerous , studying, 
researchers, proposing, mechanisms, 
specification 

    
As described previously in Equation (3), GTM characterizes 

high-dimensional data as random perturbations from a complex 
manifold m; E[di] = mi for all i ∈ [1,…,n]. To tag the visualization 
space, we select any spot, r+, in the visualization and use Equation 
(4) to estimate its corresponding location on the manifold, m+. The 
estimate m+ will be a 1000×1 vector of ImpI’s that we may use to 
rank the entities. We report the top ranked entities to tag the 
space. For example, in Figure 5, we pick up a spot r+ (represented 



by a pink circle) that locates roughly at the center of cluster D.  
Several of the tagged top keywords overlap with the words 
describing cluster D. 
    
Document-Based Query and Cluster Reorganization. It is 
common for users to assess documents by searching for keywords. 
However, keyword searching may be a tedious task and fail to 
reveal document clusters of interest. For example, keyword 
searches may identify documents with similar keywords, but used 
in different contexts; miss documents that contain combinations of 
the keywords; or prioritize words that have little relative 
importance for the user.  In response to the challenges of keyword 
searching, many analysts rely on document matching. For 
document matching, entire documents can be used to identify 
which of the remaining documents in the corpus are most similar 
(to the chosen document). Hence such a matching algorithm is a 
document-based query of a corpus. 

In our ugGTM, users may query documents in the corpus by 
dragging a document of interest directly in the visualization and 
watching how the remaining documents respond; e.g., similar 
documents will follow the document being dragged and dissimilar 
documents will repel. The behaviour of the documents is similar 
in spirit to Dust and Magnets (DnM) [17]. In DnM, analysts may 
drag or shake magnets that represent variables in the dataset and 
watch as relevant documents follow the magnets. However, a 
major difference between DnM and ugGTM is that when users 
drag documents (not variables) and watch how the remaining 
react, they are comparing documents based on all of the variables 
in the dataset simultaneously. In turn, users may learn which 
variables are important for comparisons, based on tags within the 
visualization space. 

The interaction is possible because ugGTM gives control to the 
users of some parameters in the model via the visualization.  Let 
r* represent the low-dimensional coordinates for a document that 
an analyst has chosen to drag. Given r*, we add to the model 
described in Equations (3)-(6) by expanding sets g and Φ  so that 
g={g1,…, gK, g*} and Φ={Φ1,…,ΦJ,Φ*}, where Φ* = exp{-||ri-
µ*||2/2σ2} and g*=µ*=r*. In turn, we assign the posterior 
responsibility (Equation 6) that r*  generates d*  via m*  to 1 (where, 
m*  is defined by Equation (4) so that the mapping between the 
low- and high- dimensional coordinates for the moving 
observations is deterministic. 

To propagate the effect of moving r*  to the remaining 
visualization, we take a local regression approach [33] to 
characterize high-dimensional data di |{ ri=g*,m*} in that we scale 
di-m* by the square-root of function V given scaled distance Δi = 
||d*-di||/c so that,  
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where c is user-defined; e.g., V(Δi)=Δi

2 and c=0.5. In turn, both 
posterior responsibility estimates (Equation 6) and estimates for m 
(Equation 4) change.  Let mi

(c) and mi
(u) represent the current and 

user-adjusted manifold estimates for observation i.  We define the 
BaVA-GTM estimate for the manifold, mi

(c+1), by 
  

( 1) ( ) ( )(1 )c c u
i i i i im m mδ δ+ = + − , 

 
where δi=||ri-r

* ||/b and b=max{||r1-r
* ||,…,||rn-r

* ||} so that δi∈ [0,1].  
This definition for mi

(c+1) controls the visualization so that only the 

regions of interest respond to user interactions; areas that are 
distant from the dragged observations do not change.   

Parameters g*, Φ*, V(Δi), δ  and m(c+1) in ugGTM work together 
in the following way. When a data point di is far from d*, V(Δi) 
will be large and thus decrease the posterior  responsibility 
(Equation 6) that ri=g* generates di. Similarly, when di is near d* , 
the corresponding responsibility will increase. Increases in the 
responsibility for ri=g* will cause the coordinates for ri to 
gravitate toward r*. Thus, analysts may specify constant c in our 
definition Δi, depending upon how many document matches they 
seek for the moving document. Also, the degree to which the 
observations gravitate toward r* is determined by δ and m(c+1). 
When the manifold shifts from m(c) to m(c+1), the meaning of the 
visualization space changes, as we demonstrate in our example.  

4.3.3 Example 
For our NIH example, we apply ugGTM. We display an initial 

GTM view of the documents (the 54×1000 dataset) in Figure 5. 
Suppose a user identifies a specific document of interest, e.g., Doc 
7 (highlighted in yellow in Figure 5) to investigate. A preliminary 
investigation might involve a sequence of non-spatial interactions, 
such as, searching of multiple keywords, reading all or part of the 
document etc. However, a comprehensive assessment of the 
document may require spatial interactions as well. The user might 
explore space tags across the screen and determine a more 
appropriate location for the document of interest. In this case, Doc 
7 is closer to Group A, and is about developing new brain tumor 
therapies and tumor stem cell quiescence. The keywords this 
document shares with group A include tumors, brains, cancerous, 
therapeutics and chemotherapy. However, since Doc 7 relates to 
therapy developments for disease, it shares some keywords with 
Group D; e.g., treatments, strategies, patients, drugs, resistance, 
clinically.   

As an exploratory spatial interaction, the user drags Doc 7 to 
the lower left corner of the display and watches how the 
remaining documents react. By repositioning Doc 7, the user 
redefines the spatialization of the screen, i.e., modifies the space 
tag corresponding to a location. For example, when we tag the 
same coordinates r+ in Figure 6 (r+ are the coordinates of the 
space tagged in Figure 5), we learn that the top keywords include 
treatments and tumors as well as those that were there earlier. 
Recall that ugGTM uses every variable in the dataset to compare 
documents. For this reason, documents that mention stem cells 
and other important keywords in Doc 7 follow Doc 7. As 
expected, many documents in Group D gravitate toward Doc 7. 
However, a few documents in Group B also followed. Future 
work will allow users to weight the keywords in Doc 7, if desired. 
Also Documents with ID 20, 22, 32 and 39 change locations. 
Important keywords for these documents include the following: 
Doc 20 discusses diagnosis of HIV infection in patients who live 
with limited access to therapeutic treatments; Doc 22 discusses 
expression characteristics of a drug-resistant gene; Docs 32 relates 
to varying yeast strains; and Doc 39 relates to Lymphocyte 
Homing. Docs 20 and 22 repelled against Doc 7 because the 
redefined-manifold down-weighted their important entities in the 
lower left corner and up-weighted the entity tumor. Thus, Doc 20 
and Doc 22 shifted to Groups A and C respectively. Docs 32 and 
39 are separated slightly from Group D and gravitated toward 
Group C because they have a few words in common with each 
group, but not enough to place them in either corner. 

An interesting note about the updated manifold is the change in 
shape or magnification factor [34]. The colour in the background 
is plotted based on the logarithm of the magnification factor 



evaluated on a fine grid that covers the visualization space. Due to 
the nonlinear mapping from ri to mi, equal distances in the 
visualization do not necessarily imply equal distances in the high-
dimensional space. The magnification factor describes the rate of 
change between distance or area in the latent space and the 
corresponding distance or area on the manifold and can be 
interpreted as a description of how wiggly the manifold is. 
Overall, the magnification factor is lower in Figure 6 than in 
Figure 5 and the clusters formed in Figure 6 are mainly in low 
magnification areas. This means the clusters in Figure 6 are in 
flat, stable regions of the estimated manifold. Thus, observations 
in these clusters are closer to one another than observations shown 
in clusters within Figure 5. 

5 DISCUSSION 
We present a comparison of key characteristics of the methods 

used in this paper in Table 2. Again, the purpose of this work is 
not to make a direct comparison of these three methods, but rather 
to present how to apply observation-level interaction to each 
method, and summarise our findings in the table.  

Mappings. The three methods discussed in the paper provide 
us with a spatialization of the data within the bounds of their 

algorithmic complexity. Points that are close in the higher 
dimensional space remain close to each other in the visualization 
in all the algorithms although the concept of proximity varies 
depending on the algorithm. As an artifact of the algorithms, in 
both PPCA and MDS, the high dimensional data is assumed to be 
a linear mapping of the visualized representation while GTM is a 
non-linear mapping of the same. Hence, the same dataset might 
provide widely disparate visualizations for different algorithms. 
Spatially this might translate to the fact that based on the 
algorithm, the user’s spatial interaction might target different sets 
of observations. Each algorithm can potentially have its own set 
of diagnostics overlaid with the visualization that might aid the 
user in understanding the proximity of the data in the higher 
dimensions; e.g. visualizing the magnification factor along with 
the data in GTM indicates the level of distortion. The goal of the 
user is to obtain a view in multiple steps that matches with his 
mental model irrespective of the algorithm used to visualize the 
data. The specific steps that the user goes through should be 
immaterial in so far as the final visualization is concerned and all 
the algorithms discussed here have the flexibility to provide that.  

PPCA relies on the assumption that a single linear projection 
exists that can reveal useful structure. MDS provides a two- 
dimensional representation of the observations via penalization of 
any distance distortion that happens in the two-dimensional 

Table 2. Comparison of the methods used in this paper.  

  PPCA MDS GTM 

Mapping Type Linear Linear Non-linear 

Method Characterisation  Variance Similarity Manifold 

Distribution Assumption Probabilistic Deterministic Probabilistic 

Scalability (Observations) ★★★ ★ ★ 

Scalability (Dimensions) ★ ★★★ ★★ 

Conceptual Clarity ★★★ ★★★ ★ 

Running Time ★★ ★★★ ★ 

Outlier Robustness ★★ ★★ ★★★ 

★★★ = Good ★★ = Average ★ = Poor 

 
Figure 6. The updated view after moving doc 7 from top left to 
bottom left. 

 

 
Figure 5. GTM display of the NIH abstracts. Black dots mark 
documents and labeled by their document ID. 
 



representation using a stress function. However, the linear 
projection assumption may not hold for complex datasets or, the 
visualization based on minimizing stress in MDS might not reveal 
all the information in the data. In PPCA, using variance to select 
the direction in which to project data makes sense for datasets 
with a global linear structure [23]; the projection will minimize 
the number of observations that overlap so that they are as visible 
as possible.  

However, variance estimates and hence PPCA visualizations 
are sensitive to outliers and it is not uncommon for PPCA to 
display one or two outliers and a cloud of occluded points. Under 
Euclidean distance, MDS is algorithmically the same as PPCA 
and will suffer from the same sensitivity to outliers. Assessing 
such a visualization and making appropriate adjustments would 
be, at best, challenging. Thus, a more complex methodology is 
often needed to summarize datasets, e.g., mixture PPCA or GTM. 
GTM being a topographic mapping places the outliers at one end 
of the screen or at a position that is distant from the region that 
has more structure. In our interactive framework, outliers can be 
brought closer to existing user defined clusters through redefining 
the principal components in PPCA, reweighting of the dimensions 
in MDS and constraining responsibilities in GTM; in all the cases 
the user’s observation-level interaction initiates the parameter 
update. 

Scalability. In terms of time complexity, GTM is O(KND) (K 
number of latent points, N number of observations, D data 
dimensionality), PPCA is O(qND) (q is the dimension of the 
latent space, usually equals 2) and MDS varies from O(qND) to 
O(N3). The effect of high dimensionality (i.e. the number of 
columns for every observation) on the run-time will be similar for 
all three algorithms. The challenge in scalability (large N) is also 
of the same order for the three algorithms when Euclidean 
distance is used.  

However in the design of a visual analytic system that 
incorporates user interaction in the framework, the choice of the 
algorithm should be based not only on the run-time of the 
algorithm but also on the cost incurred in converting the 
observation-level interaction or feedback to updated values of the 
parameters for the method.  In PPCA, it is the cost of evaluating 
the feedback matrix f(p); in MDS it is the cost of obtaining optimal 
feature weights w based on pair-wise distances of the observations 
that the user has moved; and in GTM, it is the cost of computing 
distances between data points and reference vectors. Under such 
considerations, we think MDS provides the quickest and easiest 
two-dimensional visualization of the data, followed by PPCA and 
GTM.  

We maintain a probabilistic framework in PPCA and GTM. 
Specifically for PPCA, computation is quick since the primary 
parameter of interest Σd has a posterior distribution and a 
conjugate feedback distribution, and MAP(Σd) can be computed 
without MCMC.  Thus, analysts can explore the data in real time.  
GTM (although being most flexible in handling more complicated 
data occlusion issues that challenge MDS or PPCA) is based on 
an expectation-maximization algorithm and hence needs more run 
time to converge to the optimal parameter value. 

Sensitivity. The methods described in this paper will respond 
based on the interaction performed (i.e., number of observations 
moved, distance the observations were moved, etc.). For example, 
moving a single observation will generally result in a less drastic 
change in the layout compared to a similar interaction performed 
on a cluster of observations. Thus, the sensitivity of the models in 
terms of responding to the user’s intuition is dependent on how 
large the change or update is provided by the user’s interaction, 

the size of the dataset, as well as if the data supports the suggested 
updated layout. The methods will attempt to find the “best fit” 
given the user feedback, but will maintain mathematical validity 
(i.e., users cannot force the layout if the data does not support it). 
The result is such that the system balances the user’s intuition 
with the structure of the data to reduce bias. The goal of these 
techniques is not to converge on a single structure or layout, but 
rather to allow exploration of many possible structures. 

Interaction. The examples of how observation-level interaction 
can occur within spatializations in this paper show only one form 
of interaction available to users within spatializations – movement 
of individual observations. The methods are expandable to allow 
more complex interactions, such as moving clusters of 
observations, annotating a region of the spatialization, and other 
interactions used for communicating the intuition of the user to 
the system. In a fully implemented visual analytics system, these 
interactions may include queries, highlighting, and other 
interactions from which analytical reasoning of users can be 
interpreted.  

Implementation. The prototype visualizations shown in this 
paper are intended to provide working examples of the modified 
methods. Through the use cases, we highlighted how an end-user 
might interact with such systems. We plan to integrate these 
methods into more fully functional visual analytics tools. That 
will allow us to perform a series of user studies to evaluate the 
usability and effectiveness of observation-level interaction in 
terms of providing insight to users, and supporting the 
sensemaking process.  

6 CONCLUSION 
In this paper, we described how modifications of powerful 

statistical methods allow user interaction at the observation-level. 
By interacting within the visualization through movement of 
observations, users are able to perform exploratory and expressive 
interactions. Thus, users are able to perform sensemaking tasks, 
such as hypothesis validation, directly within the spatial metaphor. 
By keeping the interaction at the observation level, users are not 
required to transform their sensemaking into a combination of 
statistical parameter updates.  

In particular, we modified PPCA, MDS, and GTM using BaVA 
[18] and V2PI [19] approaches, so that users can focus on their 
spatial analysis of data rather than directly updating statistical 
parameters of models. We present three examples (one for each 
modified method) that illustrate the effectiveness of these new 
models. Based on the positive results in this paper, as well as the 
lessons learned, coupling interaction with statistical models 
provides an opportunity to explore additional forms of spatial 
interaction for visual analytic applications. 
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