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Abstract—Visual data analysis is composed of a collection of cognitive actions and tasks to decompose, internalize, and 
recombine data to produce knowledge and insight. Visual analytic tools provide interactive visual interfaces to data to support 
discovery and sensemaking tasks, including forming hypotheses, asking questions, and evaluating and organizing evidence. Myriad 
analytic models can be incorporated into visual analytic systems at the cost of increasing complexity in the analytic discourse 
between user and system. Techniques exist to increase the usability of interacting with analytic models, such as inferring data 
models from user interactions to steer the underlying models of the system via semantic interaction, shielding users from having to 
do so explicitly. Such approaches are often also referred to as mixed-initiative systems. Sensemaking researchers have called for 
development of tools that facilitate analytic sensemaking through a combination of human and automated activities. However, 
design guidelines do not exist for mixed-initiative visual analytic systems to support iterative sensemaking. In this paper, we present 
candidate design guidelines and introduce the Active Data Environment (ADE) prototype, a spatial workspace supporting the 
analytic process via task recommendations invoked by inferences about user interactions within the workspace. ADE recommends 
data and relationships based on a task model, enabling users to co-reason with the system about their data in a single, spatial 
workspace. This paper provides an illustrative use case, a technical description of ADE, and a discussion of the strengths and 
limitations of the approach. 
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1 INTRODUCTION 
Visual analytics facilitates discovery and analytical reasoning via 
interactive data visualizations [1]. By coupling data analysis 
techniques with interactive visualizations, visual analytics enable 
humans to reason about complex datasets. These technologies 
complement human cognition with analytic techniques, with the goal 
of producing insights. Visual data exploration tasks are often 
performed via series of interactions with different visual 
representations and across datasets of different media, size, and 
structure. Further, each of these datasets may require a specific 
technique or approach. 

The complex cognitive process of data analysis has been broadly 
described by a notional model of sensemaking [2], consisting of two 
primary activities: information foraging and synthesis. During 
information foraging, analysts seek relevant data through a series of 
broadening and narrowing searches. During synthesis, analysts 
develop and revise conceptual models or hypotheses and fit the data 
to these models. The sensemaking process is iterative, with new 
foraging-synthesis iterations initiated to start new subtasks, address 
gaps identified during current subtasks, reduce uncertainty, or 
investigate anomalies, for example. These foraging-synthesis 
iterations are more likely to be ad hoc and idiosyncratic than 
systematic, with much of the variability stemming from the 
transitions between foraging-synthesis iterations [3]. The planning, 
execution, and re-combination of these subtasks into a coherent 
whole is a critical part of the analytic discourse [4]. 

Visual analytics have adopted concepts of mixed-initiative 
systems [5] to balance sensemaking efforts between the human and 
the system. Such systems aim to offload more computationally 
appropriate tasks or actions onto the system, enabling humans to 
reason about concepts at a higher level. A key idea is that these 
systems take some form of initiative on behalf of the user, i.e., to 
balance the effort between user and system. Visual analytic systems 
exist where initiative is taken on behalf of the user by steering data 
analytic models [6], modeling the intent and cognitive characteristics 
of users [7], [8], and adjusting the structural representation of the 
data by defining the features or dimensionality of the data [9]. These 
systems are often enabled using techniques for inferring analytical 
reasoning from user interactions and coupling these inferences with 
some form of model steering or selection.  

Kang and Stasko [10] and Zhang and Soergel [11] identify the 
need for software-based assistants to support the iterative 
sensemaking process. Kang and Stasko describe a hypothetical tool 
that permits users to move flexibly among their conceptual model, 
foraging, and synthesis. We assert that a mixed-initiative system is 
appropriate to address this need. 

However, we posit that an open challenge is in understanding 
how to design and implement such a mixed-initiative visual analytics 
system that computationally complements analysts in the iterative 
process of foraging and synthesis. To our knowledge, no design 
guidelines for such systems have been described. 

This paper contributes a set of design guidelines and a 
corresponding prototype mixed-initiative system that aims to support 
sensemaking by automatically foraging and recommending relevant 
data for visual data exploration based on the current state of the 
sensemaking activity, in essence assisting with the transition between 
one foraging-synthesis iteration and the next. Our prototype, the 
Active Data Environment, or ADE, incorporates diverse data into a 
single spatial visualization where users can organize information. 
Similar in design to prior spatial workspaces (e.g., [12], [13]), such 
visualizations enable users to externalize their incremental analytic 
artifacts during sensemaking [14], [15]. ADE provides a dynamic 
“thinking space” [16] in which the user develops and refines her 
conceptual model, and in which relevant data can be recommended 
for her consideration. 
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ADE attempts to infer the analytic task from the user’s 
interactions in this workspace and invoke task models when 
appropriate. These models recommend relevant information and 
relationships or connections. A recommendation is composed of the 
relevant data, a natural-language explanation for the 
recommendation, and a numeric relevance measure. ADE presents 
recommendations to the user in the context of her analytic thinking 
environment. We refer to this information as “active data.” With no 
need for the user to formalize a query, the data finds the user. 

In this paper, we outline related work and present a candidate set 
of design guidelines for mixed-initiative iterative sensemaking 
environments. We describe a usage scenario for ADE and discuss the 
major components of ADE in detail. Finally, we present a discussion 
of the strengths and limitations of our approach and conclude with a 
description of future work. 

2 RELATED WORK 
We discuss related work in three areas: sensemaking with spatial 
workspaces, mixed-initiative visual analytics, and task modeling and 
recommender systems. 

2.1 Supporting Sensemaking with Spatial Workspaces 
The cognitive activity of gaining understanding about the world 
through the analysis of data, commonly called sensemaking, has 
been widely studied. Pirelli and Card depict the cognitive stages of 
sensemaking in the sensemaking loop [2], which emphasizes the 
importance of synthesizing as well as foraging for data and 
information to gain insight. This is a complex, iterative process, 
entailing generation and testing of hypotheses as well as lower-level 
data filtering and retrieval tasks. Sensemaking involves internalizing 
and understanding information in the context of the analyst’s 
experiences and prior knowledge, ultimately constructing knowledge 
through the combination of new knowledge artifacts found in the 
data and existing knowledge structure [2]. The fluidity of these tasks 
was emphasized by Kang and Stasko [10].  

Visual analytic systems have been developed to support 
sensemaking. An early example is the Entity Workspace [17], which 
used an evidence file metaphor. One common visual metaphor to 
support sensemaking is a spatial workspace, or canvas. Andrews et 
al. found that providing analysts with the ability to manually 
organize information in a large spatial workspace enabled them to 
extend their working memory for a sensemaking task [14]. They 
found that analysts created spatial constructs that represented 
knowledge artifacts (timelines, lists, piles, etc.) corresponding to 
intermediate findings throughout the process. Shipman and Marshall 
refer to this process of refining intermediate knowledge structures 
spatially over time as incremental formalism [15]. They discuss how 
the lack of formality involved in creating spatial constructs provides 
advantages for sensemaking. For example, analysts can create piles 
or lists without specifying the parameters used to create them. For 
text analysis in particular, these spatial constructs have been shown 
to encode significant semantic information about an analyst’s 
process and insights [18]. Visual analytic applications have been 
built to enable users to manually create spatial data layouts that aid 
their analytical reasoning (e.g., [12], [13], [19]).  

2.2 Mixed-Initiative Visual Analytics 
The concept of mixed-initiative systems is integral to many visual 
analytic applications. The key feature of such systems is the ability 
to “take initiative” or perform some actions on behalf of the user [5]. 
Equally important is to ensure human control or action. Thus, the 
goal of mixed-initiative systems is to properly balance the action and 
work between the user and system. The need to explore the 
appropriateness of this balance has been explored by Endert et al., 
who argue for “human-is-the-loop” techniques [20]. Such techniques 
adhere closely to the sensemaking processes described earlier and 
contrast with more traditional human-in-the-loop guidelines. 
Specifically, the distinction is made that domain experts should not 

be used to explicitly tune parameters of collections of analytic 
models. Instead, their cognitive abilities can be better leveraged by 
systems that allow users to engage in higher-level analytical 
reasoning, while systems learn from their actions to steer lower-level 
computational models [6]. 

One example illustrating this concept is ForceSPIRE, a visual 
analytic system that enables both computational and user-driven 
spatial organization of text documents [9]. User interactions directly 
in the visual metaphor are interpreted to steer the underlying layout 
algorithm. Similarly, the ability for computational models and users 
to co-create such spatial metaphors has been shown in applications 
including Dis-function [8] and StarSPIRE [21]. 

These examples are grounded in the understanding that analytical 
reasoning is encoded in users’ interactions during sensemaking and 
exploration, providing a means of capturing analytic provenance [6]. 
Examples of such semantic interaction interfaces build on this work 
by directly binding the inference of the user interaction with specific 
steering approaches for analytical models in the system [6]. 

The work presented in this paper explores how interactions can 
be interpreted for task recommendations, as distinguished from 
previous work, which is focused largely on user modeling and data 
modeling. 

2.3 Task Modeling and Recommender Systems 
Unlike information retrieval systems, which search collections of 
largely unstructured data to return information that meets criteria 
explicitly specified by the user [22], recommender systems suggest 
relevant information that may be useful [23]. Broadly, there are two 
kinds of recommender systems: collaborative filtering systems [24] 
and content-based systems [25]. Collaborative filtering systems are 
often used when the system has access to and agglomerates data 
from many users, while content-based systems are preferred when 
the system does not have such access. 

Collaborative filtering systems, popularly exemplified by Google 
News, Amazon, and Netflix, rely on large quantities of data from 
users to build user preference models, on the basis of which the 
system predicts or infers either a new item or a preference ordering 
(most-preferred item) over new items. The user data can be either 
explicit (user rankings) or implicit (gleaned from users' behavior). 

Content-based systems address cases such as text [26] in which it 
is possible to perform some level of content analysis. Text content 
analysis is often based on keywords, although more complex 
analyses are sometimes deployed (e.g., by building per-document 
word-frequency indices). Again, one builds a model of user 
preferences and recommends new items to the user on the basis of 
the similarity to past favorites. 

For ADE, neither of these approaches was appropriate, as our 
goal is not to recommend information based on others’ behavior or 
interests. Rather, we strive to recommend data relevant to this 
analyst’s specific task. This relies on making informed guesses as to 
what she is trying to do at any point, and where it is given that the 
activity will comprise a number of steps (or subtasks). ADE’s 
recommender is partially a content-based recommender system [27], 
for it is one in which the content recommended is not based solely on 
the intrinsic content characteristics of items like similarity relations, 
but rather on the match between those content characteristics and the 
tasks the analyst is engaged in. 

Prior work also explores how to show the recommendations to 
users. Toledo et al. [28] developed a recommender to support data 
analysis by displaying alternate views of a stacked graph using dwell 
time as a measure of user interest. Here, the recommendation is a 
view of the stacked graph. VisComplete [29] presented an approach 
for construction of visualization pipelines by recommending the 
remaining steps in a new pipeline based on a database of previously 
completed pipelines. These recommended steps are presented as 
suggestions displayed alongside the partial pipeline the user has 
created. Maguire et al. [30] developed a method for generating 
macros for workflow visualization; the recommended candidate 



 
Figure 1. The ADE Canvas supports externalization of analytic thinking and displays recommendations in context of the ongoing analysis. a) In 
response to the user’s entry of seeds, shown in green, ADE recommends data and relationships, shown in recommendation cards and dotted-
line connections. This Canvas shows the state after the user has entered some seeds directly on the Canvas and has “pinned” other locations 
from Google Earth. b) Vehicle route recommendations for Isia Vann are displayed in Google Earth. Each geospatial recommendation from ADE 
appears in a separate layer. c) The user suppresses other layers to show vehicle travel at night, revealing suspicious visits to the homes of 
Willem Vasco-Pais and Ada Campo-Corrente. The user “pins to Canvas” to create new seeds for these locations. 

macros are presented using glyphs to compactly summarize the 
relevant data. Our approach differs in that ADE recommendations 
take the form of subsets of data of multiple types appropriate to 
multiple tasks, supported by an explanation for the recommendation. 

3 DESIGN GUIDELINES 
An initial workshop with researchers and expert information analysts 
was held to conceptualize a mixed-initiative analytic environment. 
Early in the prototyping process, a second workshop was held with 
approximately 14 information analysts to solicit feedback on an early 
version of ADE. Participants reviewed designs, watched a 
demonstration of the software and provided feedback. From the 
expert feedback, several themes emerged. 1) Users must remain in 
control of their process. Recommendations should enrich, not dictate, 
the process. 2) Recommendations should enhance the current task. 
Information presented for an earlier or later task is a nuisance. 3) It is 
essential for the user to understand what recommended information 
signifies and why it is recommended. 4) ADE should remove, rather 
than add, routine tasks for the user.  

Based on this expert input and related research, we assert that an 
environment for mixed-initiative iterative sensemaking should 
support the following guidelines. 

Guideline 1. Support externalization of thinking. As described 
in [10], mixed-initiative sensemaking systems should provide an 
environment in which users can capture information relevant to their 
ongoing task and refine their conceptual models. Development of a 
fully featured dynamic thinking environment is beyond the scope of 
the current prototype; our focus is on capturing entities and 
relationships relevant to a particular sensemaking task. 

Guideline 2. Infer users’ tasks based on their activities. Users 
should not be burdened with additional activities for the purpose of 
guiding the recommenders [20]. An appropriately instrumented 
environment should enable the inference of user’s tasks based on 
clues from their interactions. 

Guideline 3. Support iterative sensemaking by presenting 
semantically meaningful recommendations that enrich the 
current activity. Information that is relevant at one stage of the 
iterative sensemaking process may be irrelevant at earlier or later 
stages. Mixed-initiative iterative sensemaking environments should 
recommend relevant data based on the user’s current activity and 
potential next step, rather than attempting to forecast several steps in 
the future. A task-oriented approach, which recommends data and 
relationships relevant to the current task, provides additional 
sophistication over a traditional search-based approach, which 
provides data in response to user-defined searches. 

Guideline 4. Enable rapid visual interpretation of 
recommendations. Recommended data should be presented in 
compact visual form, to allow users to quickly assess the 
recommendation and explore or dismiss it with minimal effort. 

Guideline 5. Provide recommendations in context. 
Recommendations should be presented in context of the user’s 
analysis so that their potential relevance is apparent. 
Recommendations should be accompanied by a natural-language 
rationale that can be easily interpreted by the user. 

4 USAGE EXAMPLE 
Using these design guidelines, we developed the ADE prototype 
(Figure 1). In this section, we illustrate a use case for ADE using 
elements of the 2014 IEEE VAST Challenge [31]. In this fictitious 
scenario, several GAStech employees have disappeared and the 
Protectors of Kronos (POK) organization is suspected of 
involvement. Data include two weeks of GAStech email headers, 
credit card and loyalty card transaction histories, and vehicle 
tracking data for GAStech employees, a city map, historical 
documents, and news articles. We performed manual and automated 
data pre-processing to identify and geolocate businesses and 
employee homes, create a GAStech employee organization chart, 
and extract entities from narrative text documents. 

To begin, the user creates “seeds” representing entities of interest, 
in this case “GAStech” and “POK.” ADE attempts to infer the user’s 
task based on these actions, but no specific task can be identified at 
this stage. The recommender assumes a general task and seeks 
information related to persons, places, or organizations with these 
names. In addition, the recommender seeks information that may 
relate these entities. 

The resulting recommendation sets are automatically prioritized, 
formatted, and displayed on the Canvas near the corresponding seed 
(Figure 1a). Each recommendation set appears in a separate card. In 
addition, evidence of relationships between seeds appear as dashed 
lines between the seeds. A recommendation card on the line provides 
evidence for the suggested relationship. 

The analyst could inspect the recommended data in one of her 
analytical tools (Microsoft Excel, Google Earth, or Gephi in this 
example). She may ignore or dismiss recommendations. The 
recommended relationship between GAStech and POK is of urgent 
interest, so she explores this first. 

The recommendation card associated with this relationship is for 
Isia Vann. Turning over the card shows a natural-language rationale 
for this recommendation, as well as a numeric relevance score. The 
explanation states that Isia Vann has had a role in both organizations. 

a 

b 

c 



This is relevant, so she creates a new seed from this 
recommendation.  

In response, ADE seeks and presents several new 
recommendations on the Canvas, including summaries of Isia Vann’s 
email usage, general driving patterns, and late-night driving patterns. 
Each recommendation corresponds to relevant data found by an 
underlying subtask model. 

The recommendation summarizing late-night driving raises the 
user’s interest. She double-clicks to show the geospatial 
recommendations in Google Earth (Figure 1b-c). This reveals that 
Isia Vann made late-night visits to the homes of two GAStech 
executives: Willem Vasco-Pais and Ada Campo-Corrente. She pins 
these locations from Google Earth onto the Canvas to add them to 
her investigation. This produces additional recommendations, 
including a relevance-ordered list of visitors to these homes. 
Inspecting the list of visitors to Vasco-Pais’ home in Microsoft 
Excel, she identifies another visitor to this home: Hennie Osvaldo. 
She pins Hennie Osvaldo to the ADE Canvas from Excel, resulting 
in new recommendations, including possible meeting locations 
between Hennie Osvaldo and Isia Vann—overlapping stops of their 
vehicles in which they were at most 300 feet apart. 

Based on this, she hypothesizes that Hennie Osvaldo and Isia 
Vann are suspects. The user creates groups labeled “Suspects” and 
“Victims,” which have special meaning in a criminal investigation 
task model, as they indicate predefined categories of individuals for 
which specific questions need to be answered. She drags the seeds 
for Isia Vann and Hennie Osvaldo to the “Suspects” group, adding 
them to the group. This triggers new recommendations that present 
evidence of particular interactions between the suspects. She adds 
Willem Vasco-Pais and Ada Campo-Corrente to the “Victims” 
group. As a result, new recommendations appear, summarizing the 
interactions between suspects and victims (Figure 2). 

Using ADE, the analyst has progressed rapidly from exploratory 
analysis through several iterations of investigation to the preliminary 
identification of suspects and victims. 

 

 
Figure 2. The user has created groupings for Suspects and Victims 
and has added individuals to the appropriate groups. ADE presents 
relevant recommendations based on this higher-order classification of 
the individuals, as shown by recommendations near the group seeds. 

5 SYSTEM DESCRIPTION 
Below we describe the primary components of ADE. 

5.1 System Overview 
ADE consists of an Active Data Interface and an Active Data 
Assistant (Figure 3). The Active Data Interface is the user interface 
component, composed of a web-based Canvas user interface, a web 
server, a database, and interfaces to selected third-party analysis 
tools. The Active Data Assistant manages inference of user interests, 
instantiation of the appropriate task models, and recommendation of 
relevant data based on the current task. The Active Data Assistant 
passes recommendations to the Active Data Interface for 
presentation to the user. 

The user incrementally externalizes her thought process by 
recording key entities and relationships on the Canvas throughout her 
analysis (Guideline 1). She spatially arranges and groups entities as 
appropriate. 

 

 
Figure 3. ADE consists of an Active Data Interface and an Active Data 
Assistant. The Active Data Interface consists of the Canvas (a), the 
web-based dynamic thinking space; the Canvas Server (b), which 
selects and transforms recommendations for presentation and 
coordinates communications with the Canvas and third-party tools (c); 
and the Canvas Database (d), which maintains the state of the 
Canvas. Based on communication from the Canvas Server, The 
Active Data Assistant performs activity analysis (e) to infer analytic 
tasks. The resulting information is passed to the Data 
Recommendation Engine (f) to search for data to satisfy the task 
models. This produces recommendations, which are prioritized and 
returned to the Canvas Data Server (b) for transformation and 
presentation. 

ADE works as follows.  
1) A user performs an interaction with the Canvas to record 

information of interest. Interactions of particular interest to ADE 
include creating or deleting a seed, creating a group, adding a 
member to a group, and creating a link between two seeds. 

2) Each of these interactions generates a new Canvas state, which 
the Active Data Interface sends to the Active Data Assistant 
(Guideline 2). The state consists of the most recent user interaction 
as well as the state (displayed, grouped, linked) of all of the seeds, 
groups, and recommendations on the Canvas. 

3) The Active Data Assistant performs activity recognition by 
considering the user’s last interaction to add, remove or link entities, 
and the state of all entities on the Canvas. A catalog of possible 
activities, or task models, is compared to the state of the Canvas to 
determine candidate activities in which the user may be engaged. If 
data on the Canvas are sufficient to populate the input parameters of 
the task model, then this task is considered a candidate activity. The 
result is a mapping from user and Canvas to a particular activity. 

4) Candidate tasks identified in this way trigger the execution of 
the corresponding data retrieval tasks (Guideline 3). Information 
from the Canvas populates parameters of modeled tasks associated 
with the recognized activity. This hierarchical collection of tasks is 
executed to retrieve and combine data. Some tasks are designed to 
retrieve data relevant to a single entity on the Canvas, while other 
tasks are designed to find information that connects two entities or 
entity groups. Tasks can range from simple information retrieval to 
complex analytic algorithms. 

5) Recommended datasets are returned to the Canvas Server, 
where they are transformed into summarized visual representations 
(Guideline 4). These visual thumbnails help draw attention to 
patterns or anomalies. They are presented to the user on the Canvas 
in the context of the user’s ongoing analysis (Guideline 5). 



5.2 Active Data Assistant 
The Active Data Assistant provides recommendations based on the 
user’s interactions (Guideline 3). This requires the Active Data 
Assistant to do the following. 1) It must know what data sources and 
tools are available to the user. 2) It must know the conceptual 
schemas of those sources—the kinds of information they contain and 
how to access that information—and the capabilities of the 
associated analytic tools. 3) It must have (or be able to generate) 
structured models of tasks that the analyst might be executing. 4) It 
must track the user’s current state [32], [33]. 

We assume the first two requirements are met by hand-
engineered data and tool catalogs. Currently, tool choice is dictated 
by data type. If multiple tools were available for a given data type, 
tool choice would be based on attributes of the tools, given the task 
and the data volumes. In principle, the relevant characteristics of the 
data sources could be learned, as could some of the features of the 
tools. Similarly, with respect to the fourth requirement, we assume 
that the analyst’s desktop and associated tools have been 
instrumented and that application programming interfaces (APIs) are 
available to support communication of the user’s state. This 
instrumentation must be at the appropriate level of abstraction to 
convey operations that are analytically meaningful for the user. In 
this prototype, instrumentation problems are avoided by hand 
engineering the APIs between the Active Data Assistant and the 
Active Data Interface. 

5.2.1 Task Models 
The Active Data Assistant generates data recommendations via a 
library of task models and an engine that triggers and executes them. 
Each task model specifies the mapping between a user’s analytic task 
and data relevant to that task. The models are parameterized to make 
representation of the task (and corresponding relevant data) specific 
to the current problem. The models are hierarchical in that they 
specify how a task can be decomposed into subtasks and how the 
data recommended for the various subtasks can be merged into data 
relevant for the parent task. In the current prototype, the task model 
library is authored and maintained by system developers. 

Currently, task models are formulated in terms of specific data 
sources, so the models do not adapt easily to new data sources. In 
future work, we will build a data abstraction layer to specify the 
kinds of data required to execute a task model. Together with 
software that semi-automatically aligns data sources with a given 
ontology, this will allow future task models to be created at a higher 
level of abstraction not tied to specific data source schemas. We will 
formulate these data requirements in terms of a formal ontology 
characterizing the types of entities and relations among entities 
relevant to the task domain. 

The components of a task model are as follows. 1) A task name 
that specifies the type of task. Table 1 lists the names of tasks 
implemented in the current prototype. 2) A set of parameters—
variables that, when bound, instantiate the task according to the 
particular problem. For example, InvestigateSuspectsBehavior 
requires a single parameter representing a list of suspects being 
investigated. The task name is generally indicative of the parameters 
required. 3) A set of data retrieval procedures. These parameterized 
scripts specify how to retrieve a block of data relevant to the task. In 
addition to the script, a data retrieval procedure contains a 
parameterized English-language explanation of the data and its 
relevance for the task, and a numerical priority—an estimate of the 
probability that the retrieved data will be useful for completing the 
task. In our current prototype, data retrieval procedures are 
parameterized Structured Query Language (SQL) queries. Priorities 
are assigned by task model authors and are static. 4) A set of 
subtasks upon which completion of the parent task may depend. For 
example, InvestigateCrime includes two subtasks, 
InvestigateSuspectsBehavior and InvestigateVictims.  

The task-subtask decomposition encoded in the task models is 
akin to Hierarchical Transition Network (HTN) planning models 

[43], although unlike HTNs, the subtasks in our task models do not 
necessarily constitute the complete definition of the parent task (e.g., 
investigating a crime entails more than investigating victims and 
suspects). 5) A set of data merge procedures, parameterized scripts 
that specify how to merge recommended data from the task’s 
subtasks. Each data merge procedure includes an English explanation 
and a priority, as described earlier. In our current prototype, data 
merge procedures are parameterized SQL queries. 

5.2.2 Recommendation Engine 
The recommendation engine involves two steps: (1) perform 

activity recognition to infer the user’s current analytic task(s), and 
(2) trigger and execute the appropriate task model to recommend 
data relevant to that task.  

We take a simple approach to activity recognition in the current 
prototype. For each newly created seed, the activity recognition 
software identifies all possible tasks (Table 1) for which it can bind 
parameters (keeping the parameter types consistent with the seed 
types). In addition, special seed terms associated with criminal 
investigation, such as “Suspects” and “Victims,” are explicitly 
mapped to specific default tasks (InvestigateSuspectsBehavior and 
InvestigateVictims, respectively). In future work, we intend to 
incorporate more robust activity recognition technology (e.g., [33]–
[35]). 

When the Active Data Assistant hypothesizes a task T based on a 
specific user activity, it retrieves the task model for T from the task 
model library. Typically, more than one T and one task model will 
be consistent with the current state of the analysis. The Active Data 
Assistant instantiates the parameters in the task models in accordance 
with the current state of the Canvas and executes the associated data 
retrieval procedures. Running a data retrieval procedure executes its 
query; any results are collected as a table. If the task model includes 
subtasks, the corresponding task models for the subtasks are 
invoked, and the resulting data is merged and joined into a table 
according to the data merge procedure. Rows are ordered according 
to a relevance score, described in Section 5.2.3. 

 
Table 1. Active Data Assistant Task Models 

Task Model Name 
InvestigateCrime  
InvestigateSuspectsBehavior  
InvestigateVictims 
FindConnectionBetweenPersonNames  
FindLocationConnectionBetweenPersonNames  
FindConnectionBetweenPersonNameAndOrganizationName  
FindConnectionBetweenPersonNameAndPlaceName  
FindConnectionBetweenOrganizationNames  
FindEverythingAboutPersonName  
FindEverythingAboutOrganizationName  
FindEverythingAboutPlaceName  
FindEverythingAboutString  

 
The task models’ data retrieval and data merge procedures range 

from simple search to sophisticated retrieval and data manipulation. 
The current task models for ADE include 1) basic full name 
normalization, 2) mention clustering and entity extraction within (but 
not across) documents, 3) proximity-based and region-based location 
and route retrieval, and 4) determination of temporal event overlap 
and time/proximity overlap. 

When a user’s interactions provide little evidence upon which to 
base a task hypothesis, the Active Data Assistant uses default tasks. 
This is particularly true early in the exploration process. For 
example, if the user types “John Doe” on a blank Canvas, the 
assistant cannot form a specific hypothesis about what role John Doe 
plays in the user's tasks. It can hypothesize a default task that the 
user wants to know interesting things about John Doe, where 
“interestingness” is determined by what others have found useful 
about people in the past. Adding “Mary Q Public” to the screen 
likely would still not provide enough evidence to form a specific task 



hypothesis, but the assistant can hypothesize a default task of looking 
for relationships between Doe and Public. Here, relationships may 
indicate direct linkages between the two entities or shared 
connections to a third entity. 

In moving toward a scalable and robust ADE operational system, 
it is critical to have a workable process for creating and maintaining 
the task model library. The current model requires knowledge 
engineers to produce and maintain the task model library. In future 
work, we believe machine learning techniques can help partially 
automate the process by associating analyst-constructed queries with 
their current tasks. 

5.2.3 Relevance Determination 
If the task model returns data, the Active Data Assistant assigns 
relevance ratings for the overall recommendation and for the 
individual data rows in the recommendation. These ratings express 
the probability that a recommendation/row is relevant to the task 
being modeled. The relevance rating R for the recommendation as a 
whole is assigned by the task model. In the current prototype, it is a 
constant specified by the creator of the task model. In future work, 
we will explore the extent to which these recommendation rankings 
can be learned from user behavior, as a form of implicit or pseudo-
relevance feedback.  

Individual data rows for a recommendation are assigned a score, 
which is used for sorting. The row score estimates the relevance 
probability of the row, that is, the probability that the data in the row 
is relevant to the task. The minimum starting value for each the row-
level relevance score is R. A row score may increase based on the 
column values in that row as follows. A relevance probability is 
computed for the row given the column value, and in this way, a row 
score may increase based on the column values of that row. 

A domain-independent metric based on outlier values is used to 
estimate column relevance. Outliers are detected using interquartile 
range, a standard statistical technique. For numeric columns, outlier 
values are detected. For nonnumeric columns, outlier frequencies of 
values are detected. Outlier relevance is capped at 0.1. 

A column with special semantics may be assigned a custom 
relevance probability in place of the outlier metric. For example, a 
row related to a document has a column containing the number of 
mentions of a name within that document. The ratio of mentions to 
document size can be used as a relevance probability. 

Column-level probabilities are assumed to be independent, 
although in practice the columns may be highly correlated. 
Furthermore, all relevance probabilities are presumed to be 
disjunctive; that is, a record is relevant if the recommendation, the 
row, or one or more columns of the row are judged to be relevant. 
These assumptions permit straightforward and sound aggregation of 
relevance probabilities by multiplying their complements (i.e., their 
irrelevance probabilities) and complementing that product. In future 
work we will explore learning these row and column-level 
probabilities from user behavior. 

The recommended data are sorted by row relevance and sent to 
the Canvas Server, accompanied by the relevance score for the 
overall recommendation and the natural-language explanation for the 
recommendation. This natural-language explanation directly 
corresponds to the (sub)task model that produced the data. 

5.3 Active Data Interface 
The Active Data Interface captures user interactions and presents 
recommendations to the user. It consists of the Canvas web-based 
user interface, the Canvas Server, a supporting database for 
persisting Canvas content, and interfaces to third-party tools. 

5.3.1 Canvas 
The Canvas provides a thinking space in which the user can 
externalize her thinking about entities and relationships that emerge 
as relevant during the course of her analysis (Guideline 1). Unlike 
systems in which entities are explicitly and strongly typed, the 
Canvas does not enforce semantics [14], [15]. This supports a more 

friction-free user input but burdens the system to figure out what the 
user is expressing [6], [9], [21]. Entities can be added, removed, 
grouped, related, and organized as desired. Interactions are captured 
and used as a basis for inferring tasks (Guideline 2). Interactions 
being captured include creating a seed, creating a relationship, and 
creating a group, In turn, the system presents recommendations to 
the user in the context of her externalized thinking in the Canvas 
(Guideline 5). 

ADE uses a consistent visual language for representation of user-
created objects such as seeds (Figure 4a), relationships (Figure 4a), 
and groups (Figure 4b), as distinguished from system 
recommendations (Figure 4c–m).  

Figure 5.  

Figure 4. Visual representations in ADE. a) Entity “seeds” are 
represented as green circles. The (+) indicates that data have been 
merged into the seed; this data can be revealed by clicking the (+). 
The black line between seeds indicates that the user has explicitly 
created an edge between two seeds. b) A user-defined group of 
Suspects. Once added to a group, seeds assume the group color. c) 
Dashed lines between seeds indicate system-recommended 
relationships. A card in the center of the line gives detail about the 
suggested relationship. d) An entity recommendation includes the 
entity name and a list of attribute name-value pairs. e) Any 
recommendation can be “flipped” with a mouse click to display the 
natural-language explanation and relevance score for the 
recommendation. f) A list shows a recommendation consisting of 
several entities, presented in relevance order. Clicking an entity on the 
list creates an entity recommendation for it. The total list length 
appears on the right. g) Locations and h) routes are shown as markers 
and paths, respectively, on a map tile. i) Recommended sets of 
entities and relationships are shown in a subgraph. Temporal 
recommendations are shown using j) histograms of events over time 
and k) heatmaps showing day by hour patterns. l) Multiple 
representations are generated to emphasize different characteristics of 
the recommendation (such as textual, temporal, and geospatial). One 
representation is arbitrarily presented, and the user can cycle through 
the available representations. m) Large text recommendations are 
presented as a word cloud of prominent words. 



Users create seeds through manual entry, pinning from a third-
party tool, or conversion from an entity recommendation. Users may 
combine seeds or combine recommendations with a seed. When the 
user drags a seed onto another seed, those seeds are “merged” 
(combined) into a composite entity. When the user drags a 
recommendation onto a seed, that recommendation augments the 
seed, adding context to or data about the entity represented by the 
seed. Users define groups by creating a seed with a model-specific 
keyword like “Suspects” or with their own a user-defined term 
preceded by a “#” symbol. Each group is assigned a specific color. 

Sensemaking tasks may require use of many analytic tools 
appropriate to the specific data types. ADE interfaces were 
developed for Microsoft Excel, Gephi, and Google Earth. Double-
clicking any recommendation on the Canvas opens the associated 
data in the appropriate tool. We also implemented mechanisms to 
permit the user to “pin” the contents of an Excel spreadsheet cell or a 
Google Earth placemark to the Canvas. 

5.3.2 Contextual Presentation of Recommendations 
Transformers (Figure 3) produce compact visual representations of 
the raw recommendation sets provided by the Active Data Assistant. 
The presentations are selected based on the data attributes present in 
the recommendation set. These visual thumbnails are intended to 
provide insight into anomalies and patterns. 

Active Data Interface uses the recommendation-level relevance 
scores assigned by the Active Data Assistant to select the most 
highly relevant recommendations for display. The items present on 
the Canvas are organized into a transparent hexagonal grid. This 
layout requires limited processing time and ensures sufficient space 
to render the cards for user inspection. The user can adjust the layout 
by moving seeds. Seeds are given priority and occupy the 
unoccupied hexagon nearest to the point at which the user placed 
them during a drag-and-drop operation. After all seeds have claimed 
a place in the grid, recommendations are placed surrounding their 
seed, until all six surrounding spaces are filled or all 
recommendations have been placed. Priority is given to the most 
relevant recommendations for each seed. 

Recommendations placed on edges are a special case. These 
recommendations highlight aspects of a relationship between two 
entities (e.g., an employment record between a business and a 
person), so the recommendation is placed in an empty hexagon 
midway between the two entities. If there is not an empty hexagon in 
the vicinity, the edge recommendation is placed overlapping other 
recommendations at the midpoint of the edge. 

6 DISCUSSION 
We discuss the strengths and limitations of our prototype, in the 
context of the design guidelines presented in this paper.  

Guideline 1. Support externalization of thinking. ADE 
provides basic capabilities for externalizing representation of entities 
and relationships relevant to an iterative sensemaking activity. A true 
iterative sensemaking environment would require a richer visual and 
interactive vocabulary to be able to support semantically meaningful 
annotations by the user, alternate methods for organizing 
information, and critical thinking about assembled evidence. 

Guideline 2. Infer users’ tasks based on their activities. We 
have sought to eliminate the burden on the user to take steps strictly 
for the system’s benefit, such as to provide explicit guidance about 
searches to perform, the syntax of those searches, or the data sources 
on which to search. The initial prototype provides a small set of 
activities through which the user can implicitly express interests 
(e.g., creating a seed, relationship, or group). 

The current prototype makes use of explicitly recorded entities 
and relationships as a basis on which to infer tasks, but it does not 
take advantage of additional interactions that could provide direction 
to the Active Data Assistant. For example, we would like to 
incorporate inference of implicit relationships based on the user’s 
organization and reorganization of the Canvas [6], [8], [9]. 

Likewise, interactions in third-party analytic tools could indicate 
user tasks and interests. The initial prototype demonstrates basic 
interactions with third-party tools, but more complete semantic-level 
integration would be required to provide the type of interoperability 
we envision. To fully realize this goal would require a common 
semantic API to share meaningful user actions between applications. 
This API should also permit recommendations from ADE to be 
passed to the third-party application. 

Guideline 3. Support iterative sensemaking by presenting 
semantically meaningful recommendations that enrich the 
current activity. In the current prototype, we present a set of 
prioritized recommendations based on task models. In the early, 
exploratory phases of the task, the recommended information is 
relatively general and supports many potential tasks. As further 
analytic steps are completed, more specific models are executed to 
provide more refined recommendations. 

ADE uses custom-written task models. While it would be 
extremely difficult to learn these models by observation of the user’s 
activities, it might be feasible, deploying a well-instrumented 
analyst’s desktop, to learn variants of existing task models. 

The current use case assumes an unstructured, bottom-up 
approach, which is common for sensemaking tasks [3]. However, a 
more top-down, plan-driven approach to sensemaking provides rich 
opportunities for presentation of meaningful recommendations. Perer 
and Shneiderman [36] explored mechanisms for providing simple 
and flexible support for task execution. ADE could be applied to 
well-defined structured tasks to provide greater analytic support. 

Guideline 4. Enable rapid visual interpretation of 
recommendations. Compact visual representations provide 
overviews of patterns in recommended data to help support selection 
of plausible or interesting next steps in the sensemaking process. In 
earlier versions of the prototype, only one representation was 
selected per recommendation. However, subject matter expert 
feedback and our own exploration made it clear that no one format 
was appropriate for revealing the multiple dimensions (geospatial, 
temporal, topical, or relational, for example) about which the 
particular recommendation may reveal patterns. The use of multiple 
alternate formats partially addresses this issue. 

There are several approaches to optimizing the form of the 
visualization. Adapting to user preferences could lead to more useful 
initial representations. 

Guideline 5. Provide recommendations in context. We assert 
that recommendations should be shown to the user within their 
ongoing analysis in a way that provides supporting context for the 
recommendation, and recommendations should be explained to the 
user in natural language. The current prototype presents one 
instantiation of such an approach. 

7 CONCLUSION AND FUTURE WORK 
This paper presents a set of design guidelines for development of 
task-model-based mixed-initiative environments for supporting 
sensemaking. We have described a prototype that demonstrates these 
principles. We have described a motivating use case and discussed 
the design choices made in developing this prototype, along with the 
strengths and limitations of these choices. 

There are many research questions to pursue further as a result of 
this work. Kang and Stasko [10] include detailed provenance 
tracking and reporting processes in their hypothetical system, which 
is a natural extension to the current work. In addition, we will extend 
the prototype to address sensemaking with dynamic datasets, which 
will raise questions of change blindness and attention management. 
We also intend to investigate techniques for addressing problems of 
scale as well as space management on the Canvas. We will explore 
generalization of our techniques to support greater adaptability to 
new data sources and more straightforward development and 
refinement of user models, as described in Section 5.2.1.  We will 
explore the use of adaptive task and user models to improve the 
quality of recommendations presented. In addition, we plan to 



conduct a user study to evaluate the effects of this mixed-initiative 
environment on the iterative sensemaking process. 
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